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Free Cyclic Actions on Manifolds

TiIMOTHY LANCE!)

0. Introduction

This paper presents a geometric description and partial classification of smooth
or PL oriented closed (n—1) connected 2»n manifolds M, n>3, which support free
actions of the cyclic group Z,=Z/pZ (where p>3 is prime) with preferred generator
T\ and orbit manifold M/Z,. If L (n) is an n-dimensional lens space (or the n-skeleton
of the usual CW decomposition of L(n+1) if n=2k) with n,(L(n))=Z,, universal
cover E (n), and fixed generator T of the induced Z, action on E (n), we define a
standard model to be a 2n dimensional smooth or PL thickening N/Z, of L(n) with
generator Ty of the Z, action on N corresponding to Tg. Given an equivariant iso-
morphism f: (N, Ty)— (0N, Ty) (i.e. fTy=Tyf, so there is an induced isomorphism
flZ, of 0N|Z,) and a closed (n—1) connected 2n manifold K, the universal cover of
(NIZ, Uyz,)#K (written (N\J;N)#z K) is such a manifold M. The underlying
idea of this work is that most of the manifolds M can be obtained in this way.

A standard model N/Z, is untwisted if the homology intersection form on H,(N)
is identically zero, and it is simple if in addition N =S" x D" (not necessarily equiv-
ariantly) when n=2k+1. The homomorphism (7)), makes H, (M) a A=2ZZ,
module, and Wall ([35], §5) defines a A valued intersection form A on H,(M).
We say that M has hyperbolic rank >d if the A form orthogonally splits off d hyper-
bolic planes (see 2.9).

THEOREM A. Suppose M has hyperbolic rank >2, n#4,8, and n+1<p if M is
smooth. Then for some untwisted model N|Z, (simple if M is smooth), isomorphism
f:(0N, Ty)— (0N, Ty), and closed (n— 1) connected 2n manifold K, there is an orienta-
tion preserving equivariant isomorphism between (M, Ty) and (N \J,; N)#, K (with
Z, generator corresponding to Ty).

This is proved in several stages. We first show in §2 that untwisted models have
bundle structures determined by homotopy classes [L(n), BH,] when n=2k +1 and
[L(n), BH,_,] when n=2k (H =0 or PL depending on the category), and M has an
equivariant decomposition M =N, u LU N, where N,, N, are isomorphic to the same
untwisted model N and L is a cobordism with boundary components d, =0N,,

1 Partially supported by NSF grant GP 28938A.
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0,=0N,suchthat H,(L, 0,)is a free A module and H;(L, 8;)=0, j#n. In§3 we define
a unimodular intersection form A on H,(L, d,) such that, for n#4, 8 and appropriate
A basis b, H,(L, d,), (H,(L, 0,), A, b.) represents algebraically an element x of the
Wall group L, ,(Z,). Using a result of Petrie [25] x is in im (L, ,(0) - L,,(Z,)) and so,
by a straightforward geometric argument, L is equivariantly isomorphic to
(O xI)# K.

In §4 surgery theory is used to study the effect of the gluing f. Let s; denote the
order of the torsion subgroup of = ;(G/O) (see 4.2).

THEOREM B. For fixed choice of (N, Ty) and K and orientations on them, up to
orientation preserving equivariant isomorphism there are at most finitely many manifolds
(N Uy N)#2,K. For suitable p, a specific upper bound b for the number of such
manifolds is given by:

a) b=order (n,,-,(S")) when M is PL, n=2k +1<2p—1.

b) b=s, s,, order (ny,-1(S™)) when M is smooth, n=2k+1<p—1.

c) b=2 when M is PL, n=2k<2p—2.

d) b=2s,, when M is smooth, n=2k<p—1.

The general classification problem is complicated by the fact that the decomposi-
tion of Theorem A is not unique. But if M is smooth, n#0, 4 (mod8) and n+3 <2p,
then any two simple models in M 2" are equivariantly isomorphic, determined by a
unique homotopy class ¢ (M )e[L (n), BO,_,] if n=2k and o (M )eker ([L(n), BO,] -
- [E(n), BO,]) if n=2k +1.

THEOREM C. Suppose the smooth manifold M>" (as above) has hyperbolic rank
>2,n=3,5,6,7, (mod8), and n+1<p. Then M is classified up to orientation pre-
serving equivariant isomorphism and equivariant connected sum with a homotopy sphere
X€b,, by the model invariant 9(M), the Z rank of H,(M), and the Arf invariant
c(M)eZ, (the signature 6(M)e8p Z if n=6). All values of ¢(M), o (M) occur
independently (except that 6 (M )=0 when n=3,7). Furthermore, 0,,=p-0,, has no
p-torsion, and 0,, acts freely.

Explicit computations can be made in other cases also. For example, any smooth
M® with H,(M)=Z+Z is equivariantly diffeomorphic to S?x S? with quotient
L(3)x S3. There are precisely 2p smooth oriented manifolds M** with H,(M)=
=Z+Z (¢(M)eZ, and 0,,=Z, acts freely).

The analogous problems for p =2 have been studied by S. Lopez de Medrano [18];
R. Wells [36], [37] and I. Hambleton [40]. Although several of the results are similar,
their methods are of necessity quite different.

Many of these results first appeared in my Princeton Ph.D. thesis written under the
direction of Professo1 J. L. Shaneson. Many thanks are due to him and to Professors
W. Browder, E. Brown, and J. Morgan for helpful discussions.
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1. Notation and Preliminary Results

1.1. Throughout this paper M will denote a smooth or PL oriented compact (n—1)
connected manifold of dimension 2n, n>3, and T);:M — M is a smooth or PL
isomorphism such that (T)?=1 for some odd prime p and T\ (x)#x for all xe M.
Then T), is orientation preserving since p is odd and (Ty)’ (x)# x for 0<j <p since p
is prime and we have a free Z, action on M with preferred generator T),.

More generally, given simply connected manifolds K and L supporting free Z,
actions generated by Ty and T, respectively, we denote the associated orbit space by
K|Z,, a manifold of the same dimension, and let nx: K — K/Z, be the quotient map, a
covering projection of degree p. Then (ng)y:n(K)—n,(K/Z,) is an isomorphism,
i>1, and we identify Ty with the homotopy class [nxew]en,(K/Z,)=Z, where
:[0, 1]— K is a path from a base point x, to Tx(x,). A map f: K— L is equivariant
(written f: (K, Tx) — (L, Tr)) provided fTx =T f. Given such a map there is an induced
map f/Z,:K|Z,— L|Z, such that ny of = f|Z o ng. Furthermore, f/Z, is an immersion,
embedding, or isomorphism in the appropriate category if and only if f is. We call
f1Z, the quotient of fand call f'a lift of f/Z,,. Since K and L are simply connected, any
map f|Z,:K|Z ,— L|Z, such that (f/Z,)4(Tx)=Ty has a lift f: (K, Tyx)— (L, T), and
all possible lifts are f, Tyof, ..., TE 'of.

1.2. The spaces L(2k+1), L(2k), and L(2k). Let E(2k+1) denote the sphere
S ={(Zy, ..., Z,) | Z:€C, Z|Z)|*=1}(C=complex numbers) together with the
free Z, action generated by T(Z,, ..., Z,)=((Zo, ..., §Z,) where {=€"/?, and set
L(2k+1)=E(2k+1)/Z,, a 2k+1 dimensional lens space. For each 0<r <k and
0<s<p—1 define

2ns 2n(s+1
o2t = {(zo,...z ,.ers 0)€S*F Z,=0 or ;~<Arglr<~——%—)},
2ns
={(zo,...,z .,0)eS**|Z,=0 or ArgZ—»;}

Then Ty:0)—al,, is a bijection and we have an equivariant CW decomposition of
E(2k+1) inducing a CW decomposition of L(2k+1) (see [19] for details). The 2k
skeleton E(2k) inherits a free Z, action with generator T, and L(2k)=E(2k)/Z, is
the 2k skeleton of L(2k+1). Since L(2k) is not even homotopy equivalent to a 2k
manifold, we define the 2k + 1 manifold L (2k) with boundary S?* as a smooth regular
neighborhood of L(2k) in L(2k+1). Thus l—(—fk—)- is obtained from L(2k+1) by
deleting the interior of a disk. Collapsing defines a deformation retraction r/Z,:
L(2k)— L(2k). Let E(2k) denote the universal cover of L(2k) and let r: E (2k) — (2k)
be some fixed lift of r/Z,.
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Finally, we remark that we could as easily have considered the generalized (2k +1)
dimensional lens spaces L(r,,..., r,) without affecting our results. An explicit com-
parison between the resulting theories can be made by noting that there is an equiv-
ariant degree m mapE(2k+1)— E(r,, ..., ry) Whenever m=ry---- -r, (modp).

1.3. A standard model N/Z, is a smooth or PL 2n dimensional thickening (see [34])
of L(n). Thus we have a simple homotopy equivalence ¢/Z,:L(n)— N/Z,, and let
¢:(E(n), Tg)— (N, Ty) (where Ty=(¢/Z,) +(Tg)) be some lift to the universal covers,
again a simple equivalence. We say that N/Z, is untwisted if for any x, yeH,(N) we
have intersection x-y=0. Otherwise the model is twisted.

Clearly any 4k +2 dimensional model is untwisted, as is L(2k)x D*~!. To obtain
a twisted model, simply attach a 2k handle & to L(2k—1) x D***! (killing the (2k—1)
homotopy) with a twisted framing, or attach 4 so that the resulting left hand (2k —1)-
spheres in E(2k—1)x D***! are linked.

1.4. By considering the cell decomposition of L(n) one can easily give N/Z, a standard
handle decomposition (see [12]) D*"=N,/Z,=N,/Z,<---<N,/Z,=N|Z, in which
N,/Z, is obtained from N;_,/Z, by attaching a single i-handle /’. Let A, ..., A, be the
i-handles of N covering A with Tghi=Hh}, . But h} corresponds canonically to a
generator of C,(N/Z,)=H(N,/Z,, Ni_1/Z,)=Z, and hj,..., k, generate C;(N)=
= H(N;, N;_,) freely over Z. Then the handle decomposition can be so chosen that
the boundary maps 0:C;(N/Z,)— C;_,(N/Z,) and 0:C{(N)— C;_,(N) are given by
Ol =p-h*I1, 9h* "1 =0, On} =hY '+ +hF 7Y, and ORF T =H P —HP 72 In
particular,

Z

i=2j+1, O<i<n
H(NZp)=H(Ca iz ={r (T

i=2j, O<i<n.

2. The Decomposition Theorem

Let M?" be as in 1.1 A simple obstruction theory argument shows that there must
exist mappings ¢:(E(n), Tg) = (M, Ty). By [12], 12.1 we may, after adjusting ¢/Z,
by a homotopy, find a subcomplex K/Z,=M/[Z, with ¢:L(n)—K|/Z, a simple
homotopy equivalence. Then any (smooth) regular neighborhood N/Z, of K/Z,
defines a standard model induced by ¢. We begin the proof of the decomposition
theorem by studying the geometry of these induced models (and in particular their
uniqueness). For convenience we consider separately the cases n=2k +1 and n=2k.

2.1. PROPOSITION. Let M?" be as in 1.1 with n=2k+1. Then ¢:(E(n), Tg)—
— (M, T\y) deforms equivariantly to an embedding :(E(n), Tg)— (M, Ty), and the
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induced model N|Z, is a (disk or block) bundle over | Z ,(L(n)). There exist embeddings

flZ,, f>1Z,:N|Z,—int (N|Z,) homotopic to the identity and with disjoint images.
Furthermore, for fixed choice of Ty, Ty (and n>3 in the smooth category) the spaces
N and M—int (fy(N)Uf,(N)) are determined up to equivariant isomorphism by the
homotopy class of ¢.

Proof. L(n) is a manifold and ¢/Z, is (n—1) connected and thus deforms to an
embedding y/Z, by [11] or [6]. Then N/Z, is the normal disk or block bundle of
Y/Z,(L(n)) in M/Z,. To find f,/Z,, f,/Z, it suffices, by uniqueness of regular neigh-
borhoods, to push the 0 section of N/Z, off itself. But this follows by the Whitney
method since Y (E(n)) -y (E(n))=0in M and (Y/Z,) 4(n,(L(n))=n,(N/Z,). Equiva-
lently, one could check that the only obstruction to a non-zero section, the 2-torsion
Euler class, must vanish. The final statement will follow by uniqueness of regular
neighborhoods once we show that, given homotopic embeddings f, oy, f5°¥, f1oy’,
ooy’ :(E(n), Tg)— (M, Ty), we can first push (fioy)/Z, to (fi-y¥')/Z, by a
homotopy (and thus an isotopy by [10] or [6] and then push ( f3°¥)/Z, to ( f3°¥')/Z,
in M|Z,—(fy°¥)/Z,(L(n)). We defer the proof, which uses obstruction theory with
local coefficients, to the end of the section (2.12). O

In particular we have the following (see [26] for the PL case).

2.2 COROLLARY. The 4k+2 dimensional standard models are classified by

[L(2k+1), BO,+] in the smooth category and [L(2k+1), BPLy; ] in the PL
category.

2.3. PROPOSITION. Let M2" be as in 1.1 with n=2k (and n#4 in the smooth
category). For any map ¢:(E(n), Tg)— (M, Ty) the following are equivalent:

1) A model N|Z ,induced by $|Z,, is untwisted,

2) q&/Zpor/Z,,:z-(n—)—>M/ZIJ deforms to an embedding Y|Z,.

3) There are embeddings fy, f>:(N, Ty)—int (N, Ty) equivariantly homotopic to
the identity and with disjoint images. .
If the above conditions hold, then N/Z, is a disk or block bundle over y/Z,(L(n)).
For fixed choice of Ty, T}, the spaces N and M —int (fy(N)v fo(N )) are determined
up to equivariant isomorphism by the homotopy class of ¢.

Proof. We work in the PL category and apply approximation _E_h_eorems of [6]
for the smooth case. A direct proof is also possible. We can construct L (n) by attaching
a single n-handle A=D"x [ —1, 1] (killing the (n—1) homotopy) to a regular neigh-
borhood J/Z, of L(n—1) in L(n+1). By [12], 8.3 and general position we can push
¢/Z,0r|Z, to a map 0/Z, embedding J/Z, and sending int (D")x[—1,1]to M|Z,—
—0/Z,(J]|Z,).If Ais the ZZ, valued intersection form of [35], § 5 and x=0/Z (0L (n)),
then 1) implies that 4 (x, x)=0 and thus 1 (x)=0 (see 3.1). It follows that 1(x, y)=0
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where y=0/Z,(D"x0) and we take intersections with dy held fixed. Thus by the
Whitney method we may first assume 6/Z,(dL(n))"0/Z,(L(n))=¢ and then that
6/Z, embeds am disjointly from L (n) (J/Z, might not be embedded now). If U is a
regular neighborhood of e/z,,(aLTn)), a simple homotopy argument pushes 6/Z, to
a map embedding 4L(n) in dU and G/Zp(intz-(;))gM/Zp-—int U. By [11], this
deforms to an embedding y//Z, (rel (fITn))

Suppose Y : (E(n), Tg) = (M, Ty) is an embedding. Then y/Z,(J/Z,) has a normal
disk bundle in M/Z, which splits a line subbundle (see [26] or [7]) and we obtain
homotopic embeddings ¥,/Z,, ¥,/ Z, with Y, | Z (J|Z,) ",/ Z (J|Z,)= ¢. By a simple
intersection number argument we can push y,/Z () off y,/Z (k) and 3) follows by
taking disjoint regular neighborhoods of y,/Z,(L(n)) and ¥,/Z,(L(n)). Since 3)
clearly implies 1), the first part of the proof is complete.

Uniqueness preceeds much as in 2.1. For if f, oy, fio¥, fio¥/', fro4": (E(n),Tg)
— (M, T) are homotopic embeddings, then g/Z,=(f1°¥)/Z, and g'|Z,=(f{°y")/
Z, are homotopic by 2.12. By [10] we may assume g/Z,|;n-1)=8'/Z,|L(n-1)- Let
K|/Z, be some regular neighborhood of the image of L(n—1) with g/Z,(L(n)—
—L(n—1))and g'/Z,(L(n)—L(n—1)) meeting 0K/Z, nicely. Then an application of
the Hurewicz theorem, 2.12, and [12] provides an ambient isotopy throwing
K|Z,0g|Z,(L(n)) onto K/Z,ug'|Z,(L(n)), and uniqueness of N/Z, follows by
uniqueness of regular neighborhoods. Again by 2.12, f,/Z,°y/Z, and f;/Z,-y'|Z,
are homotopic as maps into the complement, and the uniqueness proof is completed
by applying the above argument again. []

2.4. COROLLARY. The 4k dimensional untwisted standard models are classified by
[L(2k), BO,,_.] in the smooth category (k+#2), and [L(2k), BPL,;_,] in the PL
category.

2.5. We consider now the algebra of the decomposition theorem. The integral group
ring A=ZZ, of Z, can be described as the direct sum of p copies of Z together with a
Z, action generated by Tx;=x;,; (for some Z basis x,,..., x, of A) by defining
multiplication in A by x,-v="Tv, ve A. With this description a A module is an abelian
group with a Z, action and a 4 module homomorphism is an equivariant group
homomorphism. Two A modules are of particular interest. Let Z denote the integers
with generator z and Z, action defined by Tz=z. Let 4 denote the direct sum of (p—1)
copies of Z with basis y,,..., ¥,-; and Z, action generated by Ty, =y,,..., Ty,_,
=Yp-1>» IYp_y=—Yy1—++—¥,-1- We then have exact sequences of A modules
0-2545450and 054545250 where f;, g; are defined by equivariance
and the formulas fi(z)=x;+-+x,, fo(*;)=y1, &8(y1)=%,—x;, and g,(x;)=z.
Neither sequence splits so Z and A are not projective.
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2.6. We can define homology and cohomology with coefficients in a 4 module. Let X
be a simply connected space supporting a free (topological) Z, action and suppose we
have some fixed CW (respectively, handle) decomposition V/Z ,=VolZ,c--cV,/Z,
=X/Z,) in which V,/Z, is a disjoint union of points (disks) and Vi/Z, is obtained
from V;_,/Z, by attaching i cells (i handles). Let ¥ denote the induced equivariant
decomposition of X. Then Cy(V)=H(V;, V;_,) together with the induced Z, action
is a free A module. A specific basis ¢;(¥') can be represented by choosing some lift to
X of each i cell (respectively, the left hand disk of each i handle) of V|Z,. The usual
boundary map 0:Cy(V)— C;_,(V) is equivariant, and for any A module R we define
Hy(X|Z,, R)=H,(Cx(V)®4R) and H*(X|Z,, R)=H,(Hom,(C,(V), R)). In par-
ticular, we have canonical isomorphisms ¢y : H, (Cy(V))—> H,(X) and H,(C, (V)
®Z)— H,(X/Z,) where the image groups are the ordinary singular groups with
integer coefficients. Similar isomorphisms exist in cohomology.

If Y is another such space with equivariant cell or handle decomposition W, then
any map f: (X, Tx)— (¥, Ty) can be pushed equivariantly to a skeleton preserving map
and induces maps (f/Z,)x: Hyx(X/Z,, R)> H,(Y|Z,, R) and (f|Z,)*: H*(Y/Z,, R)
— H*(X/Z,, R). Any short exact sequence of A modules induces Bocksteins and long
exact homology and cohomology sequences. There are canonical isomorphisms be-
tween this theory and the local coefficient theory of [28]. See [35], §2 for more
details.

2.7. LEMMA. Given M?" as in 1.1 and ¢:(E(n), Tg)— (M, Ty), then ¢ is not null
homotopic. Furthermore,

1) If n=2k +1, then H,(E(n))=Z with generator z. There exists y:(E(n), Tg)
— (M, Ty with, (z)=weH,(M)ifandonlyif w— ¢4 (2)=x+(Ty)ux+ - +(Tn)a "
x for some xe H,(M).

2) If n=2k, then H,(E(n))=A4 with basis yi,..., y,—1 (and (Tg)s acting on the
basis as in 2.5). There exists Y :(E(n), Tg)— (M, Ty) with Y4 (y;)=w, if and only if
wi—u () = (Ta)i x—(Ty)s ' x, i=1,..., p—1, for some xe H,(M).

Proof. For the first part it suffices to show that ¢*: H"(M)— H"(E(n)) is non-
zero. To that end, the map ¢/Z, together with the Bocksteins of the sequences
025 A->4—-0and 0— 4 - A4—Z—0 yield commutative diagrams

H(M|Z,, 4)~ H*\(M|Z,, Z) H'M|Z, Z)~H"*'(M|Z,, 4)

. ! ! , !
HY(L(n), 4) - H*(L(n), 2) HYL(n), Z) - H*'(L(n), 4).

The horizontal maps are isomorphisms for 0<i<n—1and n<i< 2n—1 and injections
if i=n—1, 2n—1 since H'(M|Z,, A)=H'(L(n), A)=0 if i#0, n, 2n. Then since
H*(M|Z,,Z)—» H*(L(n), Z)=Z, is an isomorphism (by universal coefficients, for
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example), we have that H*(M|Z, Z)— H"(L(n), Z) is non-zero if n=2k and
H"(M|Z,, A)— H"(L(n), 4) is non-zero if n=2k+1. From the above diagrams we
also see that H"*Y(M|Z,, 4)=0 if n=2k and H"*'(M|Z,, Z)=0 if n=2k +1, and
it now follows easily that (¢/Z,)*: H"(M|Z,, A)— H"(L(n), A) is non-zero, and thus
so is ¢*: H"(M)— H"(E(n)).

The groups H,(E(n))=H,(L(n), A) can be computed using 1.4. For the rest, we
may first assume by obstruction theory that ¢, y:(E(n), Tg)— (M, T)) agree on
E(n—1). If 6" is an n-cell of E(n) (see 1.2) then x is represented by the mapping
S"— M with upper hemisphere mapped onto ¥ (¢") and lower hemisphere mapped
to ¢ (¢"). Then 1) and 2) follow by writing down generators for H,(E(n)). [

2.8. COROLLARY. Thereis amap ¢:(E(n), Tg)— (M, T\) such that ¢, (H,(E(n)))
is a direct summand (over Z) of H,(M).

Proof. Let n=2k+1, y:(E(n), Tg) > (M, T\), and suppose ¥, (z)=ry where z
generates H,(E(n)) and ye H,(M) generates a Z summand. For any m there exists
Y’ :(E(n), Tg) > (M, T)y) with ¥'(z)=ry+p-my#0 by 2.7 and thus r#0 (modp).
It is easy to find an element y'e H,(M) with (T%), y' =y’ such that {y, y'} freely
generate a Z summand of H,(M). By 2.7 there exists ¢:(E(n), Tg)— (M, T)) with
¢« (z)=ry+py’, a generator of a Z summand since r#£0 (modp).

We omit the more involved proof when n=2k as it is not used in the sequel. []
2.9. When n=2k the above result is unsatisfactory since we need to have untwisted
induced models. To consider this problem we need some preliminary definitions. If
M is asin 1.1, we say that M (or M/Z,) has hyperbolic rank >1 if and only if we have
a decomposition of A modules H,(M )= A+ A+ H for some A module H such that

a) A +A is orthogonal to H in the usual intersection form on H.

b) We have A generators x;, x, for A+A such that (Ty)k x;" (Ty)i x,=0,
I=1,2,i,j=0,..., p—1,and (Ty)s x;* (Tne)% X, =46,;. Thus, in the terminology of [35],
§5, the A form on H,(M) splits off a hyperbolic plane. If it splits off d orthogonal
hyperbolic planes, we say that M has hyperbolic rank >d.

If L is any (n— 1) connected 27 manifold, then n,(M/Z,# L)=Z, and the universal
covering space, written M # ; L, the equivariant connected sum of M and L, satisfies
the conditions of 1.1. Note that M # , (S"x S™) has hyperbolic rank >1.

Finally, suppose n=2k and ¢:(E(n), Tg)— (M, Ty). Then ¢, :H,(E(n))— H,(M)
is non-zero by 2.7 and by a simple linear algebra argument is therefore an injection.
Let y, (Tu)x ¥s---» (Tn)s 2 yeH, (M) generate ¢, (H,(E(n))) freely over Z. We say
that xe H,(M) is a complementary element for ¢ if and only if ()i x* (Tx)% x=0,
all i, j, x:y=1, and x- (T )% y=0, 1<j<p—2.

2.10. LEMMA. Let M*" be asin 1.1 withn=2k, and suppose ¢ : (E(n), Tg)— (M, Ty,)
has complementary element x and ¢, (H,(E(n))) is a Z summand of H,(M ). Then there
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exists Y1 (E(n), Tg) — (M, Ty) with o (H,(E(n))) also a summand and with the induced
standard model untwisted. In particular, any M with hyperbolic rank >1 has such a
map Y.

Proof. Let y, x be as above, and set z=(T))y x—x. If a;=y-(T))sy, then
a;=a,_; since intersection numbers are invariant under the Z, action. In particular,
from (1+(Ty)x+-+(Ta)s V) »=0 it follows that a,=—2a,—---—2a,, is even
(where m=%(p—1)). Forj=1,...,msetb;=—j(3a0)— (j—1)a,——2a;,_,—a;_,.
By 2.7 there exists y:(E(n), Tg)— (M, Ty) with y,(H,(E(n))) generated by
w=y+b(To)s 2+ +b,(Tat)s 2, (Ta)s W, ..., (Th)2 > w. A tedious computation
verifies that (T )i w* (Ta )k w=0, all i, j. But ¢, (H,(E(n))) and the span of {(T, )k z}
are both isomorphic to 4 and have intersection of rank <(p—1), and so by linear
algebra they have intersection 0. Since ¢, maps to a summand, so does ¥,. Finally,
suppose M has hyperbolic rank >2, so that H,(M)=A+A+H with generators
Xy, X, for A+4 as in 2.9. Using 2.7 one can find ¢':(E(n), Tg)— (M, T)) with
(¢")x (H,(E(n))) generated by y',..., (Ty)s 2 y'€eH. By 2.7 again there exists ¢:
(E(n), Tg)— (M, Ty,) with generators y =y’ +x; — (Thy)s X1, ..., (The)e * y. Thenim,
is a Z summand and x, is a complimentary element. [J

2.11. DECOMPOSITION THEOREM. Let M?" be as in 1.1 where M has hyperbolic
rank =1 if n=2k and n#4 if M is smooth. Then there exists ¢:(E(n), Tg) = (M, Ty)
with induced standard model N untwisted and disjoint embeddings f,, f,:(N, Ty)—
— (int N, Ty) homotopic to the identity such that the following hold. If N;= fi(N') and
L=M —int(N, U N,) with boundary components ;=0N;, i=1, 2, then H,(L|Z,,, 8,/ Z,)
=0=H/(L, 8,) unless j=n, H,(L|Z,, 0,/Z,) is free abelian, and H,(L, 9,) is a free
A module. Furthermore, we have canonical isomorphisms

1) H,(M)=H,(N,)+H,(L, d,)+H,(N,, ;) (as A modules)

2) H(M|Z,)=H,(N,/Z,)+H(L|Z,, 8,/Z,)+ HN3/Z,, 0:|Z,).
Finally, this decomposition is uniquely determined by the homotapy class of ¢ (n#3, 4
in the smooth category).

We call the above the standard decomposition of M induced by ¢ and call L the
splitting space (for reasons to appear later) of the decomposition (or of ¢).

Proof. By 2.1, 2.3, 2.8, and 2,10 we can choose an embedding ¢:(E(n), Tk)
— (M, Ty,) with ¢4(H,(E(n))) a Z summand, the induced model untwisted, and
disjoint embeddings f;: (N, Ty)— (intN, Ty). By 2.7 and linear algebra, ¢, : H,(E(n))
— H,(M) is an isomorphism onto a Z summand. Then from the exact homology
sequence of (M, N;) we obtain the split (over Z ) sequence

a) 0 H,(N,)» H,(M)— H,(M, N;)-0, i= 1, 2. In addition, H,(M, N,) is free
abelian from which it follows that H**(M, N,)=0 and so (by excision and the exact
sequence of (M —int N,, N;)) H;(L, d,)=0unless j=n. Consequently, (L|Z,,0,|Z,)
=0 unless j=n and H,(L/Z,, 8,/Z,) is free abelian.
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By [12], p. 247, L has an equivariant handle decomposition 0, x I=V_,SV,_,
c V,=L (see 2.5). From the exact sequence 0 — kerd — C,(V)— C,_,(¥V)—0 and the
A module isomorphism ¢, :kerd —» H,(L, 0,) it follows that H,(L, 0,) is a stably free
A module and thus is free by [32]. From the exact sequence of the triple (M, M —int N,,
N,) we obtain the split (over Z) exact sequence

b) 0—» H,(M—intN,, N,)— H,(M, N,)- H,(M, M—intN,)— 0. By excision we
obtain the isomorphism 1) once we check that the sequences a), b) split over A. But
this follows by a routine algebraic argument. For example, suppose n=2k +1 in b).
We thus have an exact sequence 0 - F— R— Z — 0 where R is some A module, Fis a
free A module with Z basis {x; |i=1,...,p, j=1,..., m} where (Ty)s x;=x"", and
Z has generator z. Suppose x;— %;eR and choose ZeR with Z—z. Then {X] 2}
generate R freely over Z, and (T )y 2=2+Y; ; ai%; where Y, a’=0 for each j since
(Ty)f 2=Z%. An equivariant splitting map Z — R is defined by sending z to

F+Y aixi+Y (af+a)) %+ +) (aF +-- +ab) XD,
J J J

In the quotient space, by separately checking the cases n=2k+1 and n=2k we
easily obtain exact sequences

a/Z,,) 0-—>H,,(N,-/Zp)eH"(M/ZP)QH,,(M/ZP, N,-/Zp)——)()
b/Z,) 0- H,((M—intN,)/Z,, N\/Z,)— H,(M|Z,, N,/Z,)
—H,(M|Z,,(M—intN,)/Z,)—0.

When n=2k + 1 both sequences split since the right hand groups are free abelian, and
when n=2k we obtain splitting by an application of the Hurewicz theorem to se-
quences b), b/Z)).

Finally, uniqueness follows from 2.1, 2.3. [J

2.12. Completion of the proofs of 2.1, 2.3. Suppose we have homotopic maps
fiod=81, frcd=81, fiod' =81, [0 =82:(E(n), Tg) > (M, T)y). By 2.11 and the
Hurewicz theorem there is a free 4 module F such that n,(M/Z,)=n,(M) equals
Z+Z+F when n=2k +1 and equals 4 + 4 +F when n=2k. Since (g,/Z,) » = (81/Z,)
on m,(L(n)), the only obstruction to a homotopy lies in H"(L(n), Z+Z+F) when
n=2k+1 and in H"(L(n), 4+ 4 +F) when n=2k (see [24]). From the proof of 2.7
the above groups are free abelian, and the first part of the result follows by checking
(on the cochain level) that the pullback of the above obstructions to the obstructions
for the homotopic maps my°g;, mp°g1, Which lie in the ordinary singular groups
H"(E(n), n,(M/Z,)), is an injection.

From the proofs of 2.1, 2.3 we may thus assume that ¢, =¢3, f;=f1, and let
K= M-int ( f;(N)). From the proof of 2.11, the homology sequences of (M, M —int
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(fi(¥))) and (M—intfi(N), f,(N)), and the Hurewicz theorem it follows that
n.(K)=n,(K|/Z,) equals Z+F or A+F, and this group injects into m,(M). Con-
sequently, g,, g5 are homotopic as maps into K and we apply the above argument to
g2, &> to complete the proof. [J

3. Splitting

3.1. Throughout this section (L2,” d,, d,) will denote the splitting space of some
standard decomposition of a manifold M induced by ¢ asin 2.11. If v=>YF2¢ n,- (T,)!
eA=2ZZ, let =Y = n;(T,)" " and define Q, = A/I, where I, = {v—(=1)v|vea}.
Then given immetsions «, f: 8" —int (L/Z,), Wall ([35], §5) defines the intersection
A, B)eA and self intersection pu(x)eQ,. If v=>727 n,(T,) represents u(x) and
A(o. a)=0, then by [35], 5.2, iii), v=ny+{~(—=1)"{ where {=Y 17"V n(T)". It
follows that o is homotopic (not regularly unless 7, =0) to an embedding. Because of
this argument we ignore y from now on, noting only that it can be recovered from 4,
a fixed regular homotopy class of «, and some knowledge of the normal bundle of «.

3.2. LEMMA. Any xeH,(L, d,) is represented by a map a.:S"—intL, and the
equation A(x, y)=A(npoa,, nyoa,) well defines a unimodular A form on H,(L, d,).

Proof. If N is the induced standard model of ¢ as in 2.11 (so that N;, N, <intN),
let K denote the quotient space of M in which M —int N is collapsed to a point. Then
by duality and excision we have H,(K—intN,)=H,(N—intN,, 0N)=H"(N, N,)=0.
From the exact sequence of (K—intN,, N,) it follows that H,(K—int(N; UN,), ON,)
=H,(K—intN,, N;)=0 and thus the composite H,_,(0N,)—>H,_(L)->H,_,
(K—int(N; U N,)) is an injection. Consequently H,(L, 0,)— H,_,(0,) is the zero map
and thus (since 8, is (n—2) connected) so is n,,(L, d;) = m,-,(9;). Buteach xe H,(L, 9,)
can be represented by f:(D", S" ')~ (L, d,) and the existence (non-unique) of o,
follows since f |gn-1:S"~* — 8, is null homotopic. That A(n,a,, n ca,) depends only
on x, y is a consequence of the definition of 1 and the fact that 8, bounds an untwisted
model.

We check that A is unimodular when n= 2k, leaving the easier n=2k +1 case as an
exercise. Using sequences a), b) of 2.11 we can choose elements y,, y2, Xy ..., Xy € H,(M )
s0 that y,...,(Th)% 2y, generate im (H,(Ny) > H,(M)), y2, ..., (Tyy)3™? generate a
summand 4 mapping onto H,(M, M ~intN,)=H,(N,, 8,), and xy, ..., x,, correspond
to a A basis of H,(L, d,). From the proof of 2.11 we can clearly choose y;, y, so
that y,+y,=1 and (T )k y1 'y, =0if 1 <i<p—1. By the above argument (T} )% X'y
=0. Let y,- (T )y x;=Mp-1); 50 that mg; +-- Mgy ;=0.If ;= —mg;— - —my,
and x)=x;+a, y; +-+ tap-2(Tu)e * »1» then {xi,..., x,,}=b corresponds to a A
basis of H,(L, ,), and the A submodule of H,(M) generated by b is an orthogonal
summand of H,(M) (equipped with the usual Z valued intersection form). By
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Poincaré duality the induced map H,(L, ¢,) » Hom (H, (L 01), A) is an isomorphism
and A is unimodular ([35], §5). O

3.3. Suppose A-rank (H,(L, 3,))=r>0 and let b be some A basis. We can then define
a torsion invariant in Wh(Z,) (see [20] or [12]), and a different choice of b changes
the torsion by an element of image (GL,(4) > Wh(Z,)). We say that b, is a splitting
basis of H,(L, 0,)if the associated torsion vanishes. But Wh(Z,)=Z+--- +Z ((p—3)/2
copies) generated by the units of A, so such bases always exist and are unique
up to stabilization of H,(L,0,) and elementary basis changes on the resulting
model.

3.4. THEOREM. For any splitting space L and splitting basis by < H,(L, 0,), there
is an equivariant handle decomposition 0, x I=V_, S V,=L such that ¢y *(b)=c,(V)
for appropriate choices of lifts and orientations of the handles of V|Z, (see 2.6). Given
another splitting space L' and an orientation preserving (reversing) isomorphism
Y:(0y, Tp)— (01, Ty.), ¥ extends to an orientation preserving (reversing) isomorphism
W:(L, Ty)— (L', Ty.) if and only if there exists an isomorphism y(=):(H,(L, 9,),
(To)a) > (HA(L', ), (Ty.)a) satisfying:

1) A(y(x), y(»))=¢A(x, y) for x, ye H,(L, 3,) where e= +1 or —1 depending on
whether \ preserves orientation or not.

2) y(by) is a splitting basis of H,(L', 8})

3) If xeH,(L, 0,), then there exist embeddings o,.: S" —int L and o.,(,,:S" —>int L’
with isomorphic normal (disk or block) bundles. In particular, if H,(L,3,)=0 then
L|Z,=0,|Z,x1.

Proof. First suppose H,(L, d,)#0. The existence of an n-handle decomposition
V|Z, of L|Z, with ¢;; ' (by)=¢,(V) is given in [12], p. 269.

If the equivariant isomorphism { exists, then (n/7)* is the desired map y. Thus
suppose y satisfies the above properties and let b, be some fixed splitting basis
(clearly 2) is independent of the choice of b.). For each beb; choose embeddings
ap:S"—intL and a,):S"—>intL’ as in 3) so that nyca, and n.0a, ) are immer-
sions. Then p(mpoa,)=eu(np.oa,py) by 1), 3.1, and the fact that ay, o, are
embeddings. Choose small disjoint disks Dy<dL for each beb; and connect «, to
d(Djp) by a thin tube, thus defining an embedding f;:(D", S" ')— (L, d,). Define
frwy: (D", S""1)> (L', ") by connecting a tube to y (0 (D})). Then by 1) we can pipe
the intersections and self intersections of the immersions nyof, and my.of,, across
0,/Z, and 01/Z, in such a way that the resulting embeddings g,: (D", "~ ') (L/Z,
0,/Z,) and g,b,:(D", S"" ')~ (L'|Z,, 01/Z,) satisfy W/Z,og,|sn-1=8(s)|sn-1. Thus
Y/Z, extends to an isomorphism

K/Zp::al/zp bg gb(Dn)—)aII/Zp U gy(b)(Dn):"K’/Zp'

2L

y(b) € y(bL)
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But by 3) this extends to an isomorphism of regular neighborhoods JIZ,-J'|Z, of
K|Z,and K'|Z,in L|Z, and L'|Z, respectively. Finally, by 2) and the s-cobordism
theorem,

L|Z,~int(J|Z,)=0,/Z,x1 and L'|Z,—int(J'[Z,)=0}/Z,x 1.

If H,(L,0;)=0 and n>4, by the uniqueness part of 2.1 and 2.3 we have a PL
isomorphism (L/Z,, 0,/Z,, 0,/Z,)~ (L|Z,, 0,/Z,, 0,/Z,). In particular we have tor-
sion 10=1(L/Z,, 0,/Z,)=1(L|Z,, 0,/Z,)=(—~1)*""' %, (see [20]). But Wh(Z,) is
free abelian and 7,=7, ([20], 6.7), so 7,=0 and L|Z,=0,/Z,x1 1If H,(L,3d,)=0
and n=3, we have the same conclusion by a Reidemeister torsion argument
([20], 12.8). O

3.5. COROLLARY. Let L be a splitting space of some PL manifold M as in 2.11.
Then any isomorphism ¢|Z,:0,/Z,— 0,/ Z, inducing the identity on n,(0,/Z,) extends
to an isomorphism ¢:L|Z,—(0,/Z,xI)#K (orientation preserving if /Z, is) for
some (n—1) connected 2n manifold K (and thus L and (0, x I)# z, K are equivariantly
isomorphic) if and only if there is a A basis b for H,(L, 0,) such that A(b,, b;)eZ< A
for all b, b;eb;. Then b;, called an integral basis, is necessarily a splitting basis.

Proof. If L|Z,=(0,/Z,xI)#K and by, ..., b, is a Z basis for H,(K), it clearly
defines an integral basis for H,(L, d,). Conversely, if b, = {b,,..., b,,} is integral, then
the (Z valued) intersection from on H,(L, ) is the orthogonal sum of p copies of the
form on the Z-span of b, so the latter is unimodular. Choose embeddings a,, :S"—
— int L representing each b;eb;. Attach n-handles h, ,..., b, to D*" so that if K°
is the resulting handlebody, the Z basis b1,..., b,, of H,(K°) corresponding to the
handles satisfies A(b;, b;)=¢b;*b; (¢= + 1 depending on orientation) and a,,, «;,- have
isomorphic normal bundles. As in [33], dK®=S2""1 and we let K denote the resulting
closed (n—1) connected PL manifold (suitably oriented).

Following the proof of 3.4 we may extend ¢/Z,:0,/Z,— 0,/Z, to an isomorphism
$/Z, of L|Z, into (8,/Z,xI)#K. Then (0,/Z,xI)#K—int¢/Z,(L|Z,) is an
h-cobordism J/Z, and M/Z,=N,|Z,0 (J|Z,#K)UN,/Z,. If we set M'|Z,=N,|Z,
vJ/Z,uN,|Z,, then M satisfies the conditions of 1.1 and the above is a standard
decomposition of M'/Z,. By 3.4, J|Z, is trivial so by is a splitting basis and L/Z, and
(0,Z,xI)#K are isomorphic. []

3.6. PL SPLITTING THEOREM. Let L be a splitting space (2.11) of M*" with
hyperbolic rank >2 (2.9) and n#4,8. Then L has an integral basis and hence is
equivariantly PL isomorphic to (0, x1)#z, K for some closed (n—1) connected PL

manifold K*".
Proof. Let L,,(Z,) denote the 2nth Wall group of Z, ([35], §5) and let b,
be some splitting basis. We want to construct a manifold L'/Z, with lower bound-

ary 8y/Z,=0,/Z, representing an element in L,,(Z,) as in [35], 5.8 such that the
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associated based A form on H,(L', 0}) is isomorphic to (H,(L,0,), 1, b;). Since 4 is
unimodular this can be done provided the intersections b;b; are even (L’ must have
trivial stable normal bundle). But for n>3 this always holds unless n=4,8 since the
mod2 reduction of b;-b; vanishes by [1]. Note next that d5/Z, is isomorphic to

1/Z,. For if L"|Z,=L|Z,0(—L’'|Z,) glued along the common boundary 0,/Z,
then H,(L"/Z,, 0,/Z,) with the induced A form is a sum of hyperbolic planes by [35],
5.4. By the first part of the proof, L"/Z,=(0,/Z,xI)#K for suitable K. Thus
051Z,20,/Z,20,|Z,=04/|Z,

Let L3,(Z,) denote the kernel of the canonical map L,,(Z,)— L,,(0), so L,,(Z,)
=L3,(Z,)+L,,(0). But L,,(0) acts trivially on the homotopy triangulations
([35], §10) of 8}/Z,, by the first part of the theorem and L3,=Z*>®"1 acts freely
([25]). It follows that L" represents an element of image (L,,(0) - L,,(Z,)) and thus
(algebraically) so does (H,(L, d,), 4, by). Consequently b, is stably (ie., in H,
(L#2,(S"xS"#--#S8"xS8"), 8,)) equivalent to an integral basis. But since Krull
dimension (A4)=dimmax(4)=1, it follows from [2] that we need stabilize at most
1 +dimmax (A4)=2 times. In particular, if M has hyperbolic rank >2 then H,(L, 0,)
splits two hyperbolic planes (regardless of the standard decomposition) and has an
integral basis. Uniqueness of the resulting form (generated over Z by b,) follows
easily from [21] if n=2k and by considering a symplectic basis if n=2k +1. O

If L has hyperbolic rank >2 and n=4, 8 we can still find an integral basis for
H,(L#,,M', 0,) where M’ is the double of some non-stably trivial » disk bundle
over S". If we try to extend 3.5 and 3.6 to the smooth category we have one problem —
0K° might not be the standard sphere. This can be avoided by an assumption about
N, N,. We say that a standard decomposition is simple if n=2k or if n=2k +1 and
N,=S8"x D" (N,/Z, might not be trivial). Although it is not the best possible result,
the following is sufficient for our purposes.

3.7. LEMMA. Let M?" be as in 1.1 with n+3<2p if M is PL. M***? has a simple
decomposition provided there is an embedding o:S™ — M with trivial normal bundle
which represents a generator x of a summand A of H,(M) such that A(x, x)=0. Two
simple decompositions of M*" have equivariantly isomorphic models if n#0, 4 (mod 8).

Proof. Note first that n,(BH,), i<n+1, H=0 or PL, has no p-torsion if n+3<2p
(see 4.2). If n=2k +1, using Poincaré duality and 2.7 one can easily find ¢: (E(n), Tx)
— (M, Ty) so that A(@4(z), x)=0 (where z generates H,(E(n))) and ¢,(z) lies outside
the span of x. We can choose an embedding ¥, :(E(n), Tg) - (M, Ty) with trivial
normal bundle and ¥, (z)=(1+jp) ¢«(z). Then if {:(E(n), Tg)— (M, T)) satisfies
(x(2)=Ya(2) +x 4+ +(Ty)* ! x, the resulting decomposition is simple.

Next suppose n=2k +1 and ¢,/Z,, ¢,/Z,: L(n) > M|Z, induce simple decomposi-
tions with maps y,, y,:L(n)— BH, (H=0 or PL) classifying the resulting models.
By [12], 10.3 (and [6], 6.1 in the smooth case) we may assume ¢, /Zpl L-) =
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=,/Z,|7=1; and thus y,|.(,-y) and y,|;(,—y, are homotopic. But y, o7y, 7,07y, are
homotopic since the decompositions are simple, so y,, y, are homotopic since n,(BH,,)
has no p-torsion. If n=2k and ¢,/Z,, ¢,/Z,:L(n)—> M|Z, are embeddings with
classifying maps y,, y,:L(n)—> BH,_,, one shows as before that y,|L(,,_2, and
¥2|L(n- 2 are homotopic. This improves to a homotopy on L (n— 1)since n,_(BH,_,)
has no p-torsion, and we have y,~y, on all L(n) if n=2, 6 (mod8) since in these
cases ,(BH,_,) has no p-torsion or fiee part (see 4.2). [J

3.8. SMOOTH SPLITTING THEOREM. Let L be the splitting space of a simple
decomposition of a smooth manifold M*", n+1<p, and let b, = H,(L, d,) be an integral
basis. Then any diffeomorphism ¢|Z,:0,/|Z,— 0,/Z, which induces the identity on
n,(0:1/Z,) extends to a diffeomorphism (orientation preserving if ¢|Z, is) 1Z »L|Z,
—(0,/Z,x I)#K for some smooth closed (n—1) connected manifold K*". Any smooth
M with hyperbolic rank =2 has a simple decomposition and an associated integral basis.

Proof. Let K°cintL/Z, be as in 3.5. Taking a smooth regular neighborhood [9]
we may assume K° is smooth and set J°/Z,=L/Z,—intK°. In the total space, form
J from J° by removing the interiors of (p—1) small tubes connecting the boundary
components. If M =N, uJuUN,, then since M =p-3K® in 0,,_, and 0,,_, has no
p-torsion if n+1<p (see 4.2) it suffices to show that oM =S2""1,

Suppose n=2k. Since N, is untwisted and (1 +--- +(Ty,)5 ') annihilates H,(N,),
it follows that N, is parallelizable. Let y:S" — int M be an embedding which intersects
Nj in the right hand disk of one of the n-handles. Using a A generator of H,(N,) as
complementary element and following the proof of 2.10 we can replace y by a map
7':8" —int M so that w0y’ is an embedding with H,(N,) and image (y,) generating
H,(M). But (14 (Ty)s++++(Ty)s ') annihilates image (7). It follows that y" has
trivial normal bundle and M is parallelizable. But clearly index (H,(M))=0, so M is
cobordant (reldM) to a disk and OM =S2""1,

If n=2k +1, then M is a handlebody with two n-handles with linking number + 1
and one handle attached with trivial thickening (since the decomposition is simple).
But by attaching S" x D" to itself by a diffeomorphism of §"x S "~1 sending (u, v)
— («(v)*u, v) where aen,_,(SO,+,) one can obtain all possible invariants for such a
handlebody M [33] in a closed manifold, so M =52""1.

Finally, if n=2k+1 and HS H,(M) is the orthogonal sum of two hyperbolic
planes, then by immersion theory [8] and the fact that n,-1(S0,)is Z, or Z,+2Z,
one can find xe H as in 3.7. The last statement follows from 3.6, 3.7. [

4. Gluing and the Classification Problem

So far we have considered conditions under which M has a standard decomposi-
tion M=N,U;, L Uy, N, where f;:(ON;, Ty,)— (0;, T) is an isomorphism, i=1, 2.
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We now study the effect of the gluings f;. If M'=N, | J,, L {,, N,, then by 3.4 the
identity N, — N, extends to an isomorphism ¢:(N; U,, L, Tyy) = (Ny U,, L, Ty'),
and thus (M, Ty) and (M’, Ty.) are isomorphic provided g; 'odof;:(0N,, Ty,)
— (0N,, Ty,) extends to an equivariant isomorphism of N,. We study the latter problem.

4.1. First recall some standard definitions and results from surgery theory. Given an
oriented compact PL (respectively, smooth) manifold K with boundary 0K (possibly
empty), the set HT (K, 0K) of homotopy triangulations of K (reldK) (respectively,
the set HS (K, 6K ) of homotopy smoothings) consists of pairs (N, ¢) where (N, ON)
is a compact oriented PL (respectively, smooth) manifold and ¢: (N, 0N) - (K, 0K)
is a simple homotopy equivalence such that ¢ I ON is an isomorphism onto dK. Two
pairs (Ny, ¢,) and (N,, ¢,) are equivalent if and only if there is an isomorphism
Y:N,— N, so that ¢, and ¢, are homotopic (reldN,). The sets HT(K, 0K) and
HS (K, 0K) have as base point the class of (K, 1). Let L;(n) denote the jth Wall group
of m. Since L,;4+,(Z,)=0 ([15] and [3]) the surgery exact sequence ([35], §10) for a
PL (smooth) standard model N?"/Z, becomes

0— HT (N/Z,, ON|Z,)*[N/Z,, ON/Z,; GIPL, *]% L,,(Z,)
(0~ HS (N/Z,, 0N|Z,)4 [N/Z,, ON|Z,; G|O, *] & L,,(Z,)).

In particular, { is an injection ([35], 10.5).
4.2. For g>3 there is an exact braid of groups ([16], [26])

/'—N
n0) T ¥4 %(GIPL)

~ 7 .,

; (PL T (G Oq)

A N N

7;+1(G/PL) \—/ r{ ~_ 7 i-l(oq)‘

The groups #;(G/PL) form the period four sequence Z, O, Z,, O for i=0, 1, 2, 3
(mod4) [29]. Since G,={f:59'1—-S97!|degf==+1} with the compact open
topology and n;(G,) =1+ 4-1(S?7*) has no p-torsion for i + 3 <2p ([27]), neither does
n;41(BPL,)=mn,(PL,). For i<q+4 the groups n,(0,) are well known ([4], [13]) and
in particular have no odd torsion. If ¢>i we have the stable braid of Kervaire and
Milnor in which n(G, 0,)=n,(G/O) and I'}=I;=0; is the group of homotopy
i-spheres. Thus 6;, n;,(G/O) have no p-torsion if i +3 <2p.

4.3. LEMMA. If N/Z, is a standard model and f: (N, ON'), Ty)— ((N, ON), Ty) is an
isomorphism ondN, then f|Z , is a simple homotopy equivalence of the pair (N|Z,,0N|Z ).
Proof. By the relative Whitehead theorem ([19], IV. 3.3) and standard torsion
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arguments ([20]) it suffices to show that f/Z,:N/Z,— N/Z,, is a simple equivalence.
By equivariance, (f/Z,) is the identity on n,(N/Z,). Since f/éN is an isomorphism,
fis a degree +1 map of (N, dN) and so, by a standard duality argument ([5], L. 2.5),
[+ is a split surjection and thus a bijection of the finitely generated groups H,(N). It
follows that (f/Z,), is an isomorphism and f/Z, is a homotopy equivalence. If
n=2k +1 we are finished since f/Z, must be homotopic to the identity (not relON/Z,)
by 2.7 and the uniqueness part of 2.1.

If n=2k, let K/Z, be a regular neighborhood of L(n—1)=N/Z, By [31],
Theorem A, there is a 2n submanifold K'/Z, containing L(n—1) such that, after a
deformation moddN/Z, f/Z, induces a homotopy equivalence of K/Z, into K'/Z,
and a PL isomorphism of the complements of their interiors. We may assume
K/Z,=intK'|Z,, so J|Z,=K'|Z,—intK|Z, is an h-cobordism from 0K/Z, to itself
(f1Z,)okz, is an isomorphism). By a Reidemeister torsion argument ([20], 12.8)
J|Z,=0K|Z,x I,and it follows as in the n=2k + 1 case that f/Z, is a simple equivalence.

Our main application of surgery to the gluing problem is the following.

4.4. THEOREM. For any PL standard model N|Z,, HT (N|Z,, ON|Z,) consists of
the base point only. If N|Z,, is a smooth model, HS(N|Z,, 0N|Z,) is finite. If in addition
n<p—1 and s, denotes the order of the torsion subgroup of n,(G/O), then HS (N/Z,,
ON|Z,) has at most s, s, elements when n=2k +1 and at most s,, elements when n=2k.

Proof. If xe HT(N/Z,, dN|Z,), the only possible non-zero obstruction to a null
homotopy for ¢ (x):(N/Z,, ON/Z,)— (G/PL, *) lies in H*"(N/Z,, ON|Z,; n,,(G/PL))
=1,,(G/PL)=Z or Z, (when n=2k or n=2k +1, respectively). But 6:[S*", G/PL]
— L,,(0) is a bijection [29], and if follows that this top obstruction vanishes since
0 (¢ (x)) must vanish by exactness. Hence x is the base point.

In the smooth case, note first that 7;(G/O) is finite unless i=4j and n,;(G/0)=Z
+(finite group) (4.2). Then HS(N/Z,, 0N|Z,) is finite when n=2k+1 since the
homotopy obstruction groups H'(N/Z,, ON/Z,; n,(G/0)) are all finite and { is an
injection. If n=2k, then H2*(N/Z,, ON|Z,; 1,,(G/0))=n,,(G/0) has a component Z.
Since the canonical map a:G/O - G/PL satisfies a, =lima,, by 4.2 a, is an iso-
morphism modulo torsion. But for any xe HS (N/Z,, 0N|Z,), 0. 4{ (x)e[N/Z,, N|Z,;
G/PL, *] is the normal invariant for the homotopy triangulation induced by x and so
must vanish. Thus given x, ye HS (N/Z,, 0N|Z,) such that the restrictions of { (x),
{(y) to N/Z,— D*" are homotopic (relON/Z ,), the remaining homotopy obstruction
lies in the torsion subgroup of 7,,(G/O).

Finally, if n<p — 1 then ,(G/O) has no p-torsion for i<2n—1. Thus all but the top
obstruction group vanishes when n=2k, and all but the nth and 2nth vanish when

n=2k+1. O

4.5. In any standard decomposition M=N, Ur, L Uy, N2, the canonical iso-
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morphism N; - N, of 2.1 and 2.3 is orientation preserving and the gluings f;:0N; — 9;
reverse the “inward normal’’ orientations. If N, is smooth it is an odd dimensional
disk bundle over a manifold (it is untwisted) and multiplying the fiber by —1 yields
an orientation reversing isomorphism (Ny, Ty, )= (Ny, Ty,)-

4.6. THEOREM. (Finiteness of Gluings). For fixed choice of models (N,, Ty,)
~(N,, Ty,) and splitting space (L, T.), up to equivariant isomorphism (orientation
preserving for fixed orientations of N,, L) there are at most finitely many manifolds M
with standard decomposition M=N, \ J;, L \J,, N,. For suitable p, a specific bound b
for the number of such manifolds is given by:

a) b=order (ny,-,(S")) when M is PL, n=2k+1<2p—1.

b) b=s,s,, order (n,,_,(S")) when M is smooth, n=2k+1<p—1.

c) b=2 when M is PL, n=2k<2p—2.

d) b=2s,, when M is smooth, n=2k<p—1.

Proof. We prove only the second part. The first follows by a similar argument
since the relevant obstruction groups are finite. If M’ =N, | ,, L | J,, N,) is another
gluing, by 3.4 there is an (orientation preserving) isomorphism ¢:(N; U, L, Ty)
— (N; U,, L, Tyy+). By 4.3, 4.4 this extends to a PL isomorphism ¢:(M, T)— (M,
Ty ) if and only if (g5 Yo dof;)/Z,:0N,/Z,— ON,/Z, extends to a map N,/Z,— N,/Z,,.
We check that if N/Z, is an untwisted PL model, for suitable p there are at most b
homotopy classes (in N/Z,) of maps f/Z,:0N/Z,— dN|Z, covered by an equivariant
isomorphism. The smooth case follows from this and 4.4.

If n=2k+1, N/Z, is a block bundle over L(n) and there is an embedding ¢/Z,:
L(n)— 0N/Z, homotopic to the O section. By 2.1, two isomorphisms f, f':(ON, Ty)
— (0N, Ty) can be equivariantly deformed in N so that f|4ewm)=/"|sEm) The
homotopy obstructions (rel¢/Z (L (n))) for f|Z,, f'|Z, lie in H(ON|Z,, $|Z,(L(n)),
n(N/Z,))=H,,_;-(L(n), n(S")), i>1. For i<2n—2<n+2p-3, n,(S") has no
p-torsion so only the top obstruction group n,,_,(S") is non-zero.

If n=2k, following the proof of 3.8 we can find y":S" > N {J; N=N, so that
S"Y, N, — N,/Z, is an embedding with trivial normal bundle, and im (y%) and H,(N)
generate H,(N,). (We use the fact that n—1(PL,) has no p-torsion. For the general
finiteness result one compares separately gluings which, for suitable y’, define the
same element of the p-torsion of «,_,(PL,).). If K/Z, is the normal bundle of L(n—1)
in N/Z,, it follows that f/Z, extends to an isomorphism of M/Z,—int(K/Z,) to itself.
Following the proof for n=2k+1 we compare the homotopy classes for f/Z,:
0K|Z,— 0K|Z,=K|Z, (rel ¢/ Z (L (n—1))), the relevant obstruction groups now being
Hypoi-y(L(n—1), m(S""')). The first non-vanishing group (when i=n) is Z,. But
if the i=n homotopy obstruction for two maps vanishes, their restrictions to 0K/Z,
—D?*"~! are homotopic in K/Z, since n<2p—2. Since K is contained in a disk
D?*"c M, the top obstruction must also vanish.



Free Cyclic Actions on Manifolds 77

EXAMPLE. Suppose n=6 (mod8), n<p—1, and f:(0N, Ty)— (0N, Ty) is a
diffeomorphism for some untwisted smooth model N. I claim that f/Z » extends across
N|Z,. As in 4.6 this reduces to extending an induced diffeomorphism fl1Z,:0K|Z,
— 0K|Z,. The first extension obstruction lies in H"*! (K/Z,, K|Z,, n,(K|Z,))=Z,
and vanishes if and only if the corresponding obstruction for a lift f:S" ! x S"
— 8"~ x S" vanishes. According to [17], the diffeomorphism f is concordant to a
composite of maps of the form

i) (x,y)~(B(y) x,y) for p:S">0,

ii) (x,¥)—>(x, y(x)-y) for y:8"' > 0,4,

ili) g such that g=1 outside some disk.

Maps of types ii), iii) clearly extend across $"~!x D"*!, and type i) has no Z,
obstruction since the canonical map r,(0,)— n,(S" ') is trivial when n=6 (mod8)
([13]). Thus the Z, obstruction for f/Z, vanishes. Following 4.6, f/ZplaK/Zp extends
to a map K/Z,— N/Z,.

Suppose M?" as in 1.1 is smooth, has hyperbolic rank >2, n=6 (mod8), and
n<p-—1. By 3.7 any two untwisted models in M are isomorphic, determined by a
unique homotopy class ¢ (M )e[L(n), BO,_]. If M=e(N; U, L U, N3), e=*1,
is some standard decomposition, by 3.8 and 4.5 there is an orientation preserving
diffeomorphism ¢,:(e(Ny Uy, L), Ty,)» (Ny Uy, (8, xI)# 2, K,), Ty,) for some
oriented smooth closed (n—1) connected K" with uniquely determined intersection
form. Since n,_,(S0)=0, the intersection form determines the normal bundles, so X
is determined up to the action of ,, by M. The orthogonal complement of H,(L, ¢,)
in H,(M) has signature O since L is untwisted, and the form on H,(M) is even
(see the proof of 3.6). By 4.3, 4.4, and the work above, a change in gluings changes
M|/Z, by addition of a homotopy sphere (the only obstruction to a trivial normal
invariant in 7,,(G/O) maps to O in 7,,(G/PL)). Note also that 0,, has no p-torsion
since n<p—1. Applying [21] or [33] we have the following.

4.7. THEOREM. If n=6 (mod8) and n<p—1, then the smooth manifolds M>" as in
1.1 with hyperbolic rank >2 are classified up to orientation preserving equivariant
diffeomorphism and the action of p-0,,=0,, by the model invariant ¢(M)e[L(n),
BO,_,], the rank of H,(M), and the signature 6 (M )e8 pZ. All values of o(M), o (M)
occur independently.

EXAMPLE. Suppose n=3, 5,7 (mod8), n<p—1,and f: (0N, Ty)— (0N, Ty)is a
diffeomorphism for some simple smooth model N. I claim that f/Z, extends to
flZ,:N|Z,— N|Z, in such a way that the first obstruction to trivial normal invariant
(in 7,(G/O) - see 4.4) vanishes. Let g:(D", S"~*)—(N/Z,, 0N/Z,) be an embedding
such that a lift § generates H,(N, N). Since m,_,(SO)=0, by immersion theory
([8]) and the fact that N is simple there is an embedding A:S"— N ([, N=N, with
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trivial normal bundle so that the lower hemisphere maps to the first copy of N via §
and the upper hemisphere maps to the second copy of N. If & represents xe H,(N,),
then (Ty,)s x=x and x-x=0. It follows as in 3.1 that y(7y,h)=0so k can be pushed
by an ambient isotopy of the second copy of N leaving 0N fixed so that my ok is an
embedding. Thus f/Z, extends to an embedding of the normal bundle J of image (g).
By obstruction theory this extends to a map N/Z,—int(D*")—> N/Z,, and f/Z , extends
if a=f/Z,|;p:S%""* - N/Z, is null homotopic. Connecting the disks D2"< N which
cover D*" by (p—1) small tubes we obtain a disk D3" such that 6D3" 5 N™ N/Z,
represents p- . Since 7,,_1(N/Z,)=m,,-1(S") has no p-torsion, f/Z, extends provided
flape extends. If J is a regular neighborhood of im(g) covering J, then any two
extensions of f |,y 7 to N — D" are homotopic (reldN), so f/Z, extends if f |lonui
extends to N. But this is trivially true since closure (N—J) is a disk. Finally, note that
we thus have an extension f/Z, covered by a map f which is homotopic (reloN) to a
map f which embeds J and is a homotopy equivalence of the complements. It follows
that the first normal invariant obstruction in 7,(G/O) vanishes (see also [29], [30]).

If M 2" as in 1.1 has hyperbolic rank >2, then by 3.7, 3.8 it has a simple decomposi-
tion M=¢e(N; Uy, L Uy, N,), é= 1, where the models N;, N, are determined by a
unique homotopy class o (M )eker (nf :[L(n), BO,] - n,(BO,)=Z,). By 3.8, 4.5,
there is an orientation preserving diffeomorphism ¢,:(e(N;, U, L), Ty,) = (Ny Uy,
(0, xI)#4,K,, Ty,) for (n—1) connected oriented K;” with unique intersection
form. Since n=3, 5, 7, (mod8), K is uniquely determined (up to the action of 6,,) by
therank of H,(K) and the Arf invariant 6 (K )e Z, (the rank classifies when n=3, 7 —see
[33]). Since the decomposition is simple, (M )=p-6(K)=0(K). From the first part
of the argument, a change in gluings alters M/Z, by addition of a homotopy sphere.

4.8. THEOREM. Ifn=3, 5,7 (mod8) and n<p—1, the smooth manifolds M*" as in
1.1 of hyperbolic rank >2 are determined up to orientation preserving equivariant
diffeomorphism and the action of p-0,,=0,, by the model invariant o (M )eker ((nz)*
[L(n), BO,] > =,(BO,)), the rank of H,(M), and the Arf invariant ¢(M)eZ,. (If
n=3, 7, the rank and 9 (M) classify.) All values of ¢(M), 6 (M) occur independently.

Remark. If Z rank (H,(M))=2,n<p—1,and n=3, 5, 7, then by immersion theory
it has a simple decomposition. An argument similar to the above shows that M is
classified up to the action of 6,, by ¢ (M ). For example, there is only one such mani-
fold if n=3 (M/Z,=L(3)xS?>) and there are only 2p such manifolds when n=7
(e(M)eZ,and 0,,=Z, acts freely — see [33]).

In the above examples the action of 6,, can be determined exactly.

4.9. THEOREM. If n=3, 5, 6, 7 (mod8) then 0,, acts freely on the orientation
preserving diffeomorphism classes of (n—1) connected smooth 2n manifolds M.
Proof. Suppose X€0,, is such that there exists an orientation preserving diffeomor-



Free Cyclic Actions on Manifolds 79

phism ¢: M # 2 — M. Let J denote the obvious cobordism with boundary components
M,X, and — M #2Z, and form J from J by gluing M to M # X using ¢. Since n=3, 5,
6, 7 (mod8), J, is n-parallizable and thus cobordant (reldJ,=X) to a disk by [38].
Thus X =.S%". (See also [39]). [
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