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Comment. Math. Helvetici 50 (1975) 59-80 Birkhâuser Verlag, Basel

Free Cyclic Actions on Manifolds

Timothy Lance1)

0. Introduction

This paper présents a géométrie description and partial classification of smooth
or PL oriented closed (n-1) connected 2n manifolds M, «^3, which support free
actions of the cyclic group Zp ZjpZ (where/7^3 is prime) with preferred generator
TM and orbit manifold M/Zp. lfL(n) is an H-dimensional lens space (or the w-skeleton
of the usual CW décomposition of L(n + l) if n — 2k) with tt1(L(«)) Zp, universal
cover E (n), and fîxed generator TE of the induced Zp action on E («), we define a

standard model to be a 2n dimensional smooth or PL thickening NjZp of L{ri) with
generator TN of the Zp action on N corresponding to TE. Given an equivariant iso-

rnorphism/:(dJV, TN)-*(dN, TN) (Le.fTN TNf, so there is an induced isomorphism
fjZp of dN/Zp) and a closed («—1) connected 2n manifold K, the universal cover of
(N/Zp \Jf/Zp)#K (written (N{JfN)#ZpK) is such a manifold M. The underlying
idea of this work is that most of the manifolds M can be obtained in this way.

A standard model NjZp is untwisted if the homology intersection form on Hn(N)
is identically zéro, and it is simple if in addition N^SnxDn (not necessarily equiv-
ariantly) when n 2k + l. The homomorphism (TM)+ makes Hn(M) a A ZZP
module, and Wall ([35], §5) deflnes a A valued intersection form A on Hn{M).
We say that M has hyperbolic rank ^d if the k form orthogonally splits off d hyper-
bolic planes (see 2.9).

THEOREM A. Suppose M has hyperbolic rank ^ 2, n # 4, 8, and n + \<p ifM is

smooth. Then for some untwisted model NjZp (simple if M is smooth), isomorphism

f: (dN, TN)-? (ôN, TN), and closed (n-\) connected 2n manifold K, there is an orientation

preserving equivariant isomorphism between (Af, TM) and (N (J/ N)#ZpK (with
Zp generator corresponding to TN).

This is proved in several stages. We first show in §2 that untwisted models hâve

bundle structures determined by homotopy classes [L(n\ BH^\ when n=2fc + l and

[L(n\ BHn-.{\ when n 2k (H=0 or PL depending on the category), and M has an

equivariant décomposition M=NluLuN2 where Nl9 N2 are isomorphic to the same

untwisted model N and L is a cobordism with boundary components di dNu

1 Partially supported by NSF grant GP 28938A.
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d2 ôN2 such that Hn (L, dx is a free A module and Hi (L, dx )=0,yV n. In § 3 we define

a unimodular intersection form À on //„(£, dx) such that, for «^4, 8 and appiopriate
A basis bL^Hn(L, dx), (Hn(L, dx\ X, bL) represents algebraically an élément x of the
Wall gfoup L2n(Zp). Using a resuit of Pétrie [25] x is in im(L2n(0) -? L2n(Zp)) and so,

by a straightforward géométrie argument, L is equivariantly isomorphic to

In §4 surgery theory is used to study the effect of the gluing/. Let Sj dénote the
order of the torsion subgroup of n^GjO) (see 4.2).

THEOREM B. Forfixed choice of(N, TN) and K and orientations on them, up to
orientation preserving equivariant isomorphism there are at mostfinitely many manifolds

(N [Jf N)#ZpK. For suitable p, a spécifie upper bound b for the number of such

manifolds is given by:
a) b order (n2H-i(SH)) when M is PL, n 2k + \<2p-l.
b) b sn s2n order (nln-x{Sn)) when M is smooth, n 2k + \<p—\.
c) b 2 when M is PL, n 2k<2p-2.
d) b 2s2n when M is smooth, n 2k<p—\.
The gênerai classification problem is complicated by the fact that the décomposition

of Theorem A is not unique. But if M is smooth, n^O, 4 (mod8) and n +3 <2p,
then any two simple models in M2n are equivariantly isomorphic, determined by a

unique homotopy classg (M)e[L(«), BOn-{] ifH 2/fcandg(M)eker ([£>(«), BO^\ ->

THEOREM C. Suppose the smooth manifold M2n (as above) has hyperbolic rank

^2, n 3, 5, 6, 7, (mod8), and n + l<p. Then M is classified up to orientation
preserving equivariant isomorphism and equivariant connected sum with a homotopy sphère

Ie92n by the model invariant q(M)9 the Z rank of Hn(M), and the Arf invariant

a(M)eZ2 (the signature a(M)eSp Z if h 6). Ail values of q(M), a (M) occur
independently (except that <r(Af) 0 when « 3,7). Furthermore, 02n=p-62n has no

p-torsion, and 92n actsfreely.
Explicit computations can be made in other cases also. For example, any smooth

M6 with Hn(M) Z+Z is equivariantly diffeomorphic to S3xS3 with quotient
L(3)x53. There are precisely 2p smooth oriented manifolds M14 with Hn(M)

Z +Z (q(M)eZp and 014 Z2 acts freely).
The analogous problems for/? 2 hâve been studied by S. Lopez de Medrano [18] ;

R. Wells [36], [37] and L Hambleton [40]. Although several of the results are similar,
their methods are of necessity quite différent.

Many of thèse results first appeared in my Princeton Ph.D. thesis written under the

direction of Professoi J. L. Shaneson. Many thanks are due to him and to Professors

W. Browder, E. Brown, and J. Morgan for helpful discussions.
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1. Notation and Preliminary Results

/./. Throughout this paper M will dénote a smooth or PL orientée! compact (n-l)
connectée manifold of dimension 2n, n>3, and TM:M-+M is a smooth or PL
isomorphism such that (TM)P= 1 for some odd prime p and TM(x)^x for ail xeM.
Then TM is orientation preserving since/? is odd and (TM)j (x)^xforO<j <p since/?
is prime and we hâve a free Zp action on M with preferred generator TM.

More generally, given simply connected manifolds K and L supporting free Zp
actions generated by TK and TL, respectively, we dénote the associated orbit space by
KjZp9 a manifold of the same dimension, and let nK:K-+K/Zp be the quotient map, a

covering projection of degree p. Then (nK)#:nl(K)-+ni(KIZp) is an isomorphism,
/>1, and we identify TK with the homotopy class [7rx o co]e 7^ (AyZP) ZP where

œ: [0, 1] -»ATis a path from a base point xQ to ^(atq). A map/: A'-^L is equivariant
(written/: (K9 TK) -» (L, rL)) provided/T^ TLf. Given such a map there is an induced

mapflZp:KIZp-^LIZp such that nL °f=flZponK. Furthermore,//Zp is an immersion,
embedding, or isomorphism in the appropriate category if and only if/is. We call

f/Zp the quotient of/and call/a lift of//Zp. Since Kernà L are simply connected, any
map//Zp:^/Zp->L/Zp such that (f/Zp)#(TK) TL has a lift/:(#, TK)-*(L9 TL), and

ail possible lifts are/, TLof,...9 TpL~l°f.

L2. The spaces L(2fc + 1), L(2ifc), and L(2k). Let £(2A: + 1) dénote the sphère
S2k+1 {(Z0,...,Zk)\ZieC9 I|Zi|2 l}(tf complex numbers) together with the

free Zp action generated by r£(Z0,..., Zk) (^Z0,..., <^Zk) where Ç e2in/P, and set

JE'(2Â: + 1)/ZP, a 2& + 1 dimensional lens space. For each (Kr<& and
?—1 define

r 0 or

r 0 or

Then TE:ai-+ai+1 is a bijection and we hâve an equivariant CW décomposition of
E(2k + l) inducing a CW décomposition of L(2fc + l) (see [19] for détails). The 2fc

skeleton E(2k) inherits a free Zp action with generator TE, and L(2k) E(2k)/Zp is

the 2ik skeleton of L(2k + l). Since L(2*) is not even homotopy équivalent to a 2k

manifold, we define the 2k +1 manifold L(2k) with boundary S2k as a smooth regular

neighborhood of L(2k) in L(2fc + 1). Thus L(2/:) is obtained from 1,(2*+ 1) by

deleting the interior of a disk. Collapsing defines a déformation retraction r/Zp:

L(2Jcj-+L(2k). Let £(2ifc) dénote the universal cover oîL(2k) and let r:E(2k)-+ (2k)
be some fixed lift of r\Zp.
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Finally, we remark that we could as easily hâve considérée! the generalized (2k +1)
dimensional lens spaces L(r0,..., rk) without affecting our results. An explicit com-
parison between the resulting théories can be made by noting that there is an equiv-
ariant degree m mapE(2k +1 )->E(r0,...,rk) whenever m r0 rk (mod/?).

1.3. A standard model NjZp is a smooth or PL 2n dimensional thickening (see [34])
of L(n). Thus we hâve a simple homotopy équivalence (f)IZp:L(n)-^NjZp, and let
<j) : (E(n\ TE) -» (iV, TN) (where TN (#Zp)#(TE)) be some lift to the universal covers,
again a simple équivalence. We say that NjZp is untwisted if for any x, yeHn(N) we
hâve intersection x-y 0. Otherwise the model is twisted.

Clearly any 4k+2 dimensional model is untwisted, as is L(2k) xDk~x To obtain
a twisted model, simply attach a 2k handle h to L(2k-1) x D2k+1 (killing the (2k-1)
homotopy) with a twisted framing, or attach h so that the resulting left hand (2k— 1)-
spheres in E(2k-1) x D2k+1 are linked.

1.4. By considering the cell décomposition ofL(ri) one can easily give NjZp a standard
handle décomposition (see [12]) D2n N0/Zp^N1IZp^-~^NJZp NIZp in which
NJZp is obtained from Ni^1/Zp by attaching a single /-handle h1. Let #1?..., AJ, be the
/-handles of JV covering h1 with TEh) hlJ+1. But Aj corresponds canonically to a

generator of C^N/Z^H^NJZ^ N^JZ^Z, and Ai,...,*J, generate Cf(7V)

Hi(Ni9 JVf-!) freely over Z. Then the handle décomposition can be so chosen that
the boundary maps d:Ci(NIZp)-+Ci-1(NIZp) and diC^^-^C^^N) are given by

^1
particular,

2. The Décomposition Theorem

Let M2n be as in 1.1 A simple obstruction theory argument shows that there must
exist mappings 4>:(E(n), TE)-+(M, TM). By [12], 12.1 we may, after adjusting <£/Zp

by a homotopy, find a subcomplex K\ZP<^M\ZV with (f>:L(n)^KjZp a simple
homotopy équivalence. Then any (smooth) regular neighborhood NjZp of K\ZP
defines a standard model induced by <j). We begin the proof of the décomposition
theorem by studying the geometry of thèse induced models (and in particular their
uniqueness). For convenience we consider separately the cases n=2k +1 and n 2k.

2.1. PROPOSITION. Let M2n be as in 1.1 with n 2k + l. Then </>:(E(n)9TE)-*
->(M, TM) deforms equivariantly to an embedding \l/:(E(n), TE)-+(M, TM)f and the
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inducedmodel N/Zp is a (disk or block) bundle over i///Zp(L (n)). There exist embeddings

f1IZp,f2IZp:N/Zp-+mt (N/Zp) homotopic to the identity and with disjoint images.
Furthermore,forfixed choice ofTE, TM (andn>3 in the smooth category) the spaces
N and M-int (f1(N)uf2(N)) are determined up to equivariant isomorphism by the

homotopy class of $.
Proof. L(n) is a manifold and §\Zp is (n-1) connectée and thus deforms to an

embedding >\i\Zp by [11] or [6]. Then N\Zp is the normal disk or block bundle of
\l/IZp(L(n)) in MjZp. To find/JZ^/JZp it suffices, by uniqueness of regular neigh-
borhoods, to push the 0 section of NjZp off itself. But this follows by the Whitney
method since \l/(E(n))'\l/(E(n)) 0 in M and (^/Z/,)#(7t1(L(n)) 7r1(A^/Zp). Equiva-
lently, one could check that the only obstruction to a non-zero section, the 2-torsion
Euler class, must vanish. The final statement will follow by uniqueness of regular
neighborhoods once we show that, given homotopic embeàding$fl°\l/9f2°il/9fio\l/f,
f2foil,':(E(n)9TE)-+(M,TM), we can first push (/i°i/0/Zp to (f[°V)\Zp by a

homotopy (and thus an isotopy by [10] or [6] and then push (/2°^)/Zp to {f2oXl*')IZP
in M/Zp—(f1o\j/)jZp(L(n)). We defer the proof, which uses obstruction theory with
local coefficients, to the end of the section (2.12).

In particular we hâve the following (see [26] for the PL case).

2.2 COROLLARY. The 4k+2 dimensional standard modeis are classified by

[L(2£ + l), BO2k+1] in the smooth category and [L(2A; + 1), BPL2k+î] in the PL

category.

2.3. PROPOSITION. Let M2n be as in 1.1 with n 2k (and n^A in the smooth

category). For any map (j):(E(n)9 TE)-+(M, TM) the following are équivalent:

1 A model N/Zp induced by §\Zp is untwisted,

2) (j)jZporjZp'Mji)-^MjZp deforms to an embedding

3) There are embeddings fl9 /2:(A^ TN)-»int (TV, 7^) equivariantly homotopic to

the identity and with disjoint images.

If the above conditions hold, then NjZp is a disk or block bundle over ^IZp{L{n)).
For fixed choice of TE, TM, the spaces N and M-int (fi(N)uf2(N)) are determined

up to equivariant isomorphism by the homotopy class of <j>.

Proof. We work in the PL category and apply approximation theorems of [6]

for the smooth case. A direct proof is also possible. We can construct L(n) by attaching

a single n-handle h=Dn x [-1,1] (killing the («-1) homotopy) to a regular neigh-

borhood J\Zp of L(n-1) in L(« + l). By [12], 8.3 and gênerai position we can push

4>IZporlZp to a map OjZp embedding J\ZP and sending int (Dn) x [-1, 1] to M/Zp~

-Q\Zp(J\Zp). \ÎX is theZZp valued intersectionform of [35], §5 and x=-BjZp{dL{n)\
then 1) implies that X (x, x)=0 and thus /x(x)=0 (see 3.1). It follows that A(x, y)=0
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where y 6/Zp(Dnx0) and we take intersections with ôy held fixed. Thus by the

Whitney method we may first assume 6IZp(ôL(n))n6IZp(L(«)) </> and then that

0/Zp embeds dL(n) disjointly from L(n) (J\Zp might not be embedded now). If U is a

regular neighborhood of 6jZp{dL{n))9 a simple homotopy argument pushes 6/Zp to

a map embedding ôL(n) in dU and 0/Zp(intL(n))£M\Zp-int U. By [11], this

deforms to an embedding \l/jZp

Suppose \j/ : (E(n)9 TE) -» (M, TM) is an embedding. Then \j/jZp{JjZp) has a normal
disk bundle in M\ZP which splits a line subbundle (see [26] or [7]) and we obtain
homotopic embeddings ^JZp9 ^2\ZP with ^1/Zp(//Zp) n \j/2IZp{JjZp) <j>. By a simple
intersection number argument we can push \\jx\Zp{h) off \l/2/Zp(h) and 3) follows by
taking disjoint regular neighborhoods of il/1/Zp(L(n)) and \l/2jZp(L(n)). Since 3)
clearly implies 1), the first part of the proof is complète.

Uniqueness preceeds much as in 2.1. For if/io^,/i'°iA>/io|A'>/2olA': (E(n)9TE)

->(M, TM) are homotopic embeddings, then g\Zp^{f^)\Zp and g'IZp {f[oxj,f)j
Zp are homotopic by 2.12. By [10] we may assume glZp\L(n.1)=gfIZp\L(n.l). Let

KjZp be some regular neighborhood of the image of L{n—\) with g/Zp(L(n) —

— L(«— 1)) and gfjZp{L{n) — L{n— 1)) meeting dK/Zp nicely. Then an application of
the Hurewicz theorem, 2.12, and [12] provides an ambient isotopy throwing
K\Zp\jg\Zp{L(n)) onto K\Zp\jg'\Zp{L(rf)\ and uniqueness of NjZp follows by
uniqueness of regular neighborhoods. Again by 2.12, f2\Zpo^\Zp and/27Zpo^7zp
are homotopic as maps into the complément, and the uniqueness proof is complétée!

by applying the above argument again.

2.4. COROLLARY. The 4k dimensional untwisted standard models are classified by

[L(2k)9 BO^-^ in the smooth category (k^2), and [L(2k), BPL2k-{\ in the PL
category.

2.5. We consider now the algebra of the décomposition theorem. The intégral group
ring A=ZZP of Zp can be described as the direct sum ofp copies of Z together with a

Zp action generated by Txt=xi+1 (for some Z basis xu...9xp of A) by defining
multiplication in A by xt • v 7v, veA With this description a A module is an abelian

group with a Zp action and a A module homomorphism is an equivariant group
homomorphism. Two A modules are of particular interest. Let Z dénote the integers
with generator z and Zp action defined by Tz=z. Let A dénote the direct sum of (p — 1)

copies of Z with basis yu...9yp-x and Zp action generated by Ty1=y2,...9 Typ_2

=yp-.l9 Typ-l —y1 yp-i- We then hâve exact séquences of A modules

O-+Z-+A-+A -> O and O-+A^>A^>Z-+O where fi9 gt are defined by equivariance
and the formulas fi(z)=x1 + '--+xp9 f2(x1)=yl9 gi(yi)=xp-xl9 and g2(x1)=z.
Neither séquence splits so Z and A are not projective.
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2.6. We can define homology and cohomology with coefficients in a A module. Let X
be a simply connected space supporting a free (topological) Zp action and suppose we
hâve some fixed CW (respectively, handle) décomposition F/Zp (F0/Zpc... c Vk/Zp

X/ZP) in which V0/Zp is a disjoint union of points (disks) and VJZP is obtained
from Vi-JZp by attaching i cells (/ handles). Let F dénote the induced equivariant
décomposition of X. Then Ci(F) //l(Ki., F^J together with the induced Zp action
is a free A module. A spécifie basis çt(V) can be represented by choosing some lift to
X of each i cell (respectively, the left hand disk of each i handle) of V/Zp. The usual

boundary map d:Ci(V)-+Ci-1(V) is equivariant, and for any A module R we define

H*(X/Zp9 R) H*(C*(V)®AR) and H*(X/Zp9 R) H*(HomA(C*(V)9 R)). In par-
ticular, we hâve canonical isomorphisms (j)v:H*(C*(V))-+H*(X) and H*(C*(V)
<g>Z)^H*(X/Zp) where the image groups are the ordinary singular groups with
integer coefficients. Similar isomorphisms exist in cohomology.

If Y is another such space with equivariant cell or handle décomposition W9 then

any map/: (X9 Tx) -> Y9 TY) can be pushed equivariantly to a skeleton preserving map
and induces maps (f!Zp)*:H*(X/Zp9 R)-+H*(YIZp9 R) and (//Zp)*://*(F/Zp, R)
-+H*(X/Zp9 R). Any short exact séquence of A modules induces Bocksteins and long
exact homology and cohomology séquences. There are canonical isomorphisms be-

tween this theory and the local coefficient theory of [28]. See [35], §2 for more
détails.

2.7. LEMMA. Given M2n as in 1.1 and <j) :(E(n), TE)-+(M, TM), then 0 is not null

homotopic. Furthermore,
1) Ifn=2k + l, then Hn(E(n)) Z with generator z. There exists \l/:(E(n), TE)

^(M9TM)withil/*(z) weHn(M)ifandonlyifw-(t)*(z)
xfor some xeHn(M).

2) Ifn 2k, then Hn(E(n)) A with basis yu...,yp-i (and (TE\ acting on the

basis as in 2.5). There exists \l/:(E(n)9 TE)-*(M9 TM) with ^^{yd^^i (fond only if
Wi-<t>*(yi) {Tut x-(TMy* ' x, i=l,...,/>-1, for some xeHn{M).

Proof For the first part it suffices to show that <t>*:Hn(M)-+Hn(E(n)) is non-

zero. To that end, the map <£/Zp together with the Bocksteins of the séquences

0-+Z-+A-+A-+0 and Q-+A-+A-+Z-+O yield commutative diagrams

H\M\Zp9 A)->Hi+1(MIZp9 Z) H\M\Zp9 Z)-*Hi+î(M/Zp9 A)

t i i i
H\L{n)9 A) ->Hi+1(L(n)9Z) H\L{n)9Z) -+Hi+i(L(n)9 A).

The horizontal maps are isomorphisms for 0 < i< n -1 and n< i< 2n -1 and injections

if /=«-l, 2«-l since Hi(MIZp9A) Hi(L(n)9 A)=0 if iVO, n9 2». Then since

H2(M\Zp9 Z)-+H2(L(n)9 Z) ZP is an isomorphism (by universal coefficients, for
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example), we hâve that Hn{M\Zp,Z)-*H\L(n\Z) is non-zero if n 2k and

Hn(M/Zp, A)-*Hn{L{n), A) is non-zero if n 2& + l. From the above diagrams we
also see that #n+1(M/Zp, A)=0 if n=2k and Hn+l{MjZp, Z)=0 if w 2Jfc + l, and
it now follows easily that (<£/Zp)* : Hn(M/Zpi A) -> #"(L («), yl) is non-zero, and thus
so is <j>*:Hn{M)-*Hn(E(n)).

The groups Hn(E(n)) Hn(L(n), A) can be computed using 1.4. For the rest, we

may first assume by obstruction theory that <j),\l/:(E(n), TE)-*(M9 TM) agrée on
E{n— 1). If an is an w-cell of E(n) (see 1.2) then x is represented by the mapping
Sn-+M with upper hémisphère mapped onto i//((Tn) and lower hémisphère mapped
to (j)((Tn). Then 1) and 2) follow by writing down generators for Hn(E(n)).

2.8. COROLLARY. There is amap4>: (E(n), TE) -> (M, TM) such that fa (Hn(E(n)))
is a direct summand (over Z) of Hn(M).

Proof. Let « 2& + l, \j/:(E(n)9 TE)-+(M, TM), and suppose fa(z) ry where z
générâtes Hn(E(n)) and yeHn(M) générâtes a Z summand. For any m there exists

i//':(E(n),TE)-+(M,TM) with \l/'(z) ry+p-myïO by 2.7 and thus r^O (mod/?).
It is easy to find an élément y'eHn(M) with (TE)*y'—yf such that {y,y'} freely
generate a Z summand of Hn(M). By 2.7 there exists 0 :(£(»), rE)->(M, TM) with
(/>x(z)=ry+pyf, a generator of a Z summand since r^=0 (mod/?).

We omit the more involved proof when n=2& as it is not used in the sequel.
2.9. When «=2â: the above resuit is unsatisfactory since we need to hâve untwisted
induced models. To consider this problem we need some preliminary définitions. If
M is as in 1.1, we say that M (or MjZp) has hyperbolic rank ^ 1 if and only if we hâve

a décomposition ofA modules Hn(M)=A +A+Hfor some A module H such that
a) A+Ais orthogonal to H in the usual intersection form on H.
b) We hâve A generators xl9x2 for A+A such that (TM% xt-(TM)i xt=0,

/= 1,2, î,7 0, ...,/>-1, and (TM% xx • (TM){ x2 ôu. Thus, in the terminology of [35],
§5, the X form on Hn(M) splits off a hyperbolic plane. If it splits off d orthogonal
hyperbolic planes, we say that M has hyperbolic rank ^d.

IfL is any (n — 1 connected 2n manifold, then n^M/Zp #L) ZP and the universal

covering space, written M#ZpL, the equivariant connected sum of M and L, satisfies

the conditions of 1.1. Note that M#Zp(SnxSn) has hyperbolic rank > 1.

Finally, suppose n 2k and (f> : (E(n)9 TE) -? (M, TM). Then <£* \Hn{E{n)) -? #W(M)
is non-zero by 2.7 and by a simple linear algebra argument is therefore an injection.
Let y, (rM)« y,..., (rM)r2 yeHn(M) generate fa(Hn(E(n))) freely over Z. We say
that xeHn{M) is a complementary élément for 0 if and only if {TM)\ x(TM)i x=0,
ail ij, x\y=l, and JC-(rM)i.y=0,

2.70. LEMMA. Let M2nbeasin\A with n 2k, andsuppose </> : (E(n), TE) -> (M, TM)
Ms complementary élément x and <f>+ (Hn(E(n))) is a Z summand ofHn(M). Then there



Free Cyclic Actions on Manifolds 67

exists \jj : (E(n), TE) -? (M, TM) with ^ (Hn(E(n))) also a summandand with thè induced
standard model untwisted. In particular, any M with hyperbolic rank ^ 1 has such a
map \j/.

Proof. Let y, x be as above, and set z (TM)* jc-jc. If at=y^(TM%y9 then

ai ap-i since intersection numbers are invariant under the Zp action. In particular,
from (l+(TM)* + "-+(TM)$rl)y=0 it follows that ao=-2al 2am is even

(wherem i(/?-l)). For j=U..., m set bj=-j($a0)-(j-\)ai 2a,_2-ai_1.
By 2.7 there exists \j/:(E(n)9TE)^(M\TM) with \l/*(Hn(E(n))) generated by

w=y+b1(TM)*z + -+bm(TM)'£z, (TM\ w,..., {TM)l~2 w. A tedious computation
vérifies that (TM% w(TM)i h>=0, ail ij. But <£* (Hn(E(n))) and the span of {{TM% z)
are both isomorphic to A and hâve intersection of rank <(/?—1), and so by linear

algebra they hâve intersection 0. Since <£* maps to a summand, so does i^*. Finally,
suppose M has hyperbolic rank ^2, so that Hn{M) A+A+H with generators

xl9 x2 for A+A as in 2.9. Using 2.7 one can find <t>'\(E(n), TE)~>(M, TM) with
{<t>\{Hn{E{n))) generated by /,..., (rM)$-2/e^. By 2.7 again there exists 0:
(£(«), r£)^(M, JM) with generators y=y'+Xl- (TM\ xu...9 (TM)l~2 .y.Thenim^
is a Z summand and x2 is a complimentary élément.

2.11. DECOMPOSITION THEOREM. Let M2n be as in\A where M has hyperbolic
rank ^lifn 2kandn^4ifM is smooth. Then there exists <l>:(E(n), TE)->(M9 TM)

with induced standard model N untwisted and disjoint embeddings fl9 f2'-{N9 TN)-+

-> (intAT, TN) homotopic to the identity such that the following hold. IfN^f^N) and

L M-int(NlKjN2) withboundary componentsdt dNh i= 1, 2, then Hj{LjZp9 dJZp)
0 Hj(L9 dt) unless j=n, Hn{LjZp, dJZp) is free abelian, and Hn{L9 dx) is a free

A module. Furthermore, we hâve canonical isomorphisms

1) Hn(M) Hn(Nl)+Hn(L9 dx)+Hn(N29 Ô2) (as A modules)

2) HlM\Zp) Hn(Nx\Zp)+Hn(L\Zp, dJZp)+Hn(N2/Zp, d2jZp).

Finally, this décomposition is uniquely determinedby the homotopy class of>(/î#3, 4

in the smooth category).
We call the above the standard décomposition of M induced by <j) and call L the

splitting space (for reasons to appear later) of the décomposition (or of <£).

Proof By 2.1, 2.3, 2.8, and 2,10 we can choose an embedding (j>:(E(n)9 TE)

-*(M, TM) with <f>^(Hn(E(n))) a Z summand, the induced model untwisted, and

disjoint embeddings/,: (N, TN)-+(intN9 TN). By 2.7 and linear algebra, <t>*:Hn(E{n))

-*Hn(M) is an isomorphism onto a Z summand. Then from the exact homology

séquence of (M, Nt) we obtain the split (over Z) séquence

a) 0-+Hn(Ni)-*Hn(M)->Hn(M9 #,)-><>, i=U 2. In addition, Hn(M, N2) is free

abelian from which it follows that Hn+l(M9 N2)=0 and so (by excision and the exact

séquence of (M- intN29 Nt))Hj(L9 dt)=0 unless;=n. Comequently, Hj(LIZp9dJZp)

=0 unless j=n and Hn(LIZp9 dJZp) is free abelian.
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By [12], p. 247, L has an equivariant handle décomposition dt xl= V_1^Vn^1
çFB=I (see 2.5). From the exact séquence 0-»kerd -* Cn(V) -> Cn_t(K) -? 0 and the
A module isomorphism 0F:kerd-> Hn(L9 dx) it follows that Hn{L, d^) is a stably free

A module and thus is free by [32]. From the exact séquence of the triple (M, M— int7V2,

Nt) we obtain the split (over Z) exact séquence
b) 0->Hn(M-intN2, N^-tH^M, N^-^H^M, M-intN2)-^0. By excision we

obtain the isomorphism 1) once we check that the séquences a), b) split over A. But
this follows by a routine algebraic argument. For example, suppose n 2k + l in b).
We thus hâve an exact séquence 0 -* F-> R -* Z -? 0 where R is some A module, F is a
free A module with Z basis {x} | * 1,...,/?, 7=1,..., m) where (TM)* xj jcj+1, and
Z has generator z. Suppose xj->jcjei£ and choose zeR with z-+z. Then {x} z}
generate R freely over Z, and (TM)* z z+Ysi,j a)*) where £f a) 0 for eachy since

(TM)iz z. An equivariant splitting map Z ->R is defined by sending z to

In the quotient space, by separately checking the cases n 2k + l and n 2k we

easily obtain exact séquences

a/Zp) 0 ^ i/M(^/Zp) -> Hn(M/Zp) -+ Hn(M/Zp, NJZP) -+ 0

b/Z,) 0-+HH((M-hAN2)IZp, NJZp)^Hn(MIZp, NJZp)

When w 2/: +1 both séquences split since the right hand groups are free abelian, and

when n 2k we obtain splitting by an application of the Hurewicz theorem to
séquences b), b/Zp).

Finally, uniqueness follows from 2.1, 2.3.

2.12. Completion of the proofs of 2.1, 2.3. Suppose we hâve homotopic maps

/i°0=Si,/2°0=S2,/i'^'=S^ By 2.11 and the

Hurewicz theorem there is a free A module F such that nn{MjZp)^nn{M) equals
Z+Z+Fwhen n 2k + \ and equals A +A +F when n 2k. Since (gilZp)# (g[/Zp)#
on ni{L{n)\ the only obstruction to a homotopy lies in Hn(L(n), Z+Z+F) when

n=2fc + l and in Hn(L(n\ A + A +F) when n 2k (see [24]). From the proof of 2.7

the above groups are free abelian, and the first part of the resuit follows by checking
(on the cochain level) that the pullback of the above obstructions to the obstructions
for the homotopic maps nM°gu nMog'l9 which lie in the ordinary singular groups
Hn(E(n), nn{MjZp)\ is an injection.

From the proofs of 2.1, 2.3 we may thus assume that <t>t-(/>[, fi=fl, and let
K=Af-int (fi(N)). From the proof of 2.11, the homology séquences of (M, M-int
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and (M-intfx(N), f2(N))9 and the Hurewicz theorem it follows that
n(KIZp) equals Z+F or A +F, and this group injects into nn(M). Con-

sequently, g2, g2 are homotopic as maps into K and we apply the above argument to
81> S2 to complète the proof.

3. Splitting

3.1. Throughout this section (L2,nôl9d2) will dénote the splitting space of some
standard décomposition of a manifold M induced by <f> as in 2.11. If v YJ=o ni ' (TlY
eA ZZp, let v £f=o n^Tj)'1 anddefine Qk=-Ajlk where Ik= {v-(- /)* v | veA}.
Then given immeisions a, p:S"-+int (L/Zp), Wall ([35], §5) defines the intersection
À(a, fî)eA and self intersection ^(a)egn. If v ^fr01 nt(TLy represents /i(a) and
A (a, a) 0, then by [35], 5.2, iii), v=/i0 + C-(-l)" C where C-I^T"^^)1. It
follows that a is homotopic (not regularly unless no 0) to an embedding. Because of
this argument we ignore jU from now on, noting only that it can be recovered from A,

a fixed regular homotopy class of a, and some knowledge of the normal bundle of a.

3.2. LEMMA. Any xeHn{L9dt) is represented by a map oix\Sn-^inlL, and the

équation À(x, y) À(nL°ccx, nL°oty) well defines a unimodular kform on Hn(L, dt).
Proof. KNis the induced standard model of 0 as in 2.11 (so that Nl9 N2^intN),

let K dénote the quotient space of M in which M— int TV is collapsed to a point. Then

by duality and excision we hâve Hn(K-intN2) Hn(N-intN2i dN) H*(N, JV2)=0.
From the exact séquence of (K-intN29 Nt) it follows that #„(*--int(JVj uN2), dNx)

HH(K-intN2,N1) 0 and thus the composite Hn-l(dNl)-~>Hn.i(L)~+Hn^l
(AT-int (A^! vjN2)) is an injection. Consequently Hn(L, 51)->/fn_1(^1) is the zéro map
and thus (since dt is («~2)connected) so is nn(L, d^-* nn^x(dx). But eachxe//n(L, ôx)

can be represented by f:(Dn, SW~1)->(L, dx) and the existence (non-unique) of a,
follows sincef\Sn-i:Sn~1->dx is null homotopic. That X(nLoaxf nLo<xy) dépends only
on x, y is a conséquence of the définition of A and the fact that dx bounds an untwisted

model.
We check that X is unimodular when n 2k, leaving the easier n 2k +1 case as an

exercise. Using séquences a), b) of2.11 we can choose éléments yuy2,xx,...9xmeHn(M
so that >>!,...,(rM)îT2J'i genQmte im(Hn(Nx)->Hn(M))f y2,..., (TM)l~2 generate a

summand A mapping onto Hn(M9 M-intN2) Hn(N29 d2), and xi9..., xm correspond

to a A basis of Hn(L, dx). From the proof of 2.11 we can clearly choose yl9 y2 so

that y±-y2 1 and (TM% y1 -y2=0 if 1 </</>-1. By the above argument (TM)^ xyyx
0.LQty2'(TM%Xj^m(p.l)jSOthatm0j + '''+m(p.x)j=0.lfai=-m0j mu

and x;=^+a0 j1 + -+a(p_2)(rM)r2>;i5 then {x'i9..., x'm} b corresponds to a A
basis of Hn(L9 dt)9 and the A submodule of Hn{M) generated by b is an orthogonal

summand of Hj,M) (equipped with the usual Z valued intersection form). By
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Poincaré duality the induced map Hn(L9 dt)-* KomA(Hn(L, ôt)9 A) is an isomorphism
and X is unimodular ([35], §5).

3.3. Suppose yl-rank (Hn(L, ô1)) r >0 and let b be some A basis. We can then define

a torsion invariant in Wh{Zp) (see [20] or [12]), and a différent choice of b changes
the torsion by an élément of image (GLr(A)-* Wh(Zp)). We say that bL is a splitting
basis ofHn(L, dt if the associated torsion vanishes. But Wh (Zp) Z + • • • +Z ((/? - 3)/2
copies) generated by the units of A, so such bases always exist and are unique
up to stabilization of Hn(L9 c^) and elementary basis changes on the resulting
model.

3.4. THEOREM. For any splitting space L and splitting basis bL^Hn(L9 dt), there

is an equivariant handle décomposition d1xI=V_1^Vn L such that </v *(£!,) £n(^)
for appropriate choices of lifts and orientations of the handles of VjZp (see 2.6). Given

another splitting space V and an orientation preserving (rêversing) isomorphism
ij/:(ôl9 TL)->{d'l9 TL>)9 if/ extends to an orientation preserving (rêversing) isomorphism
\j/:(L9 rL)->(L', TL>) if and only if there exists an isomorphism y(=\j/*):(Hn(L, dj,
(TL)J->(Hn(L'9 d[), (7L,)*) satisfying:

1) X(y(x), y(y)) zX(x, y) for x9 yeHn(L9 d^ where e= +1 or —1 depending on
whether \j/ préserves orientation or not.

2) y(kL) is a splitting basis ofHH(L\ d't)
3) IfxeHn(L9 dj), then there exist embeddings ax:Sn-*'mtL and<xy(x):Sn-*intL'

with isomorphic normal (disk or block) bundles. In particular, if Hn(L, 5^ 0 then

L/Z^ÔJZ.xI.
Proof. First suppose Hn(L, d^^O. The existence of an «-handle décomposition

V\ZP of L/Zp with 0K1(èL) ^(^) if given in [12], p. 269.

If the equivariant isomorphism \j/ exists, then ($)* is the desired map y. Thus

suppose y satisfies the above properties and let bL be some fixed splitting basis

(clearly 2) is independent of the choice of bL). For each bebL choose embeddings

oib:Sn-+intL and <xyib):Sn-+intL' as in 3) so that nLoab and nL>°0Ly(b) are immersions.

Then t*(nLoab) eti(nL'oay{b)) by 1), 3.1, and the fact that ad, ay(b) are
embeddings. Choose small disjoint disks DfedL for each bebL and connect ocb to
d(Dnb) by a thin tube, thus defining an embedding/fe:(i)n, Sn~1)-^(L9 dt). Define

fy(b):(Dn9 .S"1"1)-* (L', d') by Connecting a tube to ^(d(Dnb)). Then by 1) we can pipe
the intersections and self intersections of the immersions %L°fb and nL.ofy{h) across

dJZp and d\\Zp in such a way that the resulting embeddings gb:(Dn, S""1)-> (L/Zp9
d1IZp)2Lnâgy{by(D\Sn-1)-*(L'IZp9d\lZp) satisfy ^Z^g^^g^]^. Thus

il/IZp extends to an isomorphism

K/Z.-dJZ, U g>(D")-+d'1IZp U gm(Dn)=K'IZp.
bb (b)(b)
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But by 3) this extends to an isomorphism of regular neighborhoods J\ZP-*J'\ZP of
K/Zp and K'\ZV in LjZp and L'/Zp9 respectively. Finally, by 2) and the s-cobordism
theorem,

LIZ,-mt(JIZp) d2IZpxI and L'IZp^mt{riZp)^ff2IZpxI.
If Hn(L, dt) 0 and n^4, by the uniqueness part of 2.1 and 2.3 we hâve a jP£

isomorphism (L/Zpi dJZp, d2/Zp)-+(LIZpi 82/Zp, BJZP). In particular we hâve
torsion to t(L/Zp, dt/Zp) T(LIZp, a2/Zp) (~l)2w-1 f0 (see [20]). But WA(Z,) is
free abelian and t0 t0 ([20], 6.7), so to 0 and L\Zp^dx\ZpxL If //„(£, ^) 0
and w 3, we hâve the same conclusion by a Reidemeister torsion argument
([20], 12.8).

5.5. COROLLARY. Let L be a splitting space of some PL manifold M as in 2.11.
Then any isomorphism §\Zp\dl\Zp-^dx\Zp inducing the identity on n1(d1/Zp) extends
to an isomorphism ^\LjZp-^{dJZpxI)^K (orientation preserving if <f>jZp is) for
some (n— 1) connected 2n manifold K (and thus L and (dt x I)#ZpKare equivariantly
isomorphic) ifand only ifthere is a A basis bLfor Hn(L, dx) such that X(bif bj)eZ^A
for ail bi9 bjebL. Then bL, called an intégral basis, is necessarily a splitting basis.

Proof If L/Zp (dl/ZpxI)#K and bï9...t bm is a Z basis for Hn(K\ it clearly
defines an intégral basis for Hn{L> ô^. Conversely, if bL= {bl9..., bm} is intégral, then
the (Z valued) intersection from on Hn(L, dx) is the orthogonal sum ofp copies of the
form on the Z-span of bLi so the latter is unimodular. Choose embeddings abl :Sn-+
-?intL representing each btebL. Attach «-handles hbi,...9 hhm to D2n so that if K°
is the resulting handlebody, the Z basis b'l9...9 b'm of Hn(K°) corresponding to the
handles satisfies À(bh bj) eb'i-bj (e= ± 1 depending on orientation) and a6|, afcr hâve

isomorphic normal bundles. As in [33], dA:0 S2""1 and we let K dénote the resulting
closed (n-1) connected PL manifold (suitably oriented).

Foliowing the proof of 3.4 we may extend 4>jZp : dxjZp -? bx\Zp to an isomorphism
$/Zp of L\ZP into (dJZpxI)#K. Then (51/Zpx/)#A:-int^/Zp(L/Zp) is an
A-cobordism J\ZP and M\Zp^Nl\Zp\j{J\Zp*K)KjN1\Zr If we set M'\ZP~NX\ZP
\jJJZp\jN2JZp> then M' satisfies the conditions of 1.1 and the above is a standard

décomposition oîM'\Zr By 3.4, J/Zp is trivial so bL is a splitting basis and L/Zp and

(d^p xl)#K are isomorphic.

3.6. PL SPLITTING THEOREM. Let L be a splitting space (2.11) of M2n with

hyperbolic rank ^2 (2.9) and «7*4,8. Then L has an intégral basis and hence is

equivariantly PL isomorphic to {pxxl)#zpK for some closed («-1) connected PL
manifold K2n.

Proof Let L2n(Zp) dénote the 2nth Wall group of Zp ([35], §5) and let bL

be some splitting basis. We want to construct a manifold L'\ZP with lower bound-

ary d\\Zp=dJZp representing an élément in L2n(Zp) as in [35], 5.8 such that the
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associated based X form on Hn(L', d[) is isomorphic to (H^L.d^, X, bL). Since X is

unimodular this can be done provided the intersections b^bj are even (£,' must hâve

trivial stable normal bundle). But for «^3 this always holds unless «=4,8 since the
mod2 réduction of bt'bj vanishes by [1]. Note next that d'2jZp is isomorphic to
d'JZp. For if L"\Zp=L\Zp\j(-L'\Zp) glued along the common boundary dJZp9
then Hn{L"jZp, d2/Zp) with the induced X form is a sum of hyperbolic planes by [35],
5.4. By the first part of the proof, L"/Zp (d2/ZpxI)#K for suitable K. Thus

ô'2/zl,sa2/zpsô1/zps3i/zr
Let L2n(Zp) dénote the kernel of the canonical map L2n(Zp)^L2n(0)9 so L2n(Zp)

L2n(Zp)+L2n(0). But L2n(0) acts trivially on the homotopy triangulations
([35], §10) of d'JZp by the first part of the theorem and JL2B Z1/2(*-1) acts freely
([25]). It follows that L" represents an élément of image (L2n(0) -> L2n(Zp)) and thus

(algebraically) so does (Hn(L9 dj, X, bL). Consequently bL is stably (i.e., in Hn

(L#Zp(SnxS"#-~#SnxSn), di)) équivalent to an intégral basis. But since Krull
dimension (A) — dimmax(A)=l, it follows from [2] that we need stabilize at most
1 +dimmax(yl) 2 times. In particular, if M has hyperbolic rank ^2 then Hn(L, 3t)
splits two hyperbolic planes (regardless of the standard décomposition) and has an

intégral basis. Uniqueness of the resulting form (generated over Z by bL) follows
easily from [21] if n 2k and by considering a symplectic basis if n 2k +1.

If L has hyperbolic rank ^2 and n 4, 8 we can still find an intégral basis for
Hn(L#ZpM'9 dt) where M' is the double of some non-stably trivial n disk bundle

over Sn. If we try to extend 3.5 and 3.6 to the smooth category we hâve one problem -
dK° might not be the standard sphère. This can be avoided by an assumption about

Nl9 N2. We say that a standard décomposition is simple if n 2k or if n 2k+ 1 and

N1 SnxDn {NJZp might not be trivial). Although it is not the best possible resuit,
the following is sufficient for our purposes.

5.7. LEMMA. Let M2n be as in 1.1 with n + 3<2pifMis PL. M4k+2 has a simple

décomposition provided there is an embedding <x:Sn->M with trivial normal bundle

which represents a gênerator x of a summand A of Hn(M) such that X(x, x)=0. Two

simple décompositions ofM2n hâve equivariantly isomorphic models ifn^O, 4 (mod8).
Proof Note first that n^BH»), i^n + l,H=0or PL, has no /^-torsion if n + 3 < 2p

(see 4.2). If n 2k +1, using Poincaré duality and 2.7 one can easily find <j> : (E(n), TE)

-? (M, TM) so that A(0#(z), x) 0 (where z générâtes Hn(E(n))) and <j>*(z) lies outside
the span of x. We can choose an embedding il/*:(E(n), TE)-*(M, TM) with trivial
normal bundle and ^(2r)=(l+/>)-0*(z). Then if £>:{E(n\ TE)-+(M, TM) satisfies

C*(*) *A*(z)+*H ^(TmY'1 x, the resulting décomposition is simple.
Next suppose n 2k + l and ^X/Zp, §2\ZP : L (n) -» M\ZP induce simple décompositions

with maps yi9 y2:L(n)->BHn (H=0 or fit) classifying the resulting models.

By [12], 10.3 (and [6], 6.1 in the smooth case) we may assume (^1/Zp|L(n_1)
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02/^p|l(W-d and thus y^n-^ and y2\L{n-x) are homotopic. But yxonE, y2°nE are
homotopic since the décompositions are simple, so yu y2 are homotopic since nn(BHn)
has no ^-torsion. If n 2k and c^/Z,, $2\Zp.L{n)-*M\Zp are embeddings with
classifying maps yl9 y2:L(n)-*BHn_u one shows as before that yi|L(M-2) and
72|l(/,-2) are homotopic. This improves to a homotopy on L(n-1) since n^^BH^^
has no ^-torsion, and we hâve y^^ on ail L(n) if « 2, 6 (mod8) since in thèse

cases nn(BHn-i) has no ^-torsion or fiée part (see 4.2).

3.8. SMOOTH SPLITTING THEOREM. Let L be the splitting space of a simple
décomposition ofa smooth manifold M2n,n + \ <p, and let bL s //„(£, dx be an intégral
basis. Then any diffeomorphism §\Zp\dl\Zp^>dx\Zp which induces the identity on

n^dJZp) extends to a diffeomorphism (orientation preserving if <f>!Zp is) ^>jZp:LjZp
-? (d1/Zp x I)#Kfor some smooth closed (n— 1) connected manifold K2n. Any smooth

M with hyperbolic rank ^ 2 has a simple décomposition and an associated intégral basis.

Proof. Let K° çintL\Zp be as in 3.5. Taking a smooth regular neighborhood [9]
we may assume K° is smooth and set J°IZp LIZp — intK°. In the total space, form
3 from J° by removing the interiors of (p— 1) small tubes Connecting the boundary
components. If tâ NluJvN2, then since dÛ=p-dK° in 02n-i and 02«-i has no
p-torsion if n + 1 <p (see 4.2) it suffices to show that dÛ S2n~l.

Suppose n 2k. Since Nt is untwisted and (1 +••• +(^,)*"1) annihilâtes H^N^,
it follows that Nt is parallelizable. Let y : Sn -> intifà be an embedding which intersects

Nt in the right hand disk of one of the «-handles. Using a A generator of ^«(A^,) as

complementary élément and following the proof of 2.10 we can replace y by a map
y':Sn-*'mtÛ so that nMoy' is an embedding with Hn(Nt) and image (y+) generating

Hn{Û). But (1 +(TM\ + — +(TM)l~1) annihilâtes image (y\. It follows that yf has

trivial normal bundle and Û is parallelizable. But clearly index (/^M(i0r)) 0, so fit is

cobordant (rel^) to a disk and dfà^S2*'1.
If w 2fc + l, then Û is a handlebody with two «-handles with linking number ± 1

and one handle attached with trivial thickening (since the décomposition is simple).

But by attaching Sn x Dn to itself by a diffeomorphism of S" x S""1 sending (w, v)

-> (<x(v)-u, v) where ae7rw_1(5Oll + 1) one can obtain ail possible invariants for such a

handlebody Ht [33] in a closed manifold, so di^S2""1.
Finally, if n 2A: + l and H^Hn(M) is the orthogonal sum of two hyperbolic

planes, then by immersion theory [8] and the fact that nH-t(SOH) is Z2 or Z2 +Z2
one can find xeH as in 3.7. The last statement follows from 3.6, 3.7.

4. Gluing and the Classification Problem

So far we hâve considered conditions under which M has a standard décomposition

M=Nx\Jfl L (J/2 N2 where fï.(dNi9 TNi)-+(dh TL) is an isomorphism, i l, 2.
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We now study the effect of the gluings/,. If M'=N± \Jgl L \Jg2 N29 then by 3.4 the

identity N1-+Nl extends to an isomorphism «^(A^ (J/l L9 TM)-^(N1 [Jgl L9 TM>)9

and thus (M9TM) and (M'9TM.) are isomorphic provided g2 l°<l>°f2:(dN29 TN2)

-? (dN29 TNl) extends to an equivariant isomoiphism ofA^2. We study the latter problem.

4.1. First recall some standard définitions and results from surgery theory. Given an
oriented compact PL (respectively, smooth) manifold K with boundary dK (possibly
empty), the set HT(K9 dK) of homotopy triangulations of K (roldK) (respectively,
the set HS(K9 dK) of homotopy smoothings) consists of pairs (N9 (j>) where (N9 dN)
is a compact oriented PL (respectively, smooth) manifold and 0 : (N, dN) -* (K9 dK)
is a simple homotopy équivalence such that <t> | dN is an isomorphism onto dK Two
pairs (A^, $t) and (N29 <j>2) are équivalent if and only if there is an isomorphism
\l/:Ni-+N2 so that 02^ and (j>1 are homotopic (reldA^). The sets HT(K9 dK) and

HS(K, dK) hâve as base point the class of (K9 1). Let Lj(n) dénote the jth Wall group
of n. Since L2j+1(Zp) 0 ([15] and [3]) the surgery exact séquence ([35], §10) for a

PL (smooth) standard model N2njZp becomes

0-+HT(N/Zp9 dN/Zp)±[N/Zp9 dN/Zp; G\PL9 *]S>L2n(Zp)

(0->HS(NIZp9 dN\Zp)±>\N\Zp9 dN\Zp\ G\O9 *] ±*L2n(Zp)).

In particular, Ç is an injection ([35], 10.5).

4.2. For g^3 there is an exact braid of groups ([16], [26])

^^* n^GIPL)

ni+1(G/PL)

The groups n^G/PL) form the period four séquence Z, 0, Z2, 0 for i=0, 1, 2, 3

(mod4) [29]. Since Gq={f:Sq~i-^Sq~1 \ deg/= ±1} with the compact open
topology and ni(Gq) ni+q^1(Sq"1)has no/?-torsionfor / + 3<2p ([27]), neither does

ni+i(Bftq) 7ii(Aq). For i^q+4 the groups 7rf(O€) are well known ([4], [13]) and

in particular hâve no odd torsion. If qt>i we hâve the stable braid of Kervaire and

Milnor in which 7ti(Gq9 O^^n^GjO) and n=rf=0f is the group of homotopy
f-spheres. Thus 0i9 n^G/O) hâve no/?-torsion if i+3<2/>.

4.3. LEMMA. IfNjZp is a standard model andf: ((N, dN)9 TN) -+ ((N9 dN)9 TN) is an

isomorphism on dN, thenfjZp is a simple homotopy équivalence of thepair (N/Zp9 dN/Zp).
Proof. By the relative Whitehead theorem ([19], IV. 3.3) and standard torsion
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arguments ([20]) it suffices to show that//Zp:A^/Zp-> N/Zp is a simple équivalence.
By equivariance, (//Zp)# is the identity on n^N/Zp). Since f/ôN is an isomorphism,
fis a degree ± 1 map of (N, dN) and so, by a standard duality argument ([5], I. 2.5),

/* is a split surjection and thus a bijection of the finitely generated groups Ht(N). It
follows that (//Zp)# is an isomorphism and fjZp is a homotopy équivalence. If
n 2k 4-1 we are finished since fjZp must be homotopic to the identity (not reldNjZp)
by 2.7 and the uniqueness part of 2.1.

If n 2k9 let K/Zp be a regular neighborhood of L{n-\)^NjZp. By [31],
Theorem A, there is a 2n submanifold K'jZp containing L(n-1) such that, after a
déformation moddN/Zp9 fjZp induces a homotopy équivalence of K/Zp into AT'/Zp
and a PL isomorphism of the compléments of their interiors. We may assume

K/Zp^intK'/Zp9 so J/Zp K'IZp-'mtK/Zp is an A-cobordism from ôK/Zp to itself
(f/Zp\ÔK/Zp is an isomorphism). By a Reidemeister torsion argument ([20], 12.8)

J/Zp dKjZp x /, and it follows as in the n 2k +1 case that//Zp is a simple équivalence.
Our main application of surgery to the gluing problem is the following.

4.4. THEOREM. For any PL standard mode! NjZp9 HT(N/Zp9 dNIZp) consists of
the base point only. IfNjZp is a smooth model, HS(NIZp9 dNjZp) isfinite. If in addition

n<p—\ and sn dénotes the order of the torsion subgroup ofnn(G/O), then HS (N/Zp9

dNIZp) hasat most sn-s2n éléments when n 2k + l andatmosts2n éléments whenn 2k.

Proof. If xeHT(N/Zp9 dN/Zp), the only possible non-zero obstruction to a null

homotopy for Ç(x):(N/Zp9 dN/Zp)->(G/PL9 *) lies in H2n(N/Zp9 dN/Zp; n2n{GjPL))

n2n(G/PL) Z or Z2 (when n=2k or n 2A: + l, respectively). But 0: [S2n9 GjPL]
-*L2n(O) is a bijection [29], and if follows that this top obstruction vanishes since

0(C(x)) must vanish by exactness. Hence x is the base point.

In the smooth case, note first that n^G/O) is finite unless i=4j and n4ri{Gj0)=Z
+ (finite group) (4.2). Then HS(NIZp9dNIZp) is finite when n 2k + l since the

homotopy obstruction groups H^N/Z^ dN/Zp; n^G/O)) are ail finite and C is an

injection. If n 2k9 then H2n(N/Zp9 dN/Z,; n2n(GIO)) n2n(GIO) has a component Z.

Since the canonical map a:G/O-+GlPL satisfies a#=limaq, by 4.2 a# is an

isomorphism modulo torsion. ButforanyxeHS (N/Zp9 ôNjZp)9 a#CWe[iV/Zp, dN/Zp;

G/PL9 *] is the normal invariant for the homotopy triangulation induced by x and so

must vanish. Thus given x, yeHS (N/Zp9 dN/Zp) such that the restrictions of £(*),
C(y) to N/Zp-D2n site homotopic (rel5AT/Zp), the remaining homotopy obstruction

lies in the torsion subgroup of n2n(G/0).

Finally, ifn <p -1 then n^G/O) has no /?-torsion for i<2a-1. Thus ail but the top
obstruction group vanishes when n=2k9 and ail but the nth and 2nth vanish when

4.5. In any standard décomposition M=Ni{JflL{jf2N2, the canonical iso-
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morphism Nx -» N2 of 2.1 and 2.3 is orientation preserving and the gluings/£ : dNt -* dt
reverse the "inward normal" orientations. If Nt is smooth it is an odd dimensional
disk bundle over a manifold (it is untwisted) and multiplying the fiber by — 1 yields
an orientation reversing isomorphism (Nl9 TNl)-+(Nl9 TNl).

4.6. THEOREM. (Finiteness of Gluings). For fixed choice of models (Nu TNl)
(N29TNl) and splitting space (L9TL), up to equivariant isomorphism (orientation

preserving for fixed orientations ofNl9 L) there are at most finitely many manifolds M
with standard décomposition M=NX [Jfl L (J/2 N2. For suitable p, a spécifie boundb

for the number of such manifolds is given by:
a) b order (n2n-i(Sn)) when M is PL, n 2k + l<2p-l.
b) b=sns2n order (n2n-x(Sn)) when M is smooth, n 2k + l<p—l.
c) b 2 when M is PL, n 2k<2p-2.
d) b 2s2n when M is smooth, n 2k<p — 1.

Proof We prove only the second part. The first follows by a similar argument
since the relevant obstruction groups are finite. If M' Nt (Jgl L (Jg2 N2) is another
gluing, by 3.4 there is an (orientation preserving) isomorphism (j):(N1 (Jfl L, TM)
-> (Nt (Jgl L, TM). By 4.3, 4.4 this extends to a PL isomorphism 0 : (M, TM) -> (M ',
Tm) if and only if (gjx o 0 o/2)/Zp : dN2jZp -? dN2/Zp extends to a map N2/Zp -> N2/Zp.
We check that if NjZp is an untwisted PL model, for suitable p there are at most b

homotopy classes (in NjZp) of maps f/Zp:dN/Zp^dN/Zp covered by an equivariant
isomorphism. The smooth case follows from this and 4.4.

If n 2k + l9 NjZp is a block bundle over L(n) and there is an embedding (j)jZp:

L(n)-*ôNjZp homotopic to the O section. By 2.1, two isomorphisms/,/;:(ôN9 TN)

-+(dN,TN) can be equivariantly deformed in N so that/|^(£(n))=/' \^E{n)y The

homotopy obstructions (rel<£/Zp(L(«))) ïoxf\ZpJ'\Zp lie in H\dN\Zp9 §\Zp(L{n)\
ni(N/Zp)) H2n_i_1(L(n)9 tt^S"1)), ï>1. For i^2n-2<n+2p-39 n^S") has no

p-torsion so only the top obstruction group n2n-1(Sn) is non-zero.
If n=2k9 following the proof of 3.8 we can find y':Sn-+N\Jf N=Nf so that

Sn-£*Nf->NfIZp is an embedding with trivial normal bundle, and im(y'*) and Hn(N)
generate Hn(Nf). (We use the fact that n^^PLn) has no ^-torsion. For the gênerai
finiteness resuit one compares separately gluings which, for suitable y'9 define the

same élément of the/?-torsion of ^.^PL,,).). \iK\Zp is the normal bundle of L(n— 1)

in N/Zp9 it follows that//Zp extends to an isomorphism of M/Zp-int(X/Zp) to itself.

Following the proof for n 2k + l we compare the homotopy classes for f/Zp:
dK/Zp -? dKjZpcKjZp (rel <t>IZp(L (n -1 the relevant obstruction groups now being

H2n_i-1(L(n—l)9 n^S"'1)). The first non-vanishing group (when i /i) is Z2. But
if the i=n homotopy obstruction for two maps vanishes, their restrictions to dK/Zp
— D2"'1 are homotopic in KjZp since n<2p—2. Since K is contained in a disk

^M9 the top obstruction must also vanish.
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EXAMPLE. Suppose w 6 (mod8), n<p-l, and /:(dN, TN)-> (dN, TN) is a
diffeomorphism for some untwisted smooth model N. I claim that//Zp extends across
N\Zr As in 4.6 this reduces to extending an induced diffeomorphism f\Zp : dKJZp
-+dK/Zp. The first extension obstruction lies in Hn+1 {K\Zp, dK/Zp9 nn(K/Zp)) Z2
and vanishes if and only if the corresponding obstruction for a lift fiS"'1 xSn
->Sn~l xSn vanishes. According to [17], the diffeomorphism / is concordant to a
composite of maps of the form

i) (x,y)^(p(yyX,y) foi P:S"-*Om
ii) (x,y)-+(x9y(xyy)fory:Sn-1-+On+1
iii) g such that g= 1 outside some disk.

Maps of types ii), iii) clearly extend across Sn~xxDn+l, and type i) has no Z2
obstruction since the canonical map nn(On)->nn(Sn~x) is trivial when « 6 (mod8)
([13]). Thus the Z2 obstruction for f/Zp vanishes. Foliowing 4.6, f/Zp\dK/Zp extends

to a map K/Zp -? N\Zr
Suppose M2n as in 1.1 is smooth, has hyperbolic rank >2, w 6 (mod8), and

n<p— 1. By 3.7 any two untwisted models in M are isomorphic, determined by a

unique homotopy class Q(M)e[L(n), BOn-{\. If M=e(Nt \Jft L \Jf2 N2), e= ± 1,

is some standard décomposition, by 3.8 and 4.5 there is an orientation preserving
diffeomorphism ïe^si^Uf! L\TNJ->(Nl\Jfl((dixI)#ZpKelTNl) for some
oriented smooth closed (n—l) connected K^n with uniquely determined intersection
form. Since 7rn_1(*S(9) 0, the intersection form détermines the normal bundles, so K
is determined up to the action of 02n by M. The orthogonal complément of Hn(L, dx)
in Hn(M) has signature O since L is untwisted, and the form on Hn{M) is even
(see the proof of 3.6). By 4.3, 4.4, and the work above, a change in gluings changes

MjZp by addition of a homotopy sphère (the only obstruction to a trivial normal
invariant in n2n(G/O) maps to O in n2n(GjPL)). Note also that 02n has no/Korsion
since n<p-l. Applying [21] or [33] we hâve the foliowing.

4.7. THEOREM. If n 6 (mod 8) andn<p-\, then the smooth manifolds M2n as in

1.1 with hyperbolic rank ^2 are classified up to orientation preserving equivariant

diffeomorphism and the action of p-O2n 02n by the model invariant o{M)e[L(n\
BO^i], the rank ofHn(M), and the signature <r(M)e%pZ. AU values ofg(M% a(M)
occur independently.

EXAMPLE. Suppose n 3, 5, 7 (mod8), n <p -1, and/: (dN, TN) -» (dN, TN) is a

diffeomorphism for some simple smooth model N. I claim that f/Zp extends to

fjZp:NIZp-^NIZp in such a way that the first obstruction to trivial normal invariant
(innj&jb) - see'4.4) vanishes. Let g:(Dn, Sn"l)^(NjZpi dNjZp) be an embedding

such that a lift g générâtes Hn(N, dN). Since tiw_1(SO)=0, by immersion theory

([8]) and the fact that N is simple there is an embedding h:Sn-+N \Jf N=Nf with
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trivial normal bundle so that the lower hémisphère maps to the first copy of N via g
and the upper hémisphère maps to the second copy of N. If h represents xeHn(Nf),
then (TNf)* x=x and x• x=0. It follows as in 3.1 that n (nNf ° A) 0 so A can be pushed
by an ambient isotopy of the second copy of N leaving dN fixed so that nNf° h is an
embedding. Thus//Zp extends to an embedding of the normal bundle J of image (g).
By obstruction theory this extends to a map N/Zp—int(D2n)-» N/Zp9 andf/Zp extends

if a =flZp\dDin:Sln~1 -+NIZp is null homotopic. Connecting the disks D2n^N v/hich
2

p\
p

cover D2n by (p-\) small tubes we obtain a disk D20n such that
represents/?• oc. Since nln-1(NjZp) n2n-i(Sn) has no/?-torsion,//Zp extends provided
f\dDo extends. If J is a regular neighborhood of im(g) covering /, then any two
extensions off\dNKJj to N—Dl" are homotopic (reldN), so//Zp extends if/|5jvu/
extends to N. But this is trivially true since closure (N—J) is a disk. Finally, note that
we thus hâve an extension f/Zp covered by a map/which is homotopic (relcW) to a

map/which embeds Jand is a homotopy équivalence of the compléments. It follows
that the first normal invariant obstruction in nn(G/O) vanishes (see also [29], [30]).

IfM2n as in 1.1 has hyperbolic rank >2, then by 3.7, 3.8 it has a simple décomposition

M=s(Nl [Jfl L [Jf2 N2), e= ± 1, where the models Nl9 N2 are determined by a

unique homotopy class g(M)eker (7r|:[L(«), BOn"]-+nn(BOn) Z2). By 3.8, 4.5,
there is an orientation preserving diffeomorphism <t)e:(e(Nl \Jfl L), TNi)-+(Nl (Jfl
((d1xI)#ZpKe,TNi) for («—1) connected oriented K2n with unique intersection
form. Since « 3, 5, 7, (mod8), Kis uniquely determined (up to the action of 62n) by
the rank ofHn{K) and the Arf invariant a (K)eZ2 (the rank classifies when n 3,7 - see

[33]). Since the décomposition is simple, <j(M)=p-(r(K) (j(K). From the first part
of the argument, a change in gluings alters M/Zp by addition of a homotopy sphère.

4.8. THEOREM. //« 3, 5, 7 (mod8) andn<p-l, the smooth manifolds M2n as in
1.1 of hyperbolic rank ^2 are determined up to orientation preserving equivariant
diffeomorphism and the action ofp-02tt 92n by the model invariant ^(M)eker((7r£)#
[L(n), BOn~]->nn(BOn)), the rank of Hn(M), and the Arf invariant a{M)eZ2. (If
n 3,lf the rank andq(M) classify.) AH values ofg(M)9 a (M) occur independently.

Remark. IfZ rank (Hn(M))=29n<p-l, and « 3,5,7, then by immersion theory
it has a simple décomposition. An argument similar to the above shows that M is

classified up to the action of B2n by q(M). For example, there is only one such mani-
fold if n=3 (M/Zp=L(3)xS3) and there are only 2p such manifolds when « 7

(Q(M)eZp and 014=Z2 acts freely - see [33]).
In the above examples the action of 62n can be determined exactly.

4.9. THEOREM. If w 3, 5, 6, 7 (mod8) then 02n acts freely on the orientation

preserving diffeomorphism classes of(n-l) connected smooth 2n manifolds M.
Proof Suppose ZeO2n is such that there exists an orientation preserving diffeomor-
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phism $ : M # I -» M. Let /dénote the obvious cobordism with boundary components
M, Z9 and -M#Z, and form J+ from / by gluing MtoM#I using <f>. Since « 3,5,
6, 7 (mod8), J^ is «-parallizable and thus cobordant (reldJ^I) to a disk by [38].
Thus I S2n. (See also [39]). Q
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