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The Hurwitz Matrix Equations and Multifour Groups

SAMUEL S. H. YounG1?)

§0. Introduction

Let Q be the set of 4° s-tuples (4,,..., A;) where each A; stands for e, «, §, or ¥,
the elements of Klein’s four group V,, which satisfy the following relations:

aoa=ﬁ0ﬁ='yo‘y=e’ aoﬁ:ﬁoa:‘)),
ﬂo')}:‘})oﬂ:a, yoa:ao'y:ﬂ_

If we define multiplication in Q, componentwise, i.e.,

(Agseees Ag)o(Bgy ey fg)= (V15 vny V5)

where v; is the group product 4;op; in V,, then Q; becomes a commutative group
which we denote by G (2,). While G (£,) is simply the direct product of s copies of V,
the properties of certain of its substructures turn out to be useful in the explicit con-
struction of solutions of systems of matrix equations of the following form:

Bi=+1, BB +BB,=0, BtB=0, (hk=12,.;h#k) (*)

where the unknown is a set of unspecified number of n x n matrices (B, ..., B,) with
entries in a given field F, B; is the transpose of B, and each of the ambiguity signs can
be + or —. When the signs of the last two equations are positive and that of the first
equation negative, (*) reduces to the well known system of Hurwitz matrix equations,
first proposed and solved in the complex field by A. Hurwitz in connection with his
problem on the composition of quadratic forms [2]. Further investigations were made
by Radon [5], Eckmann [1], Lee [3], Wong [7] and others and several far reaching
results were obtained. The topic is still of current interest as can be seen in the recent
works by Porteous [4] and Semple and Tyrell [6].

Geometrically, the system of Hurwitz matrix equations plays an important role
in the study of isoclinic n-planes in Euclidean 2n-space and the Clifford-parallel
(n—1)-planes in elliptic (2n—1)-space, a work which was initiated by Y. C. Wong
[7]. As to other systems of matrix equations of the form (#) aside from the Hurwitz

1) The author is indebted to Professor Y. C. Wong for his advice and suggestions during the
preparation of this work.
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equations, it should be interesting to investigate their corresponding geometric mean-
ings.

In this paper, we shall be concerned mainly with the properties of certain sub-
structures of G(Q2,). We shall indicate briefly how the results can be utilized to con-
struct explicitly by means of matrix representations the maximal real solutions of the
Hurwitz matrix equations thus verifying the original theorem due to Wong [7]. Our
treatment is more elementary compared with the method given by Eckmann [1] and
the employment of tools from the representation theory of finite groups is not needed.
Using similar technique, the construction of solutions of (x) with signs arbitrarily
chosen can also be achieved in many instances. We shall not go into details here.

§1. Definitions and Basic Lemmas

DEFINITION 1.1. The direct product of s copies of Klein’s four group V,,
denoted by G(R,), is called the multifour group of order 4°.

We shall use Roman capital letters to denote the elements in 2, thus we may write
L for (4y,..., 4;) and M for (uy, ..., ). In particular, we shall denote (e, ..., €) in Q
by I. If L=(Ay,..., 4,) and M =(uy,..., ;) are elements in Q, and Q, respectively,
then N=(Ay,..., A4 U1r--er Ui )ERy+, Will be denoted by (L, M). If h=k, then
(Ayotyy. -y Apo iy )€, will be denoted by Lo M. Thus, L?*=Lo L=I for every LeQ,.

DEFINITION 1.2. Let L=(4,,..., 4,) and M =(yj,..., ;) be elements in Q. The
unordered pair [4;, u;] is called the ith component pair of L, M.

DEFINITION 1.3. Two elements L and M in Q are said to be odd-related (resp.
even-related) if they have an odd (resp. even) number of component pairs which are
of the forms [«, B8], [, y] and [B, y]. We write Lt M or Ln M according as they are
odd-related or even-related. More generally, two subsets X, Z, of Q,, one of which
may be singleton, are said to be odd-related (resp. even-related) if each element of
X, is odd-related (resp. even-related) to each element of X,. Or in symbol, 2Z;1X,
(resp. Z,mZ,).

LEMMA 14. For any L, M, NeQ,, we have
(i) LtM<LtL-M, LrM<>LnL-M;

(ii) LtM, LtN=LnM-N,
LaM,LaiN=LnM-N,
LtM,LnN=LtMoN.

The proof of the above lemma is straight forward.

LEMMA 1.5. Let L#1, be an element in Q.. Then L is odd-related to 4°2 elements
and even-related to the remaining 4°[2 elements in Q.
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Proof. Our lemma can be easily verified for s=1 and 2.

Let us assume that our lemma holds for Q,_,, s>1, and write L=(H, 1,) where
HeQ,_,. Then by induction assumption, there exist 4°7/2 elements H,eQ,_, such
that H;tH and 4°7'/2 elements K;eQ, , such that K,xH, where i=1,..., 45"1/2.

Case 1. If A,=e, then for each i, (H,, u)t(H, A,) for any p and (K,, v)n(H, i)
for any v. Hence, there are altogether 4-4°'/2=4%/2 elements which are odd-related
to L.

Case 2. If A;#e, we may take A,=a without loss of generality. Then (H;, p)t
(H, 4;) if and only if u=e or a and (K, v)t(H, A) if and only if v=p or y. Again,
there are 4°~ ' +4°71=4%/2 elements in Q, which are odd-related to L.

In either case, the remaining 4°/2 elements in Q, must be even-related to L.

§2. The Group G(2)

Let 2 be a subset of elements in Q,. We shall denote by (X the subgroup generated
by 2 in G(Q,), and by || the number of elements in .

DEFINITION 2.1. A subset X of Q, is called an independent set if for each
NeZXZ, N¢<{I\ N >. A singleton distinct from 7, is considered as independent.

t t )
Let 2 be an independent set in Q with |X|=¢. Then |{Z)|=1+ X (r) =2, and it

r=1
follows that r< 2s since Q, has only 2% elements.

Let us denote by (Z), the set of all elements in Q; which are even-related to each
element of an independent set 2. By Lemma 1.4 (ii), it is clear that (X), is a subgroup
of G(&,). Since G(Q,) is a commutative group, (%), is normal in G(2,), and so we
may form the quotient group G(,)/(Z), which we shall denote by G(Z).

LEMMA 2.2. Let £={L, M} be an independent set in Q,. Then the group G(Z)
is isomorphic to V,.

Proof. The subgroup (Z), of G(£,) is the set {N: NnL, Nt M}. Let us denote by
Po(Z), the coset of (X), in G(£,) consisting of all elements Po N with Ne(Z),. We
have two distinct cases:

Case I. Lt M. For any SeQ,, SeLo(ZX), (resp. Se M-(Z),) if and only if St L and
StM (resp. StM, StL) by Lemma 1.4. Furthermore, for any TeQ,, Te Lo M- (ZX),
if and only if Tt L and Tt M. Since no element in Q, can belong to a coset distinct
from (2),, Lo(Z),, M=(Z), and LoM-(Z),, these are just the four cosets of (Z), in
G (9Q,). The representatives {I,, L, M, Lo M} can be identified with ¥, and it follows
that G(Z) is isomorphic to ¥, in this case.

Case 2. Ln M. The proof is similar.
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LEMMA 2.3. Let X be an independent set in Q, with |X|=t<2s. For any partition
of Z as the union of X, and X ,, one of which may be empty, there exists some Q€S2 such
that QnX, and Q1%,.

Proof. We prove by induction up to #=2s.

For t=1 and 2, the lemma follows from Lemma 1.5 and the proof of Lemma 2.2.
Let us assume that our lemma holds for all 2’ with 2|2 << 2s.

For any partition of X in Q, as the disjoint union of X, and X,, where we may
assume that X, is non-empty, the partition gives rise to a partition of X\ S, where
SeX,, as the disjoint union of X,\ S and X,. By induction assumption, there exists
TeQ, such that TnX\ S, TtZ,. By Lemma 2.2, there exists Pe Q, such that PnS and
PnT. Then Q=Po-Tefl;is the element satisfying our lemma.

PROPOSITION 2.4. Let X be an independent set in Q_ with |X|=t<2s. For any
partition of X as the union of X, and X,, one of which may be empty, there exist 2*°~*
elements in Q, each of which is even-related to X| and odd-related to X,.

Proof. By Lemma 2.3, there exists Qe Q, such that QnX; and QtX,. Then Q- (Z),
is the coset of (Z), in G (£,) each element of which is related to ¥, and X, in the same
manner as Q. Since X can be partitioned in 2° ways, we obtain 2° cosets of (), in
G(Q,) which are elements of G(Z). Clearly, each element in Q; must belong to one
of these cosets and it follows that each coset consists of 22°~* elements.

COROLLARY 2.5. Let X be an independent set in Q, with |X|=2s. Then there
exists exactly one element PeQ, such that PtX and there is no element in Qg distinct
from I, which is even-related to .

PROPOSITION 2.6. Let X be an independent set in Q, with |Z|=t<2s. Then ac-
cording as t=2k or 2k + 1, the group G (Z) is isomorphic to G(2;) or C, x G(£,), where
C, denotes the cyclic group {5) of order 2.

Proof. Case 1. t=2k. Let 2={S;, T}, ..., S, T;}. A correspondence between the
cosets of (2), in G(&,) (i.e., the elements of G (X)), and the elements of G(£2,) can be
set up in the following manner: For any representative Q of a given coset of (Z), in
G(R,), we let Qo (Z), correspond to the element (vy,..., v;) in G(£,) where

v;=¢€ if Q‘ItSi and Q‘ltTi,
vi=a if QnS; and Q17T;,
vi=ﬁ if QTSi and QTCTi,

and
Viz'y if QTSi and QTTi.

That the above correspondence is in fact a group isomorphism is easily verified.
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Case 2. t=2k+1. Let X={R, S, T},..., S;, T} and let P be a representative of
any given coset of (X),in G(Q,). If welet P~ (Z), correspond to the element (g, vy, ..., v;)
in C, x G(£,) by setting g=e or 6 according as Pn R or PtR, and v=e, «, f, or y in
the same way as in Case 1, then the correspondence is a group isomorphism between
G(Z2) and C, x G(Q,).

§3. O-sets and E-sets in Q

DEFINITION 3.1. Let Z be an independent set in €2, and P the product (meaning
group product) of all the elements in 2. Then P¢X and we call the set =X U {P} (or
simply 2 U P) a complete set in Q. (In the sequel, the symbol “U’’ will denote disjoint
union. )

It follows immediately from definition that if 2 is a complete set in Q,, then the
product of all the elements in Z is equal to 7, and every element in this set is the product
of the remaining elements in the set.

DEFINITION 3.2. An independent or complete set consisting of two or more
mutually odd-related (resp. even-related) elements in € is called an 0-set (resp. E-set)
in Q,. An O-set (resp. E-set) in £, is said to be maximal if it is not a proper subset of a
larger O-set (resp. E-set) in Q..

PROPOSITION 3.3. An 0-set in Q; is maximal if and only if it is complete.

Proof. Let ®= U P be a complete 0-set in Q. If |@|=2s, then by Corollary 2.5,
P is the only element such that Pt ¢ and so @ is maximal. If |@| < 2s, then by Proposi-
tion 2.4, there exists some Qe Q; distinct from P such that Q1. Since Pt P, |®| must
be even, and this implies that QnP by Lemma 1.4. Therefore, for any such Q, the
enlarged set ® UP U Q is not an O-set showing that @ is also maximal in this case.

On the other hand, let @ be any 0-set in Q, which is not complete. Since @ is then
an independent set, we have |®#|<2s. By Lemma 2.3, there exists some Qe2, such
that ® U Q is an 0-set. Hence, & is not maximal.

PROPOSITION 3.4. Let @=®duUSUT be an 0-set in Q;, and | PV SUT|=2k+1
where k<s. Then & is a complete 0-set if and only if G (® L S) and G (® U T') are identi-

cal.
Proof. If & is complete, then T can be expressed as the product of all the elements

in ®US which are even in number. Hence, for any QeQ, On®d uS if and only
Qnd UT. This means that (#uUS),=(@UT), and so the two groups G(® U S) and

G (®uUT) are identical. .
To prove the converse, we observe that To (Pu S).eG(®uUS) is odd-related to

@ U S. Since the two given groups are identical, To(® U S), appears as To(®UT), in
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G(®uT), and in To(®UT),, every element is even-related to T. It follows that T is
the only element in 7 (® U S) which is odd-related to ¢ U S, showing that & is maxi-
mal and hence complete.

PROPOSITION 3.5. In Q,, there exist complete O-sets with 2k+1 elements for
k=1,...,s.
The proof is straight forward.

PROPOSITION 3.6. Let ® be a complete 0-set in Q with 2s + 1 elements. For any
Pe®, D\ P is a set of generators of G(L,).

Proof. Since (®\ P, the group generated by &\ P, is of order 4°, it must coincide
with G (Q,).

Similar results concerning complete E-sets can be easily derived. We state without
proof three propositions as follows.

PROPOSITION 3.7. An E-set in Q, is maximal if and only if it is complete.

PROPOSITION 3.8. In Q,, there exist complete E-set with k elements for
k=3,4,...,5+1.

PROPOSITION 3.9. Let ¥ be a complete E-set in Q, with s+ 1 elements. Then any
s elements in P constitute a set of generators of the identity element (¥), in G(P\Q)
where Q is the element deleted from V.

§4. Complete 0-sets which are Mutually Even-related and Complete E-sets which are
Mutually Odd-related

PROPOSITION 4.1. For any positive integers j, k such that 1<j,k<s and
j+kZs, there exist in Q, complete 0-sets &, and @, with 2j+1 and 2k + 1 elements such
that ;1 ®,.

Proof. Since j+k<s, there exist 0-sets &,, ¢, with 2j and 2k elements such that
@, U P, is an independent 0-set. Let P (resp. Q) be the product of all the elements in
@, (resp. ;). Then &, =&, UP and &,=Po P, U Q are two complete 0-sets which are
even-related.

PROPOSITION 4.2. For any positive integer t such that 1 <t=<s, there exist in £
O-sets ®,,..., ®, which are complete, disjoint, mutually even-related, and such that
i=1 1B =25 +1.
Proof. Let &, =®, U P, where P, is any element in &,, and let |$,| =2j. By Proposi-
tion 4.1, there exists an independent 0-set @ with 2(s—j) elements such that P ;.
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Since (@) = (9P, ),, the identity element of G (®, ), we have (®) = (P, ), since they have
the same number of elements.

The group G(£,_;) is generated by an independent 0-set X, with 2(s—j) elements
by Proposition 3.6. A correspondence between G((2;_;) and (&,), can be set up by
associating the elements in X;, the generators of G(€,_;), with those in @, the genera-
tors of (®,),, in one-to-one manner. Clearly, this correspondence is a group isomor-
phism which preserves the odd and even relations.

Now let X, be an independent set with 2k elements in Q,_; where 1Sk <s—j.
Then there exists an independent O-set X, in Q,_; with |Z3|<2(s—j—k) such that
2,nX,. By the isomorphism given in the above paragraph, there exist 0-sets @, and
@, in (@), corresponding to X, and X, respectively such that &, n®,. Since &, and
@, are in (P, ),, it follows that @,, &, and P, are mutually even-related. Then J,, &,
and &, are complete 0-sets which are mutually even-related and X |®;| < 25+ 3.

Our proposition then follows by repeating the above arguments.

We state without proof the following propositions concerning complete E-sets in

Q..

PROPOSITION 4.3. Let ¥, ={L,, L,, P},and ¥, =¥ U P be two complete E-sets
in Q. Then {Ly, L,}t .

PROPOSITION 4.4. Let ¥, be an independent E-set in Q; and |'¥,| <s—1. There
exist E-sets ¥, and ¥ 5 such that ¥, O W, U ¥, is an independent set and the three sets

are mutually odd-related.
§5. Construction of Complete 0-Sets and Complete E-Sets in €, from those in £, _,

Let Z={L,,..., L,} be an arbitrary set of elements in €,_,, where s>2. For sim-
plicity, we shall use the notation {Z, A} todenote the set of elements {(L, 4), ..., (L, A)}
in Q..

By virtue of the propositions given in §3 and §4, the following constructions can
be achieved. The proofs are omitted.

PROPOSITION 5.1. The following are complete O-sets in Q:

(1) {(Is—l’ a)’ (Is—l’ ﬁ)’ (Is—la )’)},
(i) {(Z;—1 @), (L, B), (L, y)} forany LeL,_,.

PROPOSITION 5.2. Let & be a complete 0-set in Q,_,. Then the following are
complete 0-sets in .

() (B¢}, )
(ll) {(Is—l’ d), (Is—l’ ﬂ)’ {Q’ )’}}'
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PROPOSITION 5.3. Let &,, ®,, D, be complete O-sets in Q,_, which are mutually
even-related. Then the following are complete 0-sets in Q,:

() {Ui-12 @), (B2, B, (&2 ),
(i) {{®y, a}, {P2, B}, {P3, 7}}-

PROPOSITION 5.4. Let & @' be a complete O-set in Q,_, such that |®| is even.
Then the following are complete 0-sets in Q;:
(i) {2, a}, {2, }}
(ii) {{®, e}, (P, a), (P, B), {®', v}}
(iii) {{®, e}, (P, a), (P, B), (P, 7)},

where P is the product of all the elements in &'.

PROPOSITION 5.5. Let ¥ be a complete E-set in Q,_,. For any partition of ¥
as the union of ¥, and ¥ ,, where |¥,| is even and ¥, may be singelton or empty, the
following is a complete E-set in £;:

{{![’1, “}’ {TZ’ e}} ®

PROPOSITION 5.6. Let ¥, UP and ¥, U P be complete E-sets in Q,_, such that
|¥,| and |¥,| are both even and ¥ 1 ¥ ,. Then the following is a complete E-set in €;:

{{¥1, o}, {¥,, B}}.
In particular, if ¥,={L, M}, the following E-set in Q is complete:

{{L, @), (M, ), {¥2, B}} -

PROPOSITION 5.7. Let ¥,, ¥,, W3 be E-sets in Q,_, which are mutually odd-
related and such that their union is an independent set. Let P be the product of all the
elements in the three sets. If the number of elements in ¥, are all odd or all even, then
the following is a complete E-set in Q,:

(P, e), {¥1, 0}, {¥2, B}, {¥5, 73}

Remark. In the propositions of this section, the last components o, f and y may be
interchanged. Thus, by Proposition 5.3 (i), {(Z,-1, B), {®1, o}, {®,, y}} and {(Z;—4, 7),
{®,, a}, {®,, B}} are also complete O-sets in Q..

There are other possible constructions but they are not useful in connection with
the solution of matrix equations.

§6. Maximal 0-sets in Q7 (f)

Let QY (B) be the subset of Q defined by the following condition: L=(4,,..., 4,)
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e Q] (B) if and only if among the components A, of L, the element B in V. appears an
odd number of times. Then Q\ Q5 (B) is the subset of Q, consisting of those elements,
among the components of each of which, B appears an even number of times or does
not appear at all. The determination of maximal O-sets and maximal E-sets with
elements lying entirely in Q () or entirely in Q\ 2 (8) are especially useful in appli-
cations. We shall confine our discussion to maximal 0-sets in Q% (p).

LEMMA 6.1. If L, M are both in Q) (B) or both in Q\Q¥(B) and Lt M, then
LoMeQF (B).

Proof. Since L, M are both in Qf (8) or both in 2\ Q¥ (B), the total number of
their component pairs of the forms [e, ], [«, f] and [y, f] is even. On the other
hand, LTM implies that the total number of their component pairs of the forms
[a, 81, [7, B] and [a, y] is odd. It follows that the total number of component pairs
of the forms [e, f] and [a, y] is odd and consequently Lo M has an odd number of
components equal to f. Our lemma is proved.

LEMMA 6.2. If &, is an independent 0-set in Q) (B) with 2k elements, where k <s,
then an element NeQ} (B) can be chosen so that Nn®,.

Proof. It suffices to consider the case when k =s— 1. The subgroup (®,), in G(R,)
is isomorphic to ¥, according to the proof given in Proposition 4.2. Let (&,),
={I, L, M, N}. Then if L, M¢Q}(8), N must be in 2} () by Lemma 6.1.

LEMMA 6.3. If there exists a maximal O-set & in QF () with 2k +1 elements,
where k <s, then there exists a maximal 0-set in Qi ,(B) with 2k +5 elements.

Proof. If k <s, then there exists Ne Q7 (8) such that N ®, by Lemmas 6.1 and 6.2.
Then {(, B), (N, a), (N, y)} is a maximal O-set in 2, (8) which is even-related to
{®, e} in QF, , (B). By Proposition 5.3 (i), the following is a maximal O-set in Q}, , (8)

with 2k + 5 elements:

{Ls1s B), (Lo B), @), (N, @), @), (N, 7), 2), {2, e}, v}

PROPOSITION 6.4. In Q% (B), s=2, there exist maximal O-sets with k elements,
where k=3, 7,..., 4[s/2]—1, and [s/2] denotes the greatest integer not exceeding s/2.

Proof. There exist maximal O-sets in 23 (f) and Q3 (B) with 3 elements, for in-
stance, {(e, B), (8, «), (B, y)} and {(e, ¢, B), (a, B, @), (a, B, 7)}. The proposition then
follows from Proposition 5.2 (i) and Lemma 6.3.

PROPOSITION 6.5. In QF(B), where s=4k+3, there exists a maximal 0-set
with 2s+1 elements.

Proof. In Q% (B), ®,={(e, B), (B, «), (B, 7)} and @, ={(B, e), (x, B), (¥, B)} are the
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only two maximal O-sets which are even-related. Hence, @5 = {(1,, ), {®,, o}, {®,, 7}}
is a maximal O-set in Q}(B) with 7 elements. Now {I;, ®;} 7 {®3, I3} in QF (B), it
follows that the following is a maximal O-set in Q%(B) with 15 elements:

¢4= {(169 ﬂ)’ {{13’ QS}’ (X}, {{QS’ 13}’ }’}} %

Our proposition is thus true for k=0, 1.
Assume that our proposition holds for all Q) (8) with t=4h+3, 0<h<k. We
write k=h;+h,+1, h,, h, >0. By induction assumption, there exist maximal O-sets
1€Q} (B), ®3,eQ)(B), where t;=4h;+3, such that |®}|=2¢,+1. Then {I,, P)}
n{®}, I,,} in Q}, .., (B), and so we can construct the following maximal 0-set in Q' (B)

{(s-1, B), {1, @2}, a}, {1, L.}, v}} -

which has 2(¢, +¢,)+3=2s+1 elements.

PROPOSITION 6.6. In QF (B) where s=4k, there exists a maximal 0-set with 2s
elements which is not complete.

Proof. By Proposition 6.5, there exists a maximal 0-set @ in Q) (B) with 2s—1
elements. By Proposition 5.2 (ii), &= {(I,-,, a), (I;_1, B), {®, y}} is a complete O-set
in Q; with 2s+1 elements, which after deleting the element (I,_,, a)¢Q¥(B), gives
rise to a maximal O-set in Q7 (8) with 2s elements which is not complete.

Remark. If ®eQ}_, (B) has less than 2s— 1 elements, then {(Z,_,, B), {®, y}} is not
maximal in Q7 (B) because it is contained in the maximal 0-set {(Z,_,, B), {®, 7}, {®’, «}}
where @' is another maximal O-set in Q}_, (B) such that dnd’.

PROPOSITION 6.7. In QF (B), where s =4k + 1, there exists a maximal 0-set with
25— 1 elements which is not complete.

Proof. By Proposition 6.6, {(Z,_,, B), {®, y}} is a maximal O-set in Q}_, (8) with
25— 2 elements, where & is a maximal 0-set in 2., (8) with 25— 3 elements. Then the
following O-set in Q7 (B) has 2s—1 elements:

{(Is—la ﬂ)’ ((I -2 B)a Cl), {{¢9 7}’ a}} .

Clearly, this 0-set is maximal but not complete.
§7. The Associative Algebra 4(Q,) and its Matrix Representation
We may consider the 4° s-tuples (4;,..., 4;) in Q; as the base elements of a

vector space over a field F. If we define the product of two base elements L and M,
denoted by L- M, to be their group product Lo M in G(2,) multiplied by a structure
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constant Cp y€F, where C; j need not equal to Cy, ;, this vector space becomes an
algebra over F. When F is the complex field, it is convenient to choose the structure
constants as follows: For each pair of elements L and M not equal to I,, we set
CL,M=(\/ —1)** (or —(\/ —1)/**), where j is the number of component pairs of
L, M which are of the forms [e, f] and [«, y], and k=0 if exactly one of L, M lies
in QF (B) and k=1 if otherwise. Once Cp,u is fixed, we set Cpy ;=Cp yy or —Cp u
according as LnM or LtM. Also, we set C;, ; =C;, ;=C; ;=1 and Cp  =—1,
where L#I,. With proper choice of sign for C, j for each pair L, M, we obtain an
associative algebra over the complex field. The algebra so defined will be denoted by
A(Q;) and it can be represented by matrices with entries in the complex field in the
following manner.

For s>h>1, we represent the elements I,, (1, , «), (1,—, 8) and (1,_,, y) in 2, by

() v o) () mev()

respectively, where J stands for the identity matrix of order 2" ~*m (m odd). Note that
when =1, (I,_,, &), etc. mean simply a, etc. If L(#1,)eQ, is represented by a matrix
A of order ¢, we represent the elements (L, e), (L, «), (L, #) and (L, y) in £, respec-
tively the following matrices of order 2¢:

A A — A A
(") () v ) e ()
In this way, when any element (4,, ..., 4,)€; is given, we can start from its first com-
ponent and construct step by step a matrix of order 2°m which is its representation.

Since the elements of Q, are the base elements of A4 (£;), a faithful representation of
this algebra is achieved.

DEFINITION 7.1. The 4° matrices of order n=2°m (m odd) representing the
elements of Q, obtained in the manner described above are called the basic matrices

of order n.
§8. Maximal Real Solutions of Hurwitz Matrix Equations

As an illustration of the application of our results, we proceed to show how the
maximal real solutions of the following system of Hurwitz matrix equations can be

constructed explicitly:

B:=—1, B,B.+BB,=0, B,+B;=0, (hk=12,.;h#k),

(++)
order of B,=2m (modd).
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Let B,, B, be basic matrices which are representations of two distinct elements
L,, L, in Q. It is clear that L,t L, if and only if B,B,= — B;B,. If L,# L, then the rela-
tion B = — I is always satisfied. Furthermore, B, is real if and only if L, lies in Q¥ (8),
in which case, we also have B,= — B;. From these observations, we conclude that if
Z={B,,..., B,} is a set of basic matrices representing a maximal O-set in Q} (8), then
X is a maximal set of real solutions of (), and conversely. Since the constructions as
given in Propositions 6.4, 6.5, 6.6 and 6.7 exhaust all possible types of maximal O-sets
in QY (B), we are led to the following proposition discovered originally by Wong [7].

PROPOSITION 8.1. There exist g-dimensional maximal real solutions of Hurwitz
matrix equations of order 2°m (m odd) for the following values of q and s:

s=1(mod4): g=4k+3, k=0,1,..,(s=3)/2; g=2s—1.
s=2 (mod4): ¢g=4k+3, k=0,1,...,(s—2)/2.

s=3 (mod4): ¢g=4k+3, k=0,1,...,(s—1)/2.

s=0 (mod4): ¢g=4k+3, k=0,1,...,(s—2)2; g¢g=2s.

It was proved by Wong [7] that every set of maximal real solutions of (*x) is
unitary similar to what he called a maximal set of quasisolutions. Basing on this fact,
we have the following result.

PROPOSITION 8.2. Every maximal real solution of Hurwitz matrix equations of
order 2°m (m odd) is orthogonally similar to a maximal solution consisting of real basic
matrices which are representations of a maximal O-set in Q (B).

We may consider maximal E-sets instead of maximal 0-sets, or we may restrict
such sets to other specified subsets of Q, such as Q \ Q¥ () instead of Q} (), in order
to construct real or complex solutions of (*) given in the Introduction with signs differ
from those appear in (*x). In some cases, the use of other types of matrix representa-
tions may be necessary. We leave the details to interested readers for their own investi-
gation.
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