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Regular Rational Homotopy Types

by Richard Body

§1. Regular Rational Homotopy Types

In gênerai, spaces sharing the same intégral cohomology ring need not be homo-
topy-equivalent. However we»shall see that cohomology rings which satisfy an algebraic
regularity condition may be shared by only a finite number of distinct homotopy
types, [1], [2], [6].

The class of rings we shall consider are those associative, graded-commutative
rings which, when tensored with the rational field, hâve a regular set of relations (see
Définition 2.1).

THEOREM (3.1). Let A be an associative, graded-commutative ring such that
A®Q has a regular set of relations. Then there are only a finite number of homotopy
types offinite, simply-connectedpolyhedra Xfor which H*(X; Z) is isomorphic to A,
as graded rings.

Within the category of finite, simply-connected CW complexes, ail //-spaces, Rie-
mannian symmetric spaces and homogeneous spaces which are compact Lie groups
modulo a closed subgroup of maximal rank, ail hâve intégral cohomology appropriate
to the above theorem.

Finally, we may view the above theorem as a generalization of the results of [1],
because the set of relations {x\\ xn2\...9 xn™} is regular.

§2. Regular Séquences of Relations, and the Construction of a Model Space

Ail rings under considération will be associative and graded-commutative (i.e.
a-b (-l)(dimandimb)b-a).

A free algebra over the rational field Q will then be the tensor product of
1) polynomial algebras on each of the even-dimensional generators, and

2) exterior algebras on each of the odd-dimensional generators.

Dénote such a free algebra as F=F(Çl9 £2,-> f«) where ({t,..., (m) dénotes a

choice of generators.

DEFINITION 2.1. A séquence of éléments (Àl9..., 4)in F9 a rational free algebra
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is said to be regular ifF is a free-module over the free algebra F(ku..., Xk) (under the
action of the inclusion of the generators Xt in F).

From [5], under the condition that At is of even degree, regularity is équivalent to
the following condition on the séquence (Àl9 À2,..., Xk):

Atmod(A1}..., A|_x) in FftA1,...9Ài-1) is not a zéro divisor.

If B, a rational algebra, has a regular set of relations, i.e. B^F(^U £2,..., £m)/

(ylls..., A*), we may construct a CW complex AfB which has rational cohomology
isomorphic to B, by the following procédure.

Let Kx and KA be generalized Eilenberg-MacLane spaces.

m k

The intégral cohomology of KXi modulo torsion, is generated by fundamental classes

xux29...,xm; that of KA by generators lu /2... 4, where dim^ — dimx,. and dimA(.=

Without loss of generality we may consider AieF(^1,..., £OT) to be a polynomial in
£i> •••» fm wiïh coefficients which are integers, collectively having no common divisor.

Now define a map P:KX-+KA (i.e. a séquence of intégral cohomology classes of
Kx) by requiring that i»*(/j=Al(x1,..., xm).

LEMMA2.2. The Fibre offi,denotedMB, has rational cohomology H*{MB\ Q)^B.
Proof. By induction on A:, the number of relations Àl9..., Àk. Suppose

We hâve a commutative diagram

I'=Ik+1 lfct
Ak+1

in which the left hand square may be considered a pullback square. Hence AfBk+l is

homotopy-equivalent to the fibre of/, and we may calculate H*(MBfc+1; Q) from the

Serre spectral séquence with rational coefficients, of the fibration

QK(Z,dimlk+1)-+MBk+l-»MBk
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Let s=dimlk+l. Let us first consider the case in which s is even. For dimensional

reasons, the only possibly non-zero differential is ds, and indeed the transgression of
the fondamental class of the fibre is

in ffi' '" ^m^H*(MBk; Q).

Because this élément is not a zero-divisor,^*'5"1 is a monomorphism andis*' *^
c*H*(MBk+1; Q)*F(Ç19...9 £w)/(*i>-> h+i) ™ required.

Now assume that s is odd. The first possibly non-zero differential is again ds; the

transgression of the fondamental class of the fibre is t(is_1) /1&+1 mod(Al5...,Afc).
But H*(MBk; Q) is a free F(t(is_^-module and the kernel of </*¦ p(a"~1) for p>0
is exactly the H*(MBk; ô)-module with basis iJ-i®t(is-i)- This coincides with the

image of <*(p+1)(s"1). Hence E?+pt~0,p>0 and again

l5'"' *m'

§3. Distance Between Homotopy Types

Let A be a graded-commutative, associative ring such that
(A1?... Afc)^5 is regular. If A is the intégral cohomology ring of some finite CW
complex, it has a highest non-vanishing dimension, say D. Every finite complex with
cohomology A will then be homotopy-equivalent to some (D + l)-dimensional CW
complex.

Dénote a (D+2)-homology section of MB by MA [3]. Also let t dénote the order
of the torsion subgroup ofA, considered as an abelian group. Finally let q: H*( ; Z) ~>

-*H*( ; Q) be the coefficient homomorphism induced by the standard inclusion

Given any finite, simply-connected CW complex X with H*{X\ Z)^A, we shall

construct a map 0:X-> MA such that (/>* :H*(MA;Z)-+A has kernel and cokernel of
orders bounded by some integer-valued fonction of the isomorphism class of A. By
appealing to the results of [1], this will then be sufficient to deduce that there are at
most a finite number of such homotopy types X.

First choose indivisible éléments^, y2,..., ymeH*(X; Z) such that g(^) f«- Let
a : X-+ Kx be defined by requiring a*(x,) fd< •jf, where ^ degree yv Then a*^*(/f)

^dl7iî^2)»^m7m)=^e8A<^(7i,72)î7m) is a torsion élément of H*(X; Z) and

hence 0. /?<>a is null-homotopic and a lifts to the fibre of /?, ât:X-+MB. Because X
has dimension at most (D +1 the cellular approximation theorem shows that & factors

through the (Z) + l)-skeleton ofMB, hence through MA. It is trivial to verify that this

map <f):X-+MA induces an isomorphism on rational cohomology.
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The kernel of 0* : H*(MA) -+A has order bounded by the order of the torsion sub-

group of H*(MA; Z), a function of the isomorphism class of A.
The cokernel of <f>* is a quotient of the cokernel of a*. The cokernel of a* in turn

is a quotient of the group ^4/(Algebra generated by <x*xi9 i l, 2,, m), a finite group
whose order is a function of the isomorphism class of A.

Thus, according to theterminology of [1], eachhomotopy typeX, withH*(X; Z)~
c*A is of bounded distance from MA, and with the help of Theorem 3.2 of [1] there

are only a finite number of such homotopy types. We hâve demonstrated

THEOREM 3.1. Let Abe a graded-commutative, associative ring such that A®Q
has a regular set of relations. Let HT{A) be the class of ail homotopy types of simply-
connected, finite CW complexes X such that, as graded algebras H*(X; Z)^A. Then

HT(A) is a finite set.

It may be remarked that ail such spaces X are O-universal in the sensé of Serre [4].
This may be demonstrated by noting that, for each integer r, there exists endomor-
phisms Q1:KX->KX and q2:Ka-^Ka defined by Qî(xi)=rdimXixi and £*(/.)= rdim H
inducing an endomorphism of the fibre of j8, MB9 hence of MA which satisfy Mimura,
Toda and O'NeilPs condition (b') for O-universality [4].
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