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Regular Rational Homotopy Types

by RICHARD Boby

§1. Regular Rational Homotopy Types

In general, spaces sharing the same integral cohomology ring need not be homo-
topy-equivalent. However we.shall see that cohomology rings which satisfy an algebraic
regularity condition may be shared by only a finite number of distinct homotopy
types, [1], [2], [6].

The class of rings we shall consider are those associative, graded-commutative
rings which, when tensored with the rational field, have a regular set of relations (see
Definition 2.1).

THEOREM (3.1). Let A be an associative, graded-commutative ring such that
A®Q has a regular set of relations. Then there are only a finite number of homotopy
types of finite, simply-connected polyhedra X for which H*(X; Z) is isomorphic to A,
as graded rings.

Within the category of finite, simply-connected CW complexes, all H-spaces, Rie-
mannian symmetric spaces and homogeneous spaces which are compact Lie groups
modulo a closed subgroup of maximal rank, all have integral cohomology appropriate
to the above theorem.

Finally, we may view the above theorem as a generalization of the results of [1],
because the set of relations {x}', x3%,..., x,"} is regular.

§2. Regular Sequences of Relations, and the Construction of a Model Space

All rings under consideration will be associative and graded-commutative (i.e.
a b= (__ 1)(dim a) (dim b)b ,a)_

A free algebra over the rational field Q will then be the tensor product of

1) polynomial algebras on each of the even-dimensional generators, and

2) exterior algebras on each of the odd-dimensional generators.

Denote such a free algebra as F=F(&, &5, ..., &) Where (£y,..., &,) denotes a

choice of generators.

DEFINITION 2.1. A sequence of elements (44, ..., 4;) in F, a rational free algebra
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is said to be regular if F is a free-module over the free algebra F(1,,..., 4,) (under the
action of the inclusion of the generators 4, in F).

From [5], under the condition that 4, is of even degree, regularity is equivalent to
the following condition on the sequence (44, 4,,..., 4;):

A;mod(dy,..., 4;—y) in FJ(Ay,...,4;—{) is not a zero divisor.

If B, a rational algebra, has a regular set of relations, i.e. B~F(¢y, &,,..., &)/
(A1..-s 4), we may construct a CW complex My which has rational cohomology
isomorphic to B, by the following procedure.

Let Ky and K, be generalized Eilenberg-MacLane spaces.

m k
Kx=J] K(Z,dim¢); K, =[] K(Z,dim4,). ~
i=1 i=1

The integral cohomology of K, modulo torsion, is generated by fundamental classes
X1, X3,..-5 Xy that of K, by generators /, 1, ... [;, where dimé;=dimx; and dim ;=
=dim/;.
Without loss of generality we may consider ;e F(&,, ..., &,) to be a polynomial in
¢, ..., &, with coefficients which are integers, collectively having no common divisor.
Now define a map f:Ky— K, (i.e. a sequence of integral cohomology classes of
K,) by requiring that S*(/,))=A4;(x1,..., Xp)-

LEMMA 2.2. The Fibre of B, denoted M g, has rational cohomology H*(M g; Q)~ B.
Proof. By induction on k, the number of relations A,,..., 4,. Suppose

_F(xl, vers Xpm)
(Al, seey Ark)
We have a commutative diagram

MBk+1

B, ~ H* (Fibre f;; Q).

B
M B — KX ’ Tl(""

ll‘—‘lku lﬂkn

K(Z, dim/lk-fl)"“""‘_’KAk“ ‘—“—"‘_‘)KA"

in which the left hand square may be considered a pullback square. Hence My, , is
homotopy-equivalent to the fibre of /, and we may calculate H*(My, . ,; Q) from the
Serre spectral sequence with rational coefficients, of the fibration

QK(Z, dim'lk‘l-l)")MBk“""MBk
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Let s=dimA, . Let us first consider the case in which s is even. For dimensional
reasons, the only possibly non-zero differential is d;, and indeed the transgression of
the fundamental class of the fibre is

F(&,,... &)
iy oes 2a)

Because this element is not a zero-divisor,d,”"*~! is a monomorphism and E** * ~

~H*(Mg, ., ; O)=F (... En)(Ags .. Ag1) as required.

Now assume that s is odd. The first possibly non-zero differential is again d; the
transgression of the fundamental class of the fibre is 7(v,_;)=4;+; mod(dy,...,4;).
But H*(Mp,; Q) is a free F(t(1,-,))-module and the kernel of 4, ?¢~" for p>0
is exactly the H*(Mp, ; Q)-module with basis ¥_; ®7(v,_,). This coincides with the
image of d¥®* D6~ Hence EX; P ~0, p>0 and again

F(&, ..., En)
(A’ls cevy lk+1)

Agrgmod (Aq,, 4) in ~H*(Mg,; Q).

ES1~EL*~H* (My,,,; Q)

§3. Distance Between Homotopy Types

Let A be a graded-commutative, associative ring such that AQQ~F(¢&,,..., &,)/
(Ags..- 4¢)~B is regular. If A4 is the integral cohomology ring of some finite CW
complex, it has a highest non-vanishing dimension, say D. Every finite complex with
cohomology A will then be homotopy-equivalent to some (D +1)-dimensional CW
complex.

Denote a (D +2)-homology section of Mz by M, [3]. Also let ¢ denote the order
of the torsion subgroup of A4, considered as an abelian group. Finallyletg: H*( ; Z)—
— H*( ; Q) be the coefficient homomorphism induced by the standard inclusion
Zs Q.

Given any finite, simply-connected CW complex X with H*(X; Z)~A, we shall
construct a map ¢: X — M , such that ¢*: H*(M ,; Z ) — A has kernel and cokernel of
orders bounded by some integer-valued function of the isomorphism class of 4. By
appealing to the results of [1], this will then be sufficient to deduce that there are at
most a finite number of such homotopy types X.

First choose indivisible elements y,, y,, ..., y,€ H*(X; Z) such that g(y;)=¢,. Let
a: X — Ky be defined by requiring a*(x;)=t* -y,, where d,=degree y;. Then a*p*(/,)=

Lty 1795, 179,) = t9%% (31, V20, Ym) IS @ torsion element of H*(X; Z) and
hence 0. Boa is null-homotopic and « lifts to the fibre of B, 4: X - M. Because X
“has dimension at most (D +1), the cellular approximation theorem shows that & factors

through the (D +1)-skeleton of Mg, hence through M 4. It is trivial to verify that this
map ¢:X— M, induces an isomorphism on rational cohomology.
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The kernel of ¢*: H*(M ,) — A has order bounded by the order of the torsion sub-
group of H*(M ,; Z), a function of the isomorphism class of A.

The cokernel of ¢* is a quotient of the cokernel of a*. The cokernel of a* in turn
is a quotient of the group A4/(Algebra generated by a*x;, i =1, 2,, m), a finite group
whose order is a function of the isomorphism class of A.

Thus, according to the terminology of [ 1], each homotopy type X, with H*(X; Z )~
~ A is of bounded distance from M ,, and with the help of Theorem 3.2 of [1] there
are only a finite number of such homotopy types. We have demonstrated

THEOREM 3.1. Let A be a graded-commutative, associative ring such that AQ Q
has a regular set of relations. Let HT(A) be the class of all homotopy types of simply-
connected, finite CW complexes X such that, as graded algebras H*(X; Z)~ A. Then
HT(A) is a finite set.

It may be remarked that all such spaces X are O-universal in the sense of Serre [4].
This may be demonstrated by noting that, for each integer r, there exists endomor-
phisms g,:Ky — Ky and ¢,:K, — K, defined by ¢7(x;)=r?™*x, and o;(/;)= réim"J,
inducing an endomorphism of the fibre of f, Mg, hence of M, which satisfy Mimura,
Toda and O’Neill’s condition (b") for 0-universality [4].
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