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Stable Vector Bundles over the Projective Orthogonal Groups

RENE P. HELD AND U. SUTER

Introduction

Let G be a compact connected Lie group of rank r. If the fundamental group
n, (G)=m is trivial, then Hodgkin [9] showed that the complex K-theory of G is an
exterior algebra (over the integers) generated by r elements arising from the basic
irreducible representations of G.

Now suppose that 7 is a non-trivial, finite group. Modulo torsion K*(G) is again
an exterior algebra and therefore

K*(G)= {Ez (2, ..., %)@ T*(G)}/S(G),

where o, ..., o,e K' (G) are elements representing generators of the exterior algebra
K*(G)/TorsK*(G), T*(G)=T°(G)®T"'(G) is a certain Z,-graded subalgebra of
K*(G), generated by 1 and some elements of finite order, and S(G) is the ideal
generated by the ‘‘relations”.

In the case when n=Z, where p is a prime, the authors [8] proved that

T*(G)=T°(G)=R(n)/(j* (s,)).

where R(7) is the complex representation ring of the covering transformation group
n of the universal covering u: Gy — G, j*:R(G,)— R(n) the homomorphism induced
by the inclusion j:n & G, and (j*(I;,)) the ideal generated by j*-image of the aug-
mentation ideal I;, of R(G,). Furthermore 7°(G) coincides with the image of the
homomorphism c*:K°(B,)— K°(G) induced by the map c:G— B, classifying the
universal covering of G. The ideal S(G) in this case is given by

5(0)=(%®T°(G)),

where T°(G)=Z® T°(G).
In this paper we propose to give a complete description of the ringstructure of the
unitary K-theory for the family of the projective orthogonal groups PSO (m). Note that
'if m is odd then we have PSO (m)=SO (m); the ring K* (SO (m)) is already known see
[7], [8] or [6]. If m is even, say m=2n, we shall distinguish between the ““cyclic” case,
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i.e. n odd and hence n, (PSO(2n))=~Z,, and the ‘‘non-cyclic” case, i.e. n even and hence
7, (PSO(2n))=Z, X Z,. In the ‘‘cyclic’ case it again turns out that 7" (G) is zero and
that 7°(G) can be identified with the image (¢*)= R(n)/(j* (I5,)), thus in this respect
extending the results of [8]. However in the ‘‘non-cyclic’ case it is no longer true that
the ring K*(G) is generated by the image of the homomorphism c* and the free
generators ay, ..., @, K (G). The enquiry after the generators of K* (PSO(4¢)) then
leads to the definition of a crucial stable vector bundle 7 over the suspension of PSO (4¢).
The element e K' (PSO (4¢)) will be given in terms of the transfer maps associated to
the two semi-spin coverings of PSO (4t) (see (4.2)). The main result of this paper may
then be paraphrased as follows (see (6.2), (7.2)).

Let G=PSO(2n), n even. Then T*(G)=T°(G)®T" (G) is generated by 1 and
elements &,, £,eimce* = K°(G) and te K* (G) such that the following relations hold

(i) The elements &,, £, &, and &7 are of order 2X~! where k =v, (n)+2. The element
1 is of order 2* whereas &, is of order 2"71,

(i) &3 +2¢,=0, &2 +2£,=0, 12=0, ¢, +21=0.

The ideal S(G)<= Ez (2, ..., ,)QT*(G) is generated by the following elements:

an—l@éh an®€29 OC,,_1®T, an®1'.’ 1®2k_1‘t—06,,_1®2”“2§2
and
1®1t¢,+102t1—a,@¢,;.

(i.e. in K*(G) one has the relations a,_,¢, =0, a,é,=0, a,_,;7=0, a,7=0, 2*"17=
=2""28a,_y, Té +2t=0,¢,.)

The proof of this result rests on the relationship between complex K-theory and
the complex representation ring of a Lie group, the Atiyah-transfer homomorphism
and a very detailed analysis of various spectral sequences.

The different geometric and ‘algebraic topological’ features of PSO (47+2) and
PSO (4t ) suggest that the two cases be looked at separately. In the layout of this paper
the emphasis is put on the ‘“‘non-cyclic” case (see section 1 to 6), whereas the main
steps leading to the result in the ‘‘cyclic” case are just summarized; see section 7.

I. THE NON-CYCLIC CASE; n,(PSO(21))2Z,xZ,
1. Restricting Representation of Spin (27) to its Central Subgroups.

(1.1). Throughout Chapter I let n>6 be an even integer and k =v,(n)+2, where
v, (n) is the exponent of the highest power of 2 dividing n. The centre of G, =Spin(2n)

is denoted by n. Hence n=Z, x Z,, and in accordance with Tits [11; p. 36] we choose
generators z and z’ of n. We shall consider the Lie groups of the form G,/ where
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w=1Z, is one of the three possible subgroups of n. If w=w, is the subgroup generated
by z we get the semi-spin group G, =Gy/w,; if ®=w; is generated by z’ then it is well
known that Gy/w; = G5 is isomorphic to G,. If w=w, is generated by z-z’ — (diagonal
subgroup of m) — we get the special orthogonal group G,=Gy/w,=S0(2n). The
projective orthogonal group PSO (2n) is defined to be Go/n=G.

(1.2). The complex representation ring R(x) is generated, as a free abelian group,
by 1, g,, 0, and g; where the representations

oi:n—> St (i=1,2,3)
are defined as follows:

01 (z2)=—1=¢,(z)
2(2)=1, .(z')=-1 (1.3)
03(2)=-1, 03(z')=1

The representations g;, (i=1, 2, 3), satisfy

of=1, 0;'02=03. (1.4)

The augmentation ideal I, of R(r) is generated, as a free abelian group, by g, o, and
o3 where 0;=9,—1 (i=1, 2, 3) with relations

6} 4+20;,=0, 0,0,+0,+0,=0;. (1.5)
The representation ring of w;=Z,, (i=1, 2), is given by
R(0)=Z[6,]/(67 1)

where 0,:w;— S! is the canonical representation. The augmentation ideal I, is
generated by x;=0,— 1, with relation x? +2x;=0.
The representation ring of G, is a polynomial ring

R(Go)=Z [Ag, Agye.vy An] (1.6)

where the generator 4,, (s=1, 2,..., n—2), is the s-th exterior power of the canonical
representation Gy—=» G, g U(2n) (a, being the two-fold covering map of G, =S80 (2n)),
whereas 4,_, A, stand for the spin-representations 4™ and 4~. Hence the augmenta-
tion ideal I, is, as a ring, generated by the elements

ly=A—diml, (s=1,2,...,n). (1.7)
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Let e;:w; s 7, (i=1, 2), be the inclusion map. Denoting by j: 7 5 G, the inclusion
of the centre, we define the map j;:w; s G, to be j;=joe,.

Thus the homomorphisms €] : R(n) - R(w;) are given by

eT(Ql)=61=er(Q3)’ eT(Qz)'—"l

e;(gz)=92=e;‘(g3), 32(91)=1-

According to [11; p. 36] the homomorphism j*: R(G,)— R(n) is determined by

(L.8)

(2:) 01, for s odd and 1<s<n-2

(2:) , for seven and 1l<s<n-2
j*(ln—l)zzn—lgza j*()'n)zzn_193°

The maps j':R(Go)—> R(Z,), (i=1, 2), are given by (1.8), (1.9) and j}=e%o j*,
jE=ete j*!
A straight forward calculation using (1.8) and (1.9) establishes the following result.

(1.10) PROPOSITION. (i) If J=(j* (Is,)) is the ideal generated by j*(I;,), then
R(M|JZZ@Zy- 1 DZyn- 1 DZyr-1, where k=v,(n)+2. Generators for the three finite
cyclic sumands may be represented by ., 0, and 0,0, respectively.

(i) If Jy=(ji (g,)), then R(w,)|J, = Z@Z,x- 1, with K, representing a generator
Of sz- 1.

(iii) IfJ,=(j3(g,)), then R(w,)[J, = Z@Z,n- 1, with Kk, representing a generator
Of Zzn— 1.

(1.11) Remark. The canonical ring homomorphisms #k;:R(n)/J— R(w;)/J;,
(i=1, 2), are given by h,(d,)=x;, h,(6,)=0 and h, (6,)=0, h,(0,)=x,.

2. The Homomorphism in K-theory Induced by the Universal Covering of G=PSO(2n).

Let us begin with a few observations concerning the universal covering u: M,
— My/w= M of a compact Lie group M of rank r, having finite fundamental group w.
Since K* (M) is torsion free (see [9]) the map u*: K* (M) — K* (M,) factors through
K*(M)/Tors K*(M ), thus giving rise to the homomorphism #: K* (M )/TorsK* (M)
— K*(M,). As Z,-graded Hopf algebras, both K* (M )/Tors K*(M ) and K*(M,) are
exterior algebras on the group of primitive elements denoted by P and P, respectively.
The image of u* is therefore a primitively generated exterior subalgebra of K* (M)
and is determined by

4(P)=(imu*)NP,.
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We now aim at giving a description of this latter group. There are elements v,, v, ...,
v,€K' (M) representing a basis of P and elements y;, s, ..., 1,ePyc K' (M) forming
a basis of P, such that

u*(vy)=mgyu,, 0<meZ, (s=1,2,...,r). (2.1)

(2.2) LEMMA. The product of the integers m,, m,, ..., m, is equal to the order of
w, i.e. mym,... m,=|w|.

Proof. In K*(M,) we have u* (v,v,... v,)=mm,... m,*A,4,... A,. We shall prove
that u*(v(v;... v,)=|w| 4,4, ... 4,. This is seen as follows. For ordinary cohomology
with integer coefficients the homomorphism u* restricted to the top dimensional
cohomology class of H*(M; Z) is multiplication by |w|. This together with the fact
that both M, and M are parallelizable compact manifolds and hence stably reducible
(see [1]) implies (2.2). (For a different proof of (2.2) see [8; section 2].)

(2.3). From (2.2) we conclude that the subgroup (imu*) P, of P, has index |w|.

The universal covering u: My — M is classified by a map ¢: M — B,,. We view

A=(My % M S B,)

— up to homotopy equivalence — as a principal fibre bundle over B,, u representing
the homotopy class of the fibre inclusion; (see [5]). (The classifying map B, — By,
of the M,-bundle A is induced by the inclusion j:w — M,.)

According to [9] the o and f-constructions together with the K-theory exact
sequence of the pair (M, M,) give rise to the following commutative diagram.

K'(M)“5K' (M) -2 K°(M, M) - K°(M)

.1 w‘ *
¢ c
-8 /' KO (B(ﬂ’ pt) = Ko ‘(Bw) (24)
HA) s a a
/ N N\
IMo j* > Iw > > R((D)

(For the definition of « see [2]).

(2.5) LEMMA. The homomorphism ¢&*oa:l,—K*(M, M,) factors through
I,/I,-im j*.
~ Proof. In K°(M, M,) products of the form ¢-8(n) vanish; [3; p. 87]. The lemma
then follows from the commutativity of (2.4), i.e. from ¢*oqo j*=—4o8B.

Let Fcly, be the free abelian group generated by ly=A4,—dim4i,, (s=1,...,r),
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where 4,,..., 4, are the basic irreducible representations of M,. By [9] the homo-
morphism  maps F isomorphically onto the group of primitive elements P, K* (M,).
In the following we shall identify P, and F, in particular we shall write Ae P, for any
element f(4) with AeF.

With (2.4) and (2.5) we then get the commutative diagram

Po=F —21% __, K°(M, M,)

\3\ / (2.6)

I, /1, imj*

where ¢ is induced by j*.
Hence

kerp< (ker ) N Po=(imu*) N Py. (2.7)

Recalling the notations introduced in section 1, we now revert to the three coverings
u:Go=Spin(2n) > PSO(2n)=G, a,:Gy— Go/w, =G, and a,:Gy— Gy/w,=SO0(2n).
These coverings yield the following commutative diagram

F\

‘| N\ (238)

IR/Iﬂ.imj* - I(Di/Ia)j.imji*
where ¢, ¢, are induced by j*, jI' respectively; (i=1, 2).

(2.9) PROPOSITION. There is a basis By, ..., Bn-2, Va—1, Va of Fclg, such that
(1) Bis---s Bn-25s 2yn-1, 2y, are a basis of kergo

(i) Bys--s Bu—25 2yn-1, 7, are a basis of kero,;

(iil) Bys-ees Bu=2> Yn-1, 2y, are a basis of kerg,.
Moreover, for B,,..., B,—3 and y,_, we can choose a linear combination of Ayyeeis Xpes
whereas B,_,=4%—A4" and y,=A,=A4" —dim4~; (see (1.7)).

We omit the proof of (2.9) which amounts to a plain computation based on (1.8),
(1.9) and the relations (1.5).

It follows from (2.9) that the subgroup ker ¢ of F=P, has index 4 and we con-
clude with (2.3) and (2.7) that

kerp=(imu*)n Py, and similarly kerg,=(ima’)NP,. (2.10)

The following proposition is then a consequence of (2.9), (2.10) and the commu-
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tativity of the diagram

RSN

a by

/ N\

Gy . G (2.11)
N /!
N S

where all the maps are canonical covering projections.

(2.12) PROPOSITION. There are generators By, ..., Bn_2, Yn-1> ¥n Of the exterior
algebra K*(G,) and elements v, Vy,..., Vu_3, €n_1, &,€K'(G), v¥,..,v?,, &2 |
e eK!(G,), (i=1, 2), such that

(i) the elements vy, ..., V,_ 3, €,—y, €, generate an exterior algebra in K* (G) which,
under projection, is isomorphic to K*(G)/Tors K*(G). Furthermore

u*(vs)=ﬂs’ (S=1’“"n~2); u* (en-1)=27p-1, U* (€4)=2y,.

(ii) the elements v{,..., v ,, e, &9 generate an exterior algebra in K*(G,)

’”""

which, under projection, is isomorphic to K* (G)[TorsK*(G,), (i=1, 2). Furthermore

af (VN=B,, (s=1,...,n-2),(i=1,2),

and
at(es2)=20-1,  al(&)=v,, G (E2)=V-1, a3 (87)=2y,
whereas
by (v)=v, (s=1,..,n=-2),(i=1,2)
and

bl (8 -1)_‘ €n- 1a b;(gn)=8n(2)'

(iii) The above elements can be chosen such that with respect to the various transfer
maps (see [10]) arising from (2.11) one has

(@) (Pa—1)=e?;,  (modtorsion),  (a;)s(7,)=e{? (mod torsion),
tn—1=(b2)s (82 &a=(b1)x (c7")
and hence
b3 (a-1)=26321,  bl(en)=2e,".
(For (iii) see [8; (2.4), (2.7)].)
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(2.13) Remark. Theelementy,e K (G,)can be represented by the homomorphism
G2 U(2" )5 U which factors through G,, giving rise to a homomorphism
43:G3— U. The map 4, represents an element in K* (G;) which we denote by &/.
The element &’ e K! (G,) can not be represented by a group homomorphism. How-
ever, combining the two canonical Hopf multiplications on U, it is possible to write
down explicitly a map 4,: G, - U representing & .

3. Generators of Finite Order in K°(G).

Using the main result of [8] and reverting to (1.10) and (2.12) we first list the
following two propositions.

(3.1) There are elements v\, ..., v{V,, &V, &VeK!(G,) and {,eR°(G,) which
generate the ring K*(G,) and such that

(i) K*(Gy)= {Ez("m o V52, 842, (1))®TO(G1)}/(3(1)1®C1) where T°(G,) is
the subring of K°(G,) generated by 1 and {,.

11 e element 1+, is represented by the complex line bundle associated to the

ii) The el 1+¢ d by th lex line bundi d to th

twofold covering Go—> Gy; {, is subject to the relations
4+20,=0, 2¥1,=0, (k=v,(n)+2).

In particular T°(G) = ZDZ;x«-:.

(3.2) There are elements v?,...,v?,, &2, £ eK'(G,) and {,€K°(G,) which
generate the ring K*(G,) and such that

(i) K*(Go)={Ez (", ... 22, 8241, 87)®T° (G2)}/ (2,7 ®L2)
where T°(G,) is the subring of K°(G,) generated by 1 and {,.

(ii) The element 1+, is represented by the complex line bundle associated to the

twofold covering Gy—> G, and {, is subject to the relations
(3+20,=0, 2"7'(,=0.

In particular T° (G,)=Z®DZ ;- 1.

Remark. The complex K-theory tells the homotopy types of G, and G, apart, a
result which also appears in [4, (9.1)]. In [4] however the Steenrod algebra structure
of the ordinary cohomology of G, and G, is used to distinguish the homotopy types
of G, and G,.

We now determine the image of the homomorphism induced by the map ¢:G— B,

classifying the universal covering of G.

(3.3) PROPOSITION. Let T°(G)=im[K°(B,)<>K°(G)]. Then T°(G) is a direct
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summand of K°(G) and the homomorphism c*oa:R(n) - K°(G) of (2.4) induces an
isomorphism

T° (G)= R (n)/(j* (5,) X ZD Lok :® Ly D Zyi-1;  (k=7, (n)+2).

Generators of the three finite cyclic summands of T° (G) are given by &,, &, and £, &,,
where the element 1+ &, (respectively 1+&,) is represented by the complex line bundle
associated to the twofold covering b,:G,— G (respectively b,:G, — G). The elements
&, and &, are subject to the relations &3 4+2¢,=0, &2 +28%2=0.

Proof. 1t follows from [2; (7.2)] that ¢*oa maps R(r) onto imc*=T°(G). In-
voking (2.4) we infer that ¢*oa induces an epimorphism

R(m)(j* (I6)»T°(G).

Now consider the composite
G xG, 22, GxG2>G5B,

where m is the multiplication map on G, and set ¢t=m, (b, x b,). Applying K° we get
R(n)*K°(B,)<>K°(G)-> K% (G, xG,). (3.4)

Clearly, the elements ;€ R(n) map onto ¢, K°(G), (i=1, 2). Furthermore, looking
at the Chern classes of the line bundles involved, one has r*(1+¢&,)=(1+(,)®]I,
t*(1+8,)=10(1 +4,)eK°(G)®K®(G,)=K°(G, x G,). With (3.1) and (3.2) we
then obtain

t*oc*ou(0,)={,®1eT°(G,)®1
t*oc*ou(0,)=1®0(,e1®T°(G,)

which implies that ¢*oc* oo maps R(n) onto the direct summand 7°(G,)®T°(G,) of
K°(G, x G,). Hence there is an epimorphism

R(m))j*(Ig,))»T° (G)®T° (G2) 2 ZOZ k- ®Zyn- 1 @Zyx- 1

and the proposition is established.

4. A Basic Generator of Finite Order in X' (G).

The elements ¢,, £,€ K°(G) and vy, ..., V4—2, &.—1, £.€K' (G) do not yet generate
the ring K*(G). In fact it can be shown, comparing the spectral sequences of the
bundles A =(Gy-%G-5 B,) and I'; =(Go 2> G;~> B,,,) that there must exist an element
‘1€K' (G) with b} (1)={, &"eK*(G,). Such an element t can not be expressed in
terms of the elements in K*(G) described as yet. (Note b7 (e,)=2¢".)
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We are now going to define an element te K' (G) of finite order which together
with the above elements will generate the ring K* (G).

To begin with let us consider &V, & and y, in K*(G,), K'(G;) and K'(G,)
respectively. By (2.12) and (2.13) these elements are related as follows.

af (&) =y,=a3 (). (4.1)
We now define
T=(b3)x (6) = (by)x (e) €K' (G), (4.2)

where (b;),:K*(G;) > K*(G), (i=1, 3), is the Atiyah-transfer map associated to the
twofold covering b;:G; — G.

(4.3) PROPOSITION. The element te K' (G) has the following properties

(i) b% (1) =C,eP ek (Gy)

(ii) b3 (r)=0eK'(G,).

Proof. For the basic properties of the transfer map f,: K* (X)) —» K*(Y) associated
to a finite covering projection f:X— Y we refer to [2] and [10]. In particular we
point out the validity of the ‘‘Frobenius reciprocity law”, i.e.

L (F* () x)=y e (%)

where xe K*(X), yeK*(Y)and f*:K*(Y)— K*(X) the map induced by f. Consider
the following morphisms of coverings

GO"‘L‘—)Gi

o [

G, — G

J T,

where i#jand i, j=1, 2, 3.
The transfer is natural with respect to such morphisms and with (4.1) we compute

2o (B)x (en))=(az)x 00 (&) =(a2)x (1), (i=1,3),

thus establishing part (ii) of (4.3). On the trivial line bundle 1€ K°(G,) the transfer
(@1)4 is given by (a,)s(1)=2+(,; (see [2; p. 45]). Using the Frobenius law we then
calculate

bY o (b3)s (67)=(a1)x 0 a3 (8,”)=(a1)x (va)=(a1)x (a1 (&) 1)=&," (2+{1) -

Furthermore b% o (b, )4 (6{")=2¢{" and part (i) of (4.3) is verified.
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(4.4) COROLLARY. The following relations hold in K°(G).
(i) &r+2:=0 :

(i) &yt+2t—¢&.e,=0

(iii) ta,,_1=0, 16,=0

(iv) 2=

Proof. Recall that &,=(b;)s(e{") and ¢,_,=(b,)x(e{?;). Now observe that
(6,)x(1)=2+¢, and (bz)*(l) 2+¢;; (see definition of ¢;, &, in (3.3)). Using (4.3)
and the ‘‘Frobenius law” we get

(2+¢1) T=(b2)x (1) =(b2)x (103 (7))=0

and analogously

2+&2) t=(b)s (1) T=(by)5 (157 ()= (B1)e (1 &) =&y e,
thus establishing parts (i) and (ii) of (4.4). Next we verify

e =(b1)* (61 (1)-2.")=(bs)x (18" -&,”)=0
en—1=(b2)s (07 (1) €,24)=0.

Eventually the fact that G is a finite CW complex and 1€K' (G) implies that 72 =0.
This completes the proof of this corollary.
We now proceed to determine the order of .

(4.5) PROPOSITION. The element t€ K' (PSO(2n)) is of order 2* where k=
=v,(n)+2.

Proof. The fact that 271, =0, (see (3.3)), together with the relation 2t= — ¢;7,
(see (4.4)), implies that 2*7=0. It remains to show that 2*~1¢5£0. This is done in the
following way. The commutative square

gives rise to a map of pairs j: (G, Go)— (G, G,). (Replace the spaces in the bottom
row by the mapping cylinders of @, and b, respectively.) We thus obtain a morphism
of exact sequences

. — K°(Gy) 255 K'(G,G,) = K'(G) =2 K'(Gy) —> -
a*; j* b*y la‘z
(1)

}=—F K (Go) 2= K (Gla Go) s KI(G1) _a:‘l"Kl(Go) _
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Since b3 (t)=0 there is an element weK"' (G, G,) such that i} (w)=1. With 47 (1)=
={,6{" we infer j*(w)={, &" (modim §1), where in the latter expression the dot
denotes the action of K*(G,) on K*(G,, G,). Referring to (2.4), (2.9) (ii) and (2.12)
we observe that 6® (y,_,)=2*"1¢,#0 and thus 6V (y,_7,) =271, - & #0. Hence

j*(zk_lw)=2k_1‘:1'3§nl)=5(l)(?n—l?n)¢0- (4-6)

(Note, 2-im 6V =0).

We show that 2¥"17 =0 leads to a contradiction. The assumption 2* 't =0 implies
i3 (2 'w)=0; hence there is an element in K°(G,), say #, with 6'®(n)=2*"'w. By
(4.6) we then get

6Pay(n)=2"""¢ 6P =06D (y,-174)-

According to (2.12) we have a’ (K*(G3))=Ez(B1>-., Bu-25 Vu-1> 27s) = K*(G,) and
ker W =a} (K*(G,))=Ez(B1>--» Bu-2> 2Vn—1, ¥n).- One now checks readily that

a; () #Yn-17»  (modulo ker 6)

and the contradiction becomes evident. Hence the order of 7 is indeed 2*.
5. The Spectral Sequences.

In this section we compute all the differentials in the spectral sequence (E,(G), d*)
of the fibre bundle

A=(Go—>G—B,). (5.1)

This will enable us to fully determine the target term E_ (A). The additional informa-
tion on K*(G) we get from E, (A) will then be sufficient to complete the description
of the ring K*(G).

Basically we shall compare the spectral sequence of A with the ‘‘known” (see [8])
spectral sequences (E,(T';), d;*), where I'; is the fibre bundle

I’,.=(Go—a;> Gi—c;’Bm,), (i=1,2). (5.2)
For the E,-term of the spectral sequence of I'; we have
E,(I'y)=H*(Bo,; Z)®K* (G,),

where H*(B,;Z)=Z[w,]/(2w,), w,eH*(B,;Z) and K*(Go)=Ez(By,-.-s Bn-2s
Yu—15 Tu)> S€€ (2.12). With (1.10) and [8] we obtain
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(5.3) PROPOSITION. (i) A/l differentials d* are trivial except for the differential
dys, (k=v,(n)+2), which. evaluated on the element 1®y,_,, is given by

A2k (1®yu- ) =wi®1.
The reduced E -term, E, (I'))= @ >0 E™ *(I'y), is given by
Eoo (Fl)g {ﬁ* (Ban; Z)/(Wf)}@Ez (ﬁl, eey Bn—29 yn)=
= {(wl)/(wf)}@)EZ (ﬁls sy ﬁn—Zy Vn) .

(ii) Al differentials dI* are trivial except for the differential d52 which, evaluated
on the element 1®vy,, is given by

d2e (1®7,)=w;®1.

The reduced E,, (I';)-term is given by E. (I';)={(w;)/(w3)}®Ez(Bis-- > Buz2s Vu-1)-
We now focus on the following commutative diagram.

mo
GO - GO X GO ———— 0

qi
ail lalxaz lu

G «— G;xG, —5 G (i=1,2). (5.4)

cil lclxcz jc
h

Ba)g (_PT- Bw1XB(o2 —___—> Bn

In (5.4) m, stands for the multiplication map, ¢ is as in (3.4), p;, ¢, and pr. are the
canonical projections and 4 is the identification map induced by w, x w, =mn, (see 1).
We denote the bundle in the middle of (5.4) by I'; x I'; and the corresponding bundle
homomorphisms by

ri<fer xr,-24. (5.5)
For the E,-terms of the spectral sequences of I'y x I', and 4 we have

E, (I, xT;,)=H*(B,; Z)®K* (Go X Gy)
E,(A)=H*(B,; Z)®K*(Gy).

We write (E,(B,), d.~) for the spectral sequence of the CW-complex B,=B,, x B,,,
and make two basic observations.

(5.6) Let r=2. We have E,,(['y X I',)2E,,;(B,)®K*(G, x G,) if, and only if,
"E, ([, xT',)=E,(B,)®K*(Go x G,) and d,(1®0K*(Gy x G,))=0. 4 similar remark
can be made about the spectral sequence of A.
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This fact is easy to verify. Note, E,(B,) is a differential subring of E,(B,)®
®K*(Gy x Gy) with K* (G, x G,) torsion free, and similarly for E(A).

(5.7). If E,(I'y xI';)~E,(B,)®K*(Gy % G,) for some r>2, then E,(A)~E"(B,)

RK*(Gy).
This is true for r=2 and it follows for r>2 by induction from (5.6) and the fact
that the bundle map M:I'; xI', > A induces the monomorphism

E,_1 (B.)®K* (Go)—=2"%E, , (B,)®K" (G, x G,).

We then derive from that

(5.8) LEMMA. For the bundles I'y x I, and A one has

Ej (I'y xTp) = Ey (Br)®K* (Go x Go)
Ey (A)= Ey (B,)®K*(Go), (k=v,(n)+2).

Proof. Referring to (5.6) and (5.7) we have to show that
AT *T2 (1QK* (Gox Go))=0, (s=2,3,...,2k—1), (5.9)

By (5.3) the differentials 47, (s=2, 3,..., 2k—1 and i=1, 2), are trivial (note that
k=v(n)+2<n) and since E>** (I, x L) 1QK*(Go X Go) = 1QK*(G,)®K*(G,) is
generated by the images of the spectral sequence maps E,(P;), (i=1, 2), statement
(5.9) follows.

We now list the relevant facts about the spectral sequence of B, =B, x B,,,. This
spectral sequence is not trivial. However a computation of C. T. C. Wall (see [2; p. 61])
shows that

E,(B,)=~E, (B,)=Gr.R(n)=Z[x, y]/(2x, 2y, x>y — xy?) (5.10)
with
Gr R(n)=IiI5*',  Gr.,4q4 R(7)=0

where x, yeGr., R(n)=1,/I? are represented by g,, 0, respectively. We introduce the
following notation

R,=Gr.,,R(n), R=@® R,=Gr.R(n), R=@ R,=Gr.I,. (5.11)
s=0 s=1
We then have R, =~Z,®Z,, where x and y generate the two cyclic summands. For

s>2 the cyclic summands of R,~Z,®Z,DZ, are generated by x°, y* and xy*~!
respectively.
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For later use it is convenient to set
z,=y"+xy*"leR,, (s=2,3,...)
and hence we have
Xz,=0, Yz=z,,,=z2, XV'=z,,—y"". (5.12)

We are now ready to give an explicit description of the 2k-level of the spectral
sequence of the bundle A.

(5.13) LEMMA. (i) E;;,(A)=R®K*(Go)x{Z[x, y]/(2x, 2y, x}y—xp*)}®
Ez(ﬂn LA ﬂn-z’ Yn—-15 yn)
(i) d%(R®1)=0, d43,(1®B,)=0, (s=1,2,...,n-2),
d(1®7,)=0,  d5(1®y,-1)=x*®1.
Proof. Part (i) is a consequence of (5.8) and (5.10), since 2k >4. Also from (5.10)
we infer that d4, (R®1)=0. Now the bundle maps of (5.4) induce homomorphisms of
the corresponding spectral sequences, which on the 2k-level are given as follows

H*(B,,: Z)QK*(G,) g7 R®K™(Gox Go) 55— R®OK* (Go)
IR [P I
Ey(Ty) Ey ([ xT'y) «———— Ey (4).

Using (5.3), the fact that p} (w}) = x*®1 and the primitivity of the elements B, ..., 8,2,
Yu—1> ¥n With respect to mg we immediately complete the proof of this lemma. (Again
note that k<n.)

A short computation involving (5.12) and (5.13) shows that

E(Z)I’c-tl (A)gZ®EZ (ﬂla ’ ﬁn—z’ 2?n—1’ yn)

and

B 1 (A)ZRI(XY®Ez (Bys o> Bu-25Vn)
@(ZZ)®EZ (BI’ sees ﬂn—Zs yn).yn—l .

(Here (v) stands for the ideal generated by veR).
To get a hold on the differentials d4, for r>2k, we consider the bundle maps

(5.14)

Fi:Fi—-)A, (i=l, 2) (5.15)

which are given by the commutative diagrams

Ci
Go > G > B,

1‘ l”* l’* (i=1,2).

Gy ~eet G by B,
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(5.16) LEMMA. (i) The homomorphism

E2k+1 (FZ).E2k+1 (A) EZ (ﬂla seey Bn-Zs 2'))n— 1 ’)’n)
""Ezk+1 (Fz) E, (ﬂp s Ba-2s V-1 Yn)

is the canonical inclusion.

(i) Epgs1(F2) maps (23)®Ez(Bis--» Bu=2s ¥4) Vn-1SEaxs1(A) isomorphically
onto (W2)®Ez(ﬂ1a---, Bu-25Vn) V- 1€ Eype 1 (I2).

(iii) Eppsq (F2):EZLX (A)—> EXR2 (I) is an isomorphism for 2p>2k +2.
(Note, E5: 1 (4)=0=E%31 (I'2).)

Proof. Part (i) is clear. For parts (ii) and (iii) we observe that

E (F;): R®K* (Gy)— H*(B,,,; Z)RK* (G,)

is given by E,; (F2) (x®1)=0, E;; (F;) (y ®1)=w,®1, hence E,, (F;) (z,®1)=w: ®1.
To complete the proof look at the induced map on the (2k +1)-level.

It follows from (5.16) that 2, (r >2k +1), is trivial as long as df>=0, and with
(5.3) (ii) we get immediately

(5.17) LEMMA. (i) d2=0 for r=2k+1,...,2n—1, i.e. Ej;+,(A)=E,,(A)

(i) d2,(1®7,)=7"®1; (where 7eR|(x*) is the element represented by yeR).
d3, is zero on the elements 1®p;,..., 1®B,— 2, 182y,_1, X®1, F®1, 2,@7,_,; (Where
X is the element represented by x). In particular, d%,(2,®7n—17n)=Zn+ 2®Vn-1-

An explicit calculation resting on (5.12), (5.14) and (5.17) then gives

(5.18) E2X,(A)=E%Y,(A)=1Q® A, where A4 is the subalgebra of Ez (B, ..., Bu_2,
Vn-1> Yn) generated by B, ..., Br-2, 2¥n-1> 27, and 2y,_,y,. Moreover we have

Erpiy (A)2Es i (A)={R/(X*, y")}QEZ (By, ..., Ba-2)
@ {(x)/(x*)} ®Ez (Bss -5 Bu-2) ¥
@{(zz)/(znz)}@Ez (Bis ---» ﬁn—z) Yn-1-

Since E%%,(A4)=0 for p>2n+3, we conclude that d,=0 for r>2n+3 and
dypi2(ELY ,(A))=0 for ¢>0. On the other hand elements of the form 2y,_,y,x
eK*(G,), where a=p,pB;,... B;, are not in the image of u*:K*(G)— K*(G,),
(see (2.12)), i.e. these elements can not ‘‘survive” in the spectral sequence of 4. Hence

for 1®2y,_,7, 2€ES. %, (A) we must have

2n+2(1®27n 17:-0‘)" 2,+1®Vn-12
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and thus we get

EG*(A)ZZREL (B> s Ba-2 2Vn-15 2y,)
E, (A)gﬁ/(x", Y)®EZ(Bys s Ba-2)
®(x)/(x)REz (B> -5 Bn=2) Vs
@(22)/(2a+ )®EZ (Bis s Bn2) Vn-1-

In particular ES® *(A4)=0, EZ%*(A)=0 for p>2n+2.
The ringstructure on the right hand side of (5.19) is the one inherited from

R®EZ(ﬁ1’ ceey ﬁtr— 25 Yn—-15 ‘Vn)
Note that — as abelian groups — the ‘‘quotients” in £ (A) can be exhibited as

follows (the elements under the Z,-summands indicate the respective generators):

R/(x*, y")=2(Z,DZ,)D(Z,DZ,DZ,)D.. @(Zz@zz@zz)@(zz@zz)@

(5.19)

% y xz }72 x); . xk lyk lxyk Zyk xy
DZL,D..DZ,
J-;'k+1 . y—n—l
X)/(xN=Z,0(Z,0Z,)®........ ®(Z,0Z,)DZ,
xOR R ... gkl gpk-2gph1
(Zz)/(Zn.l.l)gZz@Zz@ ........ @Zz
2, 3 ... z, (5.20)

We are now going to extract as much information from the structure of E (A) as
we need in order to be able to complete the description of the ring K* (PSO(2r)). In
this sense the following corollaries rest basically on (5.19).

Since the total space G of the fibre bundle A is of the homotopy type of a finite
CW-complex the spectral sequence converges, i.e.

E,(A)=Gr.K*(G),
where Gr. K*(G) is the graded ring associated to the usual filtration (see [2; p. 29])
of K*(G). There are no elements of finite order in E% * (A1) and no elements of infinite
order in £_ (A). Hence

|Tors. K* (G)|=|E,, (4)|.

(5.21) COROLLARY. The number of elements of finite order in K*(G) is given by
|Tors. K* (G)| =22+ 4k=6)2""2

where k=v, (n)+2.
Proof. Use (5.19) and (5.20).

, (5.22). According to (5.19) the elements 1®8,,..., 1®f,-2, 1B2y,_;, 182y,
*®1, y®1, X®7y,, Z,®7,_, form a system of generators of the graded ring E, (G) =
=Gr.K*(G). (Recall that (¥ ®1) (2:®7,-1) =224+, Vn-1-)
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In the following table we record which elements of K*(G) represent the above
generators of E (A).

K*(G) s=1,2,...,n—2 €p-1 g, él 62 T 628,,_1

(5.23)
Eoo(G) 1®ﬂs 1®2Vn—1 1®2’)’n f@l .)7®1 x@)’u 52®'}’n—1+v

where in the right hand corner ve E%*(A) is an element of the form v=%j ®a, +
+(X®7a) (F ®22); a1, 0, € Ez (15 -5 Bu-2)-

Only the last two entries of this table require some comment. By (4.3) one has
bY (1)=(e"eK*(G,) and b} (t)=0. The element {,e{"’ has exact filtration 2 and
represents w; ®y,€E_ (I';). Hence the torsion element t has also exact filtration 2.
Looking at the homomorphisms EZ *(F,) and EZ *(F,) we then see that 7 represents
Z®y,; (use (5.3) and (5.19)).

The filtration of &,¢,., is greater than 2, the reason being (y®1)-(1®2y,-,)=0
in E%*(A). On the other hand we have b3 (£,6,_,)=b03 (&5 (b2s) £21))=(522,.
Since 2(,&{?, = —{26{?, has exact filtration 4, the same now holds for ¢,¢,_,. Hence
£,6,_, Tepresents an element weE%*(A) such that E (F,) (w)=wi®y,_, and
E, (F,) (w)=0 (recall that bT (£,¢,-,)=0) and the result again follows by looking at
the homomorphisms E% *(F,) and EX*(F,).

(5.24) Remark. Note that in E, (A) we have (j®1)*"1-(¥®y,)#0 and hence
&~ 11#0. By (3.3), (4.4) and (4.5) we then conclude that the order of &,t is 2¢71.
Since K*(G) has finite filtration we derive from (5.22) and (5.23):

(5.25) COROLLARY. The elements vy,..., Vy_3; Ey—1, €ny &1, &2 and t generate
the ring K*(G).

By (5.19) we have E%*(4)=0 for p>2n and hence we can identify EZ"*(A)
with K3,(G), the subgroup of elements of filtration 2n. Elements of E2"*(A) are of
the form Z,®7,-18=(7""2®1) (£,®7,-1+v) (1®B), where fe Ez(B,, ..., B,-,) and
v is as in (5.23). (Note that (7" 2®1)-v=0.) The latter element is represented by
&3 2(&Ey8p—1) v=2""2¢08,,v, Where veEz(v;,..., v,—,). Consequently we may re-
mark:

(5.26). Any element peK*(G) of filtration 2n is of the form
p=2""2&38,_1v,

where vEEZ(Vy,..., Va—2)-
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Finally we derive from E,(A) the following relation involving the (non-zero)
element 2¥~1ze K (G).

(5.27) COROLLARY. There is an element ve Ez(vy,..., v,_,) <= K*(G) such that
2k_lt=2n_2€28u_lv-

Proof. Note that 2*"'t=¢&""r (see (4.4) and (4.5)). In E,(A) we have
(F®1)* ' (*®7,)=0€EZ*(A) and we conclude that &~ 'teK'(G) has filtration
greater than 2k. This in turn implies that &~ !t represents a non-zero element
te E%»* (A)for some s with k + 1< s<n. Since b} (&5~ '1)=0 we infer that EZ* * (F,) (¢)
=0. But E2**(F,) is an isomorphism for k+1<s<n—1; (see (5.3) and (5.19)).
Hence te E2™* (A), i.e. &~ ' has exact filtration 2n, and the corollary follows from
(5.26).

6. The Ring K*(PSO(2n)); n even.

In this section we state the main theorem — for the ‘‘non cyclic”’ case — and com-
plete its proof.

For this purpose define the Z,-graded commutative ring 7*(G)=T°(G)®T* (G)
to be the subring of K*(G) generated by 1, £, £, and te K*(G).

Referring to (3.3), (4.4), (4.5) and (5.24) we get:

(6.1) The subring T*(G)<K*(G) is subject to the following relations

(i) The elements &, £,¢, and ©&, are of order 2*~', the element t is of order 2%,
where k=v,(n)+2. The element &, is of order 2"

(ii) & +2¢,=0, (i=1,2), t*=0 and &7 +2c=0.

(6.2) THEOREM (Non-cyclic case). Let G=PSO(2n), where n>6 is an even in-
teger. Then the canonical homomorphism

Ez(Viseoes Vue 25 €n—1, €1)QT*(G) = K*(G)
induces a ring isomorphism

{Ez (Vi) ..s Vn—25 Enz1, £,)®T*(G)}/S (G)=K* (G),
where S(G) is the ideal generated by the elements

En-1®&1, Ea® &3, E1-1®T, 6,07, 6,1 ®2" 26— 102"t
- and

1®T€2—8n®£1+1®2f.
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Proof. Let us first establish the relation 2*71t=2""2¢,¢,_, in K*(G). Reverting
to (5.27) we recall that we have already shown 2* 1r=2""2¢,e, v, for some
veEz(vy,..., V,—2). In order to verify that actually v=1 (mod2) and hence
2" 2,6, v=2""2¢,¢,_, we propose to look at the homomorphism g*: K*(G) —
- K*(G)®K*(G,) which is induced by the obvious action map g:G x Gy — G. We
then easily calculate that

g*(2* 1r)=2""1®1.

On the other hand -~ since v,, (s=1,..., n—2), is primitive modulo torsion and since
2"=2¢,-Tors. K*(G)=0 - it is not hard to show that

g* (2" 285e,-1v)=2""282¢, @1 +a (v),

where «(v)#0 unless v=1 (mod2). Hence the relation 27 1t=2""1¢,¢,_, is estab-
lished.

Next we observe that we have ¢,_,£,=0 and ¢,£,=0. (Use the fact that ¢,_,
=(by) (621), £,= (b, ) (1), (see (2.12)), b*(&,)=0, b (£,)=0, (see (3.3)), and the
‘Frobenius law’.) The validity of the above relations together with (3.3), (4.4) and (4.5)
then imply that the canonical homomorphism A:Ez(vy,..., Vp-2; €s— 1, &) RT*(G)
— K*(G) factors through {Ez(vy,..., Vu—2, En—1s £,)@T*(G)}/S(G). On the other
hand 4 is an epimorphism by (5.25) and the order of the torsion subgroup of
{Ez(Vis-evs Vue2s En—15 €,)QT*(G)}/S(G) is the same as |Tors.K*(G)| (see (5.21)).
Therefore 4 is an isomorphism and the theorem is proved.

II. THE CYCLIC CASE; n, (PSO(2n)=Z,
7. The Ring K*(PSO(2n)); n odd.

If n>5 is an odd integer then the centre n of G,=Spin(2») is isomorphic to Z,.
In order to determine the ring structure of K*(G), where G= G, /7, one has to analyze
the spectral sequence of the fibration

A= (GO_“')G_C’BA:)

where n~Z,, G, G the universal 4-fold covering of G and c is its classifying map.
The structure of the spectral sequence of A can be worked out essentially along the
lines of [8]. It turns out that the only non-trivial differentials are d¢ and d3,. The
reason for that may be indicated as follows.

Let j:m 5 G, be the inclusion of the centre. Then R(n)/J=ZDZ;,n- DZ,DZ,,
where J is the ideal generated by j*(I;,) and the cyclic summands of R(n)/J are
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generated by 1, &, 62 +26 and ¢ +262, with 140 being the canonical representation
of &.

The fact that J<I2 but J¢:7; together with [8; (5.5)] implies that d #0.

The non-triviality of d3, then is worked out by comparing the spectral sequence
of A with the spectral sequence of I', =(Go—>SO(2n)3 By,).

From the E, (A) term we derive that

T*(G)=T°(G)=im {K* (B,)S> K* (G)} =R (n)/J . (7.1)

Let 1 +¢eK°(G) represent the line bundle associated to the (cyclic) covering G, G.
Clearly ¢eT°(G) and moreover it corresponds to the generator & under the above
isomorphism T°(G)= R(rn)/J. In particular ¢ generates 7° (G) and it is subject to the
relations

2"71E=0,(1+8)*=1 and 2(&242¢)=0.

As in the ‘“‘non-cyclic”’ case there are elements v,, ..., V,_3, €,— 1, £,€ K" (G) gener-
ating an exterior algebra in K*(G) which is isomorphic to K*(G)/Tors. K*(G).

Summarizing all the information we get from the spectral sequence of 4 and from
the transfer maps of the coverings involved, we arrive at the following description of
the ring K*(G).

(7.2) THEOREM (Cyclic case). Let G=PSO(2n), where n>5 is an odd integer.
Then the canonical homomorphism

EZ (vl’ s Vp—25 €59, 8n)®T* (G) - K* (G)
induces a ring isomorphism
{Ez (i, .oy Vu—2s En1, £,)QT* (G)}/S (G)= K* (G),

where T*(G)=T°(G)=R(n)/(j*(Is,)) and S(G) is the ideal generated by &,®2¢,
En—18n® &, £, and e,_ Q@ (E* +2¢).
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