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Stable Vector Bundles over the Projective Orthogonal Groups

René P. Held and U. Su ter

Introduction

Let G be a compact connectée Lie group of rank r. If the fundamental group
n1(G) n is trivial, then Hodgkin [9] showed that the complex A^-theory of G is an
exterior algebra (over the integers) generated by r éléments arising from the basic
irreducible représentations of G.

Now suppose that n is a non-trivial, finite group. Modulo torsion K*(G) is again
an exterior algebra and therefore

K* (G)s {Ez (a1?..., ar)®r* (G)}/S (G),

where al5..., areX1(G) are éléments representing generators of the exterior algebra

K*(G)ITorsK*(G), T*(G) T°(G)®T1(G) is a certain Z2-graded subalgebra of
K*(G% generated by 1 and some éléments of finite order, and S (G) is the idéal

generated by the "relations".
In the case when n^Zp9 where/? is a prime, the authors [8] proved that

where R(n) is the complex représentation ring of the covering transformation group
n of the universal covering u:G0-+G, j*:R (Go) -> R (n) the homomorphism induced

by the inclusion j:n c; Go and (j*(IGo)) the idéal generated by ./?-image of the
augmentation idéal IGo of R(G0). Furthermore T°(G) coincides with the image of the

homomorphism c*:K°(B1t)-^K°(G) induced by the map c:G-+Bn classifying the

universal covering of G. The idéal S (G) in this case is given by

where

In this paper we propose to give a complète description of the ringstructure of the

unitary X-theory for the family of thc projective orthogonal groups PSO (m). Note that

ifm is odd then we hâve PSO(m) SO(m); the ring K*(SO(m)) is already known see

[7], [8] or [6]. Ifm is even, say m 2n9 we shall distinguish between the "cyclic" case,
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i.e. n odd and hence n1 (PSO(2n))^Z4, and the "non-cyclic" case, i.e. n even and hence

nx (PSO(2n))^Z2 x Z2. In the "cyclic" case it again turns out that T1 (G) is zéro and
that T°(G) can be identified with the imagc(c*)^R(n)/(j*(IGo)), thus in this respect
extending the results of [8]. However in the "non-cyclic" case it is no longer true that
the ring K* (G) is generated by the image of the homomorphism c* and the free

generators <xu..., areKx(G). The enquiry after the generators of K*(?SO(4t)) then
leads to the définition of a crucial stable vector bundle t over the suspension of PSO (4t).
The élément teK1 (PSO(4f will be given in terms of the transfer maps associated to
the two semi-spin coverings ofPSO(4t) (see (4.2)). The main resuit of this paper may
then be paraphrased as follows (see (6.2), (7.2)).

Let G=PSO(2«), n even. Then T*{G) T°(G)®Tl{G) is generated by 1 and
éléments Çu £2eimc*cz ^(G) and xeKx (G) such that the following relations hold

(i) The éléments Çi9 £t £2 and £2t are oforder 2k~x where k v2 (n) +2. The élément

t is oforder 2k whereas Ç2 is oforder 2""1.

(ii) ^+2^=0, 3+2É2-0, T2 0, t^+2t 0.

The idéal S(G)cEz(ocl,...9 (xr)®T*(G) is generated by the following éléments:

and

(i.e. in K*(G) one has the relations art_1^1=0, an£2 0, aB_1T 0, ant 0, 2*""1t

The proof of this resuit rests on the relationship between complex /£-theory and
the complex représentation ring of a Lie group, the Atiyah-transfer homomorphism
and a very detailed analysis of various spectral séquences.

The différent géométrie and "algebraic topological" features of PSO (4/+2) and
PSO (4/) suggest that the two cases be looked at separately. In the layout of this paper
the emphasis is put on the "non-cyclic" case (see section 1 to 6), whereas the main

steps leading to the resuit in the "cyclic" case are just summarized; see section 7.

I. THE NON-CYCLIC CASE; tt1(PSO(2/z))^Z2xZ2

1. Restricting Représentation of Spin (2n) to its Central Subgroups.

(1.1). Throughout Chapter I let w^6 be an even integer and fc v2(«)+2, where

v2 (n) is the exponent of the highest power of 2 dividing n. The centre of Go Spin (2n)
is denoted by n. Hence n Z2 x Z2, and in accordance with Tits [11 ; p. 36] we choose

generators z and z' of n. We shall consider the Lie groups of the form Gq/cû where
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co Z2is one of the three possible subgroups of tt. If co co1 is the subgroup generated
by z we get the semi-spin group G1 GQlœx ; if œ co3 is generated by z' then it is well
known that G0lco3 G3 is isomorphic to Gl.lfco co2 is generated by z-z' - (diagonal
subgroup of 7i) - we get the spécial orthogonal group G2 G0lco2 SO(2n). The

projective orthogonal group PSO (2«) is defined to be GQjn G.

(1.2). The complex représentation ring R(n) is generated, as a free abelian group,
by 1, £i, é?2 and £3 where the représentations

are defined as follows :

Ql(z)=-l=Ql(z')
Q2(z)=l9 Q2(z')=-l (1.3)

The représentations ^i} (i 1, 2, 3), satisfy

£? 1, Qi'Qi^Qs • (1.4)

The augmentation idéal /^ of 7?(tt) is generated, as a free abelian group, by al9 <j2 and

<r3 where af ^|— 1 (/= 1, 2, 3) with relations

(7? +2(^ 0, <T1G2+<T1+(T2 (T3. (1.5)

The représentation ring of cOi^Z2, (ï 1, 2), is given by

where d^œ^ S1 is the canonical représentation. The augmentation idéal Iœt is

generated by /Ci=0f— 1, with relation k? +2/cf=0.
The représentation ring of Go is a polynomial ring

R(G0)ç*Z\Xl9k29...9kà 0-6)

where the generator Âs, (s= 1, 2,..., n-2), is the j-th exterior power of the canonical

représentation Go-^ G2 c; U(2n) (a2 being the two-fold covering map of G2 SO (2aï)),

whereas An_!, An stand for the spin-representations A + and A~. Hence the augmentation

idéal IGo is, as a ring, generated by the éléments

(j=1,2,...,h). (1.7)
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Let ei'.cOi c; n, (/= 1, 2), be the inclusion map. Denoting by j:n c; Go the inclusion
of the centre, we define the map jt icoi g: Go to be jt =j°et.

Thus the homomorphisms e*\R{n)-* R{a>ï) are given by

According to [11; p. 36] the homomorphism j*:R(G0)-*R(n) is determined by

for s odd and(2n\
ni (L9)

for serai and 1 <¦?<«—2

The maps jf:R(G0)->R(Z2), (i=l,2), are given by (1.8), (1.9) and j\ e\oj*9

A straight forward calculation using (1.8) and (1.9) establishes the following resuit.

(1.10) PROPOSITION, (i) If'J=(j*(!Go))is the idéal generatedby j*(IGo), then

R(n)/J^Z®Z2k-i®Z2n- i®Z2u-i, where k v2 (n) +2. Generatorsfor the threefinite
cyclic sumands may be represented by gu a2 and gxg2 respectively.

(ii) If Ji (jî(^Go))' tnen R(o^i)IJi Z®Z2k-1, with kx representing a generator
ofZ2u-u

(iii) If J2 (J*(Igo))> tnen R(co2)IJ2 Z®Z2n-1, with k2 representing a generator
ofZ2n-u

(1.11) Remark. The canonical ring homomorphisms hi:R(n)IJ-^R(œi)IJii
(i l, 2), are given by h1(Gl) K1, ^(g^^O and h2(G1) Q, h2{p2) K2.

2. The Homomorphism in Â-theory Induced by the Universal Covering of G PSO(2/i).

Let us begin with a few observations concerning the universal covering u:M0
-> Mq/co Mofa. compact Lie group M of rank r, having finite fundamental group co.

Since K* (Mo) is torsion free (see [9]) the map w* : K* (M) -? K* (Mo) factors through
K*(M)ITotsK*(M), thus giving rise to the homomorphism ù:K*(M)/TorsK*(M)
->K* (Mo). As Z2-graded Hopf algebras, both K* (M)ITorsK* (M) and K* (Mo) are
exterior algebras on the group of primitive éléments denoted by F and Fo respectively.
The image of m* is therefore a primitively generated exterioi subalgebra of K*(M0)
and is determined by

ù(P)=(imu*)nP0.
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We now aim at giving a description of this latter group. There are éléments vls v2,...,
v^K1 (M) representing a basis ofP and éléments (tl9 \i2,..., pirePoczKl (Mo) forming
a basis of Po such that

w*(vs) msjus,0<m,eZ, (j=l,2,...,r). (2.1)

(2.2) LEMMA. Theproduct ofthe integers mu m29..., mr is equal to the order of
œ, i.e. m1m2... mr=\œ\.

Proof. In K*(M0) we hâve u*{yxv2... vr)=mlm2... m^A^... K- We shall prove
that w*(v1v2... vr) |c»| kxk2... Àr. This is seen as follows. For ordinary cohomology
with integer coefficients the homomorphism m* restricted to the top dimensional
cohomology class of H* (M; Z) is multiplication by |a>|. This together with the fact
that both Mo and M are parallelizable compact manifolds and hence stably reducible
(see [1]) implies (2.2). (For a différent proof of (2.2) see [8; section 2].)

(2.3). From (2.2) we conclude that the subgroup (imw*)nP0 of Po has index |co|.

The universal covering u:M0-*M is classified by a map c:M-+!?„. We view

- up to homotopy équivalence - as a principal fibre bundle over Bœ, u representing
the homotopy class ofthe fibre inclusion; (see [5]). (The classifying map B(0-^BMo
of the Afo-bundle A is induced by the inclusion j:co->M0.)

According to [9] the a and ^-constructions together with the J£-theory exact

séquence of the pair (M, Mo) give rise to the foliowing commutative diagram.

(2.4)

(For the définition of a see [2]).

(2.5) LEMMA. The homomorphism c*o(x:Iiû^K*(M9 Mo) factors through

IJI^imj*.
Proof. In K° (M, MQ) products of the form £ • ô (rj) vanish; [3 ; p. 87]. The lemma

then follows from the commutativity of (2.4), i.e. from c*oa° j*=-ôop.
Let FœIMq be the free abelian group generated by Is=As-dimAs, ($=!,..., r),



98 RENÉ P. HELD AND U. SUTER

where ku...9 kr are the basic irreducible représentations of Mo. By [9] the homo-
morphism P maps Fisomorphically onto the group ofprimitive éléments Po cK1 (Af0).
In the following we shall identify Po and F, in particular we shall write keP0 for any
élément P(k) with keF.

With (2.4) and (2.5) we then get the commutative diagram

K°(M9M0)

(2.6)

where q> is induced by j*.
Hence

ker cp £ (ker <5) n Po (im u*)nPQ. (2.7)

Recalling the notations introduced in section 1, we now revert to the three coverings

i/:Gq Spin(2/î) —>PSO(2w) (j, a^iGq —>Gq/o)i G± and g2\Gq-
Thèse coverings yield the following commutative diagram

F \
1

IJIn-imf -> IJI^-imjf

where cp, (pt are induced by j*, jf respectively; (/= 1, 2).

(2.9) PROPOSITION. There is a basis &,..., j3w_2, yn_l5 yn of FcIGq such that

(i) pi9...9 pn_29 2yw_1, 2yn are a basis of kercp

(ii) pl9...9 pn.29 2yn_l5 yn are a basis of ker^
(iii) pl9...9 pn.29 yH_l9 2yn are a basis of ker<y>2.

Moreover,for Pl9...9 j8B_3 andyn^1 we can choose a linear combination ofll9...9ln-2
whereas Pn~2 A + —A~~ and yn Xn A~ —dimA~ ; (see(U)).

We omit the proof of (2.9) which amounts to a plain computation based on (1.8),

(1.9) and the relations (1.5).
It follows from (2.9) that the subgroup ker q> of F=P0 has index 4 and we con-

clude with (2.3) and (2.7) that

ker q> (im u*) n P09 and similarly ker <pt=(im af) n Po. (2.10)

The following proposition is then a conséquence of (2.9), (2.10) and the commu-
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tativity of the diagram

«1 /*
Go > G (2.11)\ A

G2

where ail the maps are canonical covering projections.

(2.12) PROPOSITION. There are generators fiu..., jSn_2, yn_l9 yn of the exterior
algebra K*(G0) and éléments vl9 v2,..., vn_2, e^, elleA'1(G), vf,..., v^2, e(nllu

s^eK1 (G,), (i= 1, 2), swc/* rAa/

(i) rt^ éléments vl9..., vn_2, £n_i, ew generate an exterior algebra in K* (G) which,
under projection, is isomorphic to K* (G)jTorsK* (G). Furthermore

(ii) the éléments v^,..., v^l2, e^, e^° generate an exterior algebra in K*{Gt)
which, under projection, is isomorphic to Â^*(Gi)/TorsÂ'*(Gi), (i=l, 2). Furthermore

«f(vf)=A, (5=l,...,»-2), (1 1,2),

whereas

(iii) TAe aèove éléments can be chosen such that wlth respect to the various transfer

maps (see [10]) arisingfrom (2.11) one has

(ai)*(r»-i)=ei1_)1 (mod torsion), (a2)*(yn)=«i2) (mod torsion),

(For (iii) see [8; (2.4), (2.7)].)
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(2.13) Remark. The élément yn eK1 (Go) can be représentée! by the homomorphism
G0-^U(2n~1)<^U which factors through G3, giving rise to a homomorphism
A3:G3-+ U. The map A3 represents an élément in KX(G3) which we dénote by e(n3).

The élément e(n1)eK1(Gl) can not be représentée by a group homomorphism. How-
ever, combining the two canonical Hopf multiplications on U, it is possible to write
down explicitly a map Ai:G1-+U representing e(nl).

3. Generators of Finîte Order in K°(G).

Using the main resuit of [8] and reverting to (1.10) and (2.12) we first list the

following two propositions.

(3.1) There are éléments v^,..., v^_}2, £2l9 e^eK1^) and ^etf0^) which

generate the ring K*(Gt) and such that
(i) ^(Gi)s{£z(v(11),...,v<1J2,ei1_>1,e<1))®r0(G1)}/(ei1-)1®Ci) where T0^) is

the subring ofK°(G1) gênerated by 1 and Ci-

(ii) The élément 1 +Ci is represented by the complex Une bundle associated to the

twofold covering GO^*GX\ Ci is subject to the relations

CÎ+2Ci=0, 2*-1C1=0,

Inparticular ro(G1)

(3.2) There are éléments v^,..., vii>2, 42_\, si2)eKi(G2) and Ç2eK°(G2) which

generate the ring K*(G2) and such that

where T°(G2) is the subring ofK°(G2) gênerated by 1 and Ç2.

(ii) The élément 1 +C2 is represented by the complex Une bundle associated to the

twofold covering G0^G2 and £2 is subject to the relations

Inparticular T°(G2)^Z®Z2n-1.
Remark. The complex £-theory tells the homotopy types of Gt and G2 apart, a

resuit which also appears in [4, (9.1)]. In [4] however the Steenrod algebra structure
of the ordinary cohomology of Gt and G2 is used to distinguish the homotopy types
of Gt and G2.

We now détermine the image of the homomorphism induced by the map c:G-*Bn
classifying the universal covering of G.

(3.3) PROPOSITION. LetT0(G)=imlK0(Bn)^>K0(Gy]. ThenT°(G)isadirect
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summand of K°(G) and the homomorphism c*o<x:R(n)-+K°(G) of (2.4) induces an
isomorphism

Generators ofthe threefinite cyclic summands ofT°(G) are given by Çu Ç2 and £1 ' èi>
where the élément 1 + êi (respectively 1 +1;2) is represented by the complex Une bundle
associated to the twofold covering b2:G2->G (respectively bl:Gl->G). The éléments

i± and Ç2 are subject to the relations %\ + 2^=0, Ç2 +2£2 0.

Proof. It follows from [2; (7.2)] that c*°a maps R(n) onto imc* r°(G). In-
voking (2.4) we infer that c*oa induces an epimorphism

Now consider the composite

GtxG2 biXb2>GxG-^G^Bn

where m is the multiplication map on G, and set t m0 (bt x b2). Applying K° we get

R(n)AK°(Bu)-£*K°(G)-£+K?(G1xG2). (3.4)

Clearly, the éléments o-fe^(7r) map onto ^ieK°(G)y (i= 1, 2). Furthermore, looking
at the Chern classes of the Une bundles involved, one has **(1+£i) (l-fC1)®l,
t*{\^^2)=\®{\H2)^K°{G))®K0{G2)ciK0{GixG2). With (3.1) and (3.2) we
then obtain

which implies that f *oc*°a maps jR(tt) onto the direct summand r°(G1)®r°(G2) of
K°(Gl x G2). Hence there is an epimorphism

and the proposition is established.

4. A Basic Generator of Finite Order in K1 (G).

The éléments Çu Ç2eK°(G) and v1?..., vn_2, sn-u e^K1 (G) do not yet generate
the ring K*(G). In fact it can be shown, comparing the spectral séquences of the

bundles A (GoA G-±> B%) and rx (Go %G^ Bm that there must exist an élément

xeK1(G) with 6î(T) Ç1*^1)6Jf1(G1). Such an élément t can not be expressed in
terms of the éléments in K*(G) described as yet. (Note èî(fin)i1)
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We are now going to define an élément xeK1 (G) of finite order which together
with the above éléments will generate the ring K* (G).

To begin with let us consider e(nl\ e<3) and yn in K1^), K1^) and K^Gq)
respectively. By (2.12) and (2.13) thèse éléments are related as follows.

We now define

t=(è3)*(eii3))-(è1)*(a!11))eK1(G)> (4.2)

where (bi)*:K*(C7j)-> K*(G), (i l, 3), is the Atiyah-transfer map associated to the
twofold covering bt : Gt -» G.

(4.3) PROPOSITION. The élément xeK1 (G) has the following properties

Proof. For the basic properties of the transfer map /* : K* (X) -> K* Y) associated

to a finite covering projection f:X-> Y we refer to [2] and [10]. In particular we

point out the validity of the "Frobenius reciprocity law", i.e.

where xeK* (X), yeK* Y) and / * : K* Y) -> K* (X) the map induced by /. Consider
the following morphisms of coverings

Gai no * bi

¦'I
Gj -T-+ G

J bj

where i^j and i, j= 1, 2, 3.

The transfer is natural with respect to such morphisms and with (4.1) we compute

b*2o (bt)> (4°) {a2\ o a* (a^>) (a2), (yn), (/ 1, 3),

thus establishing part (ii) of (4.3). On the trivial Une bundle leK°(G0) the transfer

OO* is given by (a1)*(l)=2+Ci; (see [2; p. 45]). Using the Frobenius law we then
calculate

Furthermore èîo(è1)J|t(e^1))=2ei1) and part (i) of (4.3) is verified.
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(4.4) COROLLARY. Thefollowing relations hold in K°(G).
(i)
(ii)
(iii) Ten _!=(), teB=0
(iv) T2 0.

Proof. Recall that £n (^i)*(41)) and en-l (b2)*(s(n2}l). Now observe that
(£1)*0) 2 + £2 and (è2)3le(l) 2 + ^1; (see définition of ^, £2 in (3.3)). Using (4.3)
and the "Frobenius law" we get

and analogously

thus establishing parts (i) and (ii) of (4.4). Next we verify

Eventually the fact that G is a finite CW complex and xeK1 (G) implies that t2 =0.
This complètes the proof of this corollary.

We now proceed to détermine the order of t.

(4.5) PROPOSITION. The élément te^1(PSO(2«)) is of order 2* where k

Proof. The fact that 2k~1£1 0, (see (3.3)), together with the relation 2t= -^t,
(see (4.4)), implies that 2*t=0. It remains to show that 2*~1T?é0. This is done in the

following way. The commutative square

Go -^-> G2

-i i-
Gt -SU G

gives rise to a map of pairs j:(Gx, G0)->(G, G2\ (Replace the spaces in the bottom

row by the mapping cylinders of ax and b2 respectively.) We thus obtain a morphism
of exact séquences

2)^ Kl{G,G2) -ÎX K\G)
"*2l i7* I**1

X°(G0) -i^ K'iG,, Go) JX X1^) -
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Since 6*(t) 0 there is an élément œeKi(G, G2) such that i*2{œ) x. With b\(x)
Ci41} we infev j*(œ) Ç1-e(n1) (modim<5(1)), where in the latter expression the dot

dénotes the action of K*{GY) on K*(Gi9 Go). Referring to (2.4), (2.9) (ii) and (2.12)
we observe that ^(1>(yn_1) 2k-1C1#0 and thus ôil)(yn_lyn) 2k-1Ç1-e(n1)ïO. Hence

j*(2k-1û>) 2k-1C1-^) ^1>(7n-1y/l)^0. (4.6)

(Note, 2-im<5(1) 0).
We show that 2k~1T 0 leads to a contradiction. The assumption 2k~1r 0 implies

i*(2k~1œ) 0; hence there is an élément in K°(G2% say rç, with 5(2)(f/) 2fc"1co. By
(4.6) we then get

According to (2.12) we hâve a*2(K*(G2)) Ez(^,..., J?B_2, yn.lt 2yB)c:K*(G0) and

)=£z()8i.--, P.-i, 2?.-!, One now checks readily that

i?. (moduloker^1»)

and the contradiction becomes évident. Hence the order of x is indeed 2k.

5. The Spectral Séquences.

In this section we compute ail the differentials in the spectral séquence (Er(G), d?)
of the fibre bundle

A (G0-?GrBn). (5.1)

This will enable us to fully détermine the target term E^ (A). The additional information

on K* (G) we get from E^ (A) will then be sufficient to complète the description
of the ring #*(£).

Basically we shall compare the spectral séquence ofA with the "known" (see [8])
spectral séquences (Er(rt)9 d*% where Ft is the fibre bundle

A (Go-Gi7r2U, 0-1,2). (5.2)

For the E2-term of the spectral séquence of Ft we hâve

E2 (r,)s H* (Bœt ;Z)®K* (Go),

where H*{Bm;Z)*Z\y»àlOt)> »teHa(Bmi; Z) and K*(G0)=Ez(f}u..., pn_2,

y»-i. y»), see (2.12). With (1.10) and [8] we obtain
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(5.3) PROPOSITION, (i) Ail differentials dr/are trivial exceptfor the differential
d2lk9 (k v2(n)+2), which evaluatedon the élément l®yn_i, isgiven by

The reduced E^term, E^ (A) ® m>0 E% * (/\), is given by

E9 (J\)s {H* (Bmi ;

(ii) ^4/7 différentials d,2 are trivial except for the différential dr22n which, evaluated

on the élément l®yn, is given by

The reduced E^(r2yterm is given by E^(r2)s {(w2)l(wn2)}®Ez(pu...9 fiH_29 yH_t).
We now focus on the following commutative diagram.

II I

at\ \aixa2 \u

G, ^- GlxG2 -UG (i l,2). (5.4)

B<*i <t77~ Ba>! X Ba>2 ~T^ Bn

In (5.4) m0 stands for the multiplication map, t is as in (3.4), ph q{ and pr. are the

canonical projections and h is the identification map induced by œx xœ2 n, (see 1).

We dénote the bundle in the middle of (5.4) by Ft x T2 and the corresponding bundle

homomorphisms by

rt+lL-rixr2-!UA. (5.5)

For the £2-tenns of the spectral séquences of Fi x T2 and A we hâve

E2(A)*H*(B«;Z)®K*(G0).

We write (Er(Bn), df") for the spectral séquence of the CW-complex Bn=Bmi x Ba2

and make two basic observations.

(5.6) Let r>2. We hâve ^+1(r1xr2)â^+1(£,)®A:*(GoxGo) if, and only if,
Er(rlxr2)*E,(Bn)®K*(G0xG0) and dr(l<g>K*(GoxGo))=0. A similar remark

can be made about the spectral séquence ofA.
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This fact is easy to verify. Note, Er(Bn) is a differential subring of Er{Bn)®
®K* (Go x Go) with K* (Go x Go) torsion free, and similarly for E(A).

(5.7). IfEr(rlxr2)îÉEr(Bn)®K*(G0xG0)for some r>29 then Er{A) Er{Bn)
®K*(G0).

This is true for r 2 and it follows for r>2 by induction from (5.6) and the fact
that the bundle map M:FX x F2 -*A induces the monomorphism

£r.x (Bn)®K* (G0)>-îi2=^£r.x (Bn)®K* (Go x Go).

We then dérive from that

(5.8) LEMMA. For the bundles Fx x F2 and A one has

E2k (A x F2)*E2k {Bn)®K* (Go x Go)

G0)9 (k=v2(n)+2).

Proof. Referring to (5.6) and (5.7) we hâve to show that

dï*r*(l®K*(GoxGo))=0, (5«2,3,...,2*-l), (5.9)

By (5.3) the differentials drs\ (s=2, 3,..., 2k-l and i=l, 2), are trivial (note that

generated by the images of the spectral séquence maps Es(Pt)9 (i l, 2), statement

(5.9) follows.
We now list the relevant facts about the spectral séquence of Bn~Bm x Bm2. This

spectral séquence is not trivial. However a computation of C. T. C. Wall (see [2 ; p. 61])
shows that

E4 (Bn)sEx (ajsGr. R(*)sZ [*, y]l(2x, 2y, x2y-xy2) (5.10)

with

Gr.2s R (n)=IsJIsn+ *, Gr.^ R (n)=0

where jc5 yeGr,2R(n)=IJll are represented by au a2 respectively. We introduce the

following notation

R5=Gr.2sR(n), R= © Rs~Gr.R(n)9 5= © i?s=Gr.Iw. (5.11)

We then hâve RX^Z2®Z2, where x and y generate the two cyclic summands. For
s^2 the cyclic summands of i?s^Z2©Z2©Z2 are generated by x5, ys and xy5"1

respectively.
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For later use it is convenient to set

and hence we hâve

xrzs=09 /z,=zr+, zA, *y zr+s-/+\ (5.12)

We are now ready to give an explicit description of the 2&-level of the spectral
séquence of the bundle A.

(5.13) LEMMA. (i) E2k(A) R®K*(G0)^{Z[x, y]/(2x9 2y9 x2y-xy2)}®

(ii)

Proo/. Part (i) is a conséquence of (5.8) and (5.10), since 2k > 4. Also from (5.10)
we infer that dik (R® 1 0. Now the bundle maps of (5.4) induce homomorphisms of
the corresponding spectral séquences, which on the 2fc-level are given as follows

H* (Bm: Z)®K* (Go) ,W| » R®K* (Go x Go) <id,0m,o
< i^®K* (Go)

11^ \\l \\l

> E2k (rt x T2) < < E2k (A).

Using (5.3), the fact thatp* (wf) xk® 1 and the primitivity of the éléments fil9..., jSw _ 2>

Vn-i> 7n with respect to mj we immediately complète the proof of this lemma. (Again
note that k<n.)

A short computation involving (5.12) and (5.13) shows that

(5.14)
E2k+i yAj=:R/\X j®Ez \P 1j •••> Pn — 2> 7n/

(Hère (v) stands for the idéal generated by veR).
To get a hold on the differentials df, for r>2k, we consider the bundle maps

F.ir^A, (/=1,2) (5.15)

which are given by the commutative diagrams

Go > Gi -îU £„,,

I1 |6' I" 0 1,2).
Go > G -£- BB
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(5.16) LEMMA. (i) The homomorphism

E2k+1 (F.y.Elll^A^E^P,,..., 0m_2, 2yB_ 1; y.)

°2) Ez (/?„..., pn_2, y._u y.)

is the canonical inclusion.

00 E2k+1(F2) maps (z2)®Ez(Pu..., pn-2, yn)'yn-i^E2k+l(A) isomorphically
onto (w2)®Ez(Pu...9 Pn.2,ynyyn.xczE2k+l(r2).

(iii) E2k+1(F2):El£'+*1(A)-+ElZ'+*1(r2) is an isomorphism for 2p^2k+2.
(Note, E2ïï*(A) 0=E?û*(r2).)

Proof. Part (i) is clear. For parts (ii) and (iii) we observe that

E2k(F2):R®K* (G0)^H*(B(û2; Z)®K*(G0)

isgivenbyE2k(F2) (x® 1 )=0, E2k(F2) (y (g) 1 )=w2(g) 1, henceE2k(F2) (zs® 1 ws2®l.
To complète the proof look at the induced map on the (2k + l)-level.

It follows from (5.16) that df, (r^2k + \\ is trivial as long as ^2=0, and with
(5.3) (ii) we get immediately

(5.17) LEMMA. (i) df^Ofor r=2& + l,..., 2w-l, Le. E2k+l(A)^E2n(A)
(ii) d2n(l®yn)=yn®\; (where yeR/fë) is the élément represented by yeR).

d2n is zéro on the éléments l®f}u..., l®Pn-2, l®2yn-u x®\, y®l9z2®yn_1; (where

x is the élément represented by x). In particular, d2n(z2®yn-.lyn)=zn+ 2®yn-v
An explicit calculation resting on (5.12), (5.14) and (5.17) then gives

(5.18) E&îiM-E&îafil)-!®^
7n-u yn) generated by &,..., j8n_2, 2yn_i, 2yB and 2yn_1yB. Moreover we hâve

E2n+1 (A)*E2n+2 (A)s {R/(x\ yn)}®Ez(pl9..., pn_2)

®{(x)l(xk)}®Ez(pu...9pn.2)yn

Pl, -.., Pn-l) V.-l •

Since E2ttn*+2(A)^0 for p>2«+3, we conclude that 4=0 for r^2n+3 and

d2itt+2(E21'n%2(A))=0 for ^f>0. On the other hand éléments of the form 2yn^1yncc

eK*(G0), where a=jSllj3ï2... pim are not in the image of u*:K*(G)-+K*(G0),
(see (2.12)), i.e. thèse éléments can not "survive" in the spectral séquence of A. Hence

for l®2yR_tyn (xeEltnl2(A) we must hâve
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and thus we get

t* PU pn.2, 2yn_1, 2yn)

®(x)l(xk)®Ez(p1,...,f;a_2)yn

i, -, Pn-l) 7.-! •

In particular £^d'*(/l)=0, E%*(A)=0 îorp>2n+2.
The ringstructure on the right hand side of (5.19) is the one inherited from

Note that - as abelian groups - the "quotients" in Ea>(A) can be exhibited as
follows (the éléments under the Z2-summands indicate the respective generators):

x y x2 y2 xy x^'1 yk~l xyk~2yk xyk~l
©Z2@...©Z2

yk+1... y"'1
Z2®(Z2®Z2)® ©(Z2©Z2)©Z2
x x2 xy S*'1 Xy"-2Xy*-1

)z2©Z2e ©z2
z2 h Sm (5.20)

We are now going to extract as much information from the structure of E^ (A) as

we need in order to be able to complète the description of the ring K*(PSO(2n)). In
this sensé the following corollaries rest basically on (5.19).

Since the total space G of the fibre bundle A is of the homotopy type of a finite
CW-complex the spectral séquence converges, i.e.

where Gr.K*(G) is the graded ring associated to the usual filtration (see [2; p. 29])
ofK* (G). There are no éléments of finite order in E% *(A) and no éléments of infinité
order in Ëœ (A), Hence

(5.21) COROLLARY. The number oféléments offinite order in K* (G) is given by
2

where &=v2(«)-f2.
Proof Use (5.19) and (5.20).

(5.22). According to (5.19) the éléments 1®^,..., l®jSB-2> l©2yJl.1, l®2yw,
> y® 1, x®yn, z2®yn-\ form a System of generators of the graded ring

(Recall that
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In the following table we record which éléments of K* (G) represent the above

generators of E^ (A).

(5.23)

where in the right hand corner veE%,*(A) is an élément of the form v=xy®al-

K*(G)

E»(G)

•s=l,2,...,«—2 fin

l®2yn

£2

y®\

X

Only the last two entries of this table require some comment. By (4.3) one has

b*(z) CA1)eK*(Gi) and b2(x)=0. The élément Ç1e^1> has exact filtration 2 and

represents w1®ylfe£'00(r1). Hence the torsion élément x has also exact filtration 2.

Looking at the homomorphisms E2^ *(Ft) and E2^ *(F2) we then see that x represents

x®yn; (use (5.3) and (5.19)).
The filtration of £2e»i-i is greater than 2, the reason being (j?®l)*(l®2yn_1)=0

in Ei*(A). On the other hand we hâve 6!(^B-1)=^(^-(^2*)4-)i))=C2-2ei2-)1.
Since 2C24-)i= ^d^-i has exact filtration 4, the same now holds for £2£»-i- Hence

Zi^n-i represents an élément weE%*(A) such that EaQ(F2) (w)=wl®yn-.x and

EOQ(F1) (w)=0 (recall that b*(Ç2en-x)=0) and the resuit again follows by looking at
the homomorphisms E^*(Fl) and E^**(F2).

(5.24) Remark. Note that in Eo0(A) we hâve (y®l)k 1'(x®yn)¥:0 and hence

{|"1t#0. By (3.3), (4.4) and (4.5) we then conclude that the order of Ç2x is 2*"1.
Since K*(G) has finite filtration we dérive from (5.22) and (5.23):

(5.25) COROLLARY. The éléments vl9...9vn-2,en^i9en9 Çu £2 and x generate
the ring K* (G).

By (5.19) we hâve E**(A)=0 for p>2n and hence we can identify E%9 * (A)
with Kln{G)9 the subgroup of éléments of filtration 2n. Eléments of E2£ * (A) are of
the form zn®yn-ip=(yn~~2® 1) (z2®ytt-i + v) (I®j8), where peEz(pl9...9 Pn-2) and

v is as in (5.23). (Note that (<yll~2®l)-t?=0.) The latter élément is represented by
^22(^2e»-i) v=2n""2^2ell«1v, where veEz(vl9...9 vn__2). Consequently we may
remark:

(5.26). Any élément fieK* (G) of filtration In is of the form

where
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Finally we dérive from Ea,(A) the following relation involving the (non-zero)
élément 2k'ixeKl (G).

(5.27) COROLLARY. There is an élément veEz(vu...,vn_2)czK*(G) such that

Proof. Note that 2k-1x ^k1~1x (see (4.4) and (4.5)). In E^{A) we hâve

1-(x®yn) 0eE2aï>*(A) and we conclude that fr^eK^G) has filtration
greater than 2k. This in turn implies that Ç\~1x represents a non-zero élément

teE2J'*(A)îotsomeswithk+1 <*<«. Sinceb\(ï\~ 1x) 0weinferthatE2£*(F2)(t)
0. But E2J!'*(F2) is an isomorphism for k + l^s^n-l; (see (5.3) and (5.19)).

Hence teE%**(A)9 i.e. ^\""1x has exact filtration 2n, and the corollary follows from
(5.26).

6. The Ring #*(PSO(2«)); n even.

In this section we state the main theorem - for the "non cyclic" case - and complète

its proof.
For this purpose define the Z2-graded commutative ring T*(G)^T°(G)®Tl (G)

to be the subring of K*(G) generated by 1, Çi9 Ç2 and teK*(G).
Referring to (3.3), (4.4), (4.5) and (5.24) we get:

(6.1) The subring T*(G)c:K*(G) is subject to the following relations

(i) The éléments Çl9 ^^2 and x£2 are of order 2k~1, the élément x is oforder 2\
where k v2(n)+2. The élément Ç2 is oforder 2n~1.

(ii)

(6.2) THEOREM (Non-cyclic case). Let G=PSO(2n), where n>6 is an even in-

teger, Then the canonical homomorphism

Ez (vlf.... vn_ 2, e.-u 8B)®r* (G) - K* (G)

induces a ring isomorphism

{Ez(vu vn_2, bm-19 sn)®T*(G)}IS(G)*K*(G),

where S (G) is the idéal generated by the éléments

«»-i®Éi> eM®^2, «»-i®t, en<g)T, en^®2n'2è2

and
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Proof. Let us first establish the relation 2k~it=2n~2^2^n-i in K*(G). Reverting
to (5.27) we recall that we hâve already shown 2*"~1T=2w~2{2e;i_1v, for some

ve^z(vl5..., vB_2). In order to verify that actually v=l (mod2) and hence

2w~2^25«-iv 2ll"2^2fi»-i> we propose to look at the homomorphism£*:#*(G)->
-+ K* (G)®K* (Go) which is induced by the obvious action map g:GxG0->G. We
then easily calculate that

On the other hand - since vs, (s= 1,..., n — 2), is primitive modulo torsion and since

2w"2<^2-Tors.^:*(G)=0 - it is not hard to show that

where a(v)^0 unless v=l (mod2). Hence the relation 2fc"1T 2n"1^2eII_1 is estab-

lished.
Next we observe that we hâve en^lÇl=O and en<^2=0. (Use the fact that en-t

'Frobenius law'.) The validity of the above relations together with (3.3), (4.4) and (4.5)
then imply that the canonical homomorphism h:Ez(vu..., vrt_2, e«-i> 8n)®T*(G)
-*K*(G) factors through {^(v^..., vn_2, en.u en)®r*(G)}/5(G). On the other
hand h is an epimorphism by (5.25) and the order of the torsion subgroup of
{Ez(vu...,vn.2,en-uen)®T*(G)}IS(G) is the same as |Tors.X*(G)| (see (5.21)).
Therefore h is an isomorphism and the theorem is proved.

n. THE CYCLIC CASE; 7i1(PSO(2n)^Z4

1. The Ring £*(PSO(2rt)); n oddL

is an odd integer then the centre % of G0 Spin(2«) is isomorphic to Z4.
In order to détermine the ring structure of K* (G), where G=G0 jn, one has to analyze
the spectral séquence of the fibration

where 7r^Z4, Gq-^G the universal 4-fold covering of G and c is its classifying map.
The structure of the spectral séquence of A can be worked out essentially along the

Unes of [8]. It turns out that the only non-trivial differentials are d\ and */2n. The

reason for that may be indicated as follows.
Let j;n q; Go be the inclusion of the centre. Then JR(7c)//^Z©Z2n-i©Z2©Z2,

where / is the idéal generated by j*(IGo) and the cyclic summands of R(n)/J are
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generated by 1, â, à2 +2d and â3 +2<r2, with 1 +a being the canonical représentation
of n.

The fact that Jcll but /*/* together with [8; (5.5)] implies that rf^O.
The non-triviality of d\n then is worked out by comparing the spectral séquence

of A with the spectral séquence of r2 (G0^SO(2«)-%J?Z2).
From the E^ (A) term we dérive that

T*(G) T°(G) im{K*(Bn)ÏK*(G)}zR(n)IJ. (7.1)

Let 1 + ÇeK°(G) represent the line bundle associated to the (cyclic) covering Gq-^+G.

Clearly ÇeT°(G) and moreover it corresponds to the generator â under the above

isomorphism T0(G)^R(n)/J. In particular { générâtes f°(G) and it is subject to the
relations

2"-1É 0,(l+04 l and 2({2+2{) 0.

As in the "non-cyclic" case there are éléments vl5..., vn_2, en_l5 eneKl (G) gener-
ating an exterior algebra in K*(G) which is isomorphic to Â"*((/)/Tors.J£*(G).

Summarizing ail the information we get from the spectral séquence of A and from
the transfer maps of the coverings involved, we arrive at the following description of
the ring K* (G).

(7.2) THEOREM (Cyclic case). Let <j=PSO(2/î), where n^5 is an odd integer.
Then the canonical homomorphism

induces a ring isomorphism

where T*(G) T0(G)^R(n)/(j*(IGo)) and S(G) is the idéal generated by ew®2£,
Ç3 d(t22Z)
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