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Spines of Topological Manifolds

ERrRIK KJAER PEDERSEN

In this paper we prove that a closed 2-connected topological manifold has a PL-
spine, i.e. there is a locally tamely embedded complex such that a regular neighbor-
hood of this complex is the manifold with a disc deleted (dimension is assumed to be
at least 6). This ‘‘spine method”’ together with the relative edition of regular neighbor-
hoods of complexes in topological manifolds [ 5] makes it easy to use general position
arguments in topological manifolds. This will be used in a forthcoming paper to ex-
tend various embedding theorems to the topological category.

The methods we use are PL-approximation theorems due to Cernavskii, Connally,
Miller, Rushing... as quoted in [5] theorem 2 and blocktransversality for PL com-
plexes and PL submanifolds as was first considered by C. Morlet [4] and later extend-
ed by D. Stone [6].

DEFINITION 1. A spine of a topological manifold M with OM #0 is a locally
tamely embedded complex K< M so that K is a strong deformation retract of M and
K< M is a simple homotopy equivalence. In case 0M =0 by the spine of M we mean
a spine of M with a disc deleted.

THEOREM 2. Let (M,0_M,0.M) be a triad of topological manifolds
dim (M )=m, and assume m=>6 and

n;(M,0,M)=0 for j<m—r, r<m-3.

Further assume there is a PL-complex P locally tamely embedded in the interior of
04 M, dim(P)=p and m—p=>4. Then there is a complex K of dimension max (p+1,r,2),
locally tamely embedded in M such that

Knd,M=P
Kno_M=K'

K’ a subcomplex of K, K' has a neighborhood of the form K' x I in K and
0_MUKcM

is a strong deformation retract and a simple homotopyequivalence.
Theorem 2 has an immediate corollary:
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COROLLARY 3. Let M be a closed topological manifold, dim(M)>6 and
n;(M)=0 for j<r,r>2. Then M has a spine of dimension m—r.

Proof. Let M=M - (interior of a disc). Put d_M=0,0, M=S""!, P=§, and
apply Theorem 2.

Proof of Theorem 2. First let us consider the case where P=0. Put k=max(r, 2).
According to Kirby and Siebenmann [3] M has a handlebodydecomposition relative
to 0_ M with no handles of dimension greater than k: Kirby and Siebenmann prove
that (M, 0_M) has a handlebodydecomposition, and one can then cancel handles
to get a minimal handledecomposition. Because of problems with torsion one needs
at least 1- and 2-handles.

We filter M by the handlefiltration

a_MXI=M0CM1C-"CMs=M'

where M, , is obtained from M, by adjoining a single handle, no handles of dimension
greater than m — 3. The proof will be by downwards induction on the statement:
There is a locally tamely embedded complex

such that
K;=K,-ﬁ5+Mi

is contained in the interior of 0. M;, K has a neighborhood in K; of the form K; x [0, 1]
and M;UK; is a simple strong deformation retract of M.

It is easy to start the induction, we let K,_, be the core of the last handle. Then
clearly M,_; UK,_, is a simple strong deformation retract of M =M, so assume the
statement for i+ 1. Now

M =M;Ug;-1xpm-; DI x D"™J

for some j<k. Let
E=DIxD" 7 noM, =D’ xS™ /™1

take an outside collar 0E x [0, 2] of dE in 8, M, , and let
E,=EUdEx[0,1], E,=EUdEx][O0,2].

E has a PL structure being a codimension 0 submanifold of the boundary of D/ x D™ ~J,
and we can extend this PL structure to E, and E, using the collar. K;, ; is of codi-
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mension more than 3 in d,M;,,, so by [1], see e.g. [5] Theorem 2, since
dimd, M, >35, there is an ambient ¢-isotopy of E, fixing 0E, that moves K;,, to be
PL embedded in E, except in a neighborhood of dF, which can be assumed small. So
we may assume, since this can be taken to be the restriction of an ambient isotopy of
M, that K{, s " E, < E, is PL. Using [4] we can isotop K, { further by a small ambient
isotopy so that K, intersects 0E=S7"1x S§™ J~! blocktransversally. Assume this
done, and denote

Z=K;+1 ('\aE.

Since the normal blockbundle of £ in E| is a trivial one dimensional bundle we obtain
that dF has a neighborhood in E of the form dEx (—1, 1) and

OEx (—=1,1)nKjr =Zx(—1,1)

since it is the restriction of the trivial blockbundle to Z, by blocktransversality. Z is a
PL subcomplex of S/~ x §™~J~1 which is the boundary of S/~ x D™/, of dimen-
sion m—1—r, so of codimension at least 3. By [2] Theorem 5.2 there is a subcomplex
Z' of S77! x D™~/ of dimension min(dim(Z)+1, j) so that

Z' AnSiTtxsmitl=7

and S/~1x D™ 7 simplicially collapses to Z' (S/~' x D™/ is the mapping cylinder
of the projection §/71 x §™ /=1 §i~1 50 take Z’ to be the mapping cylinder of the
restriction to Z ). Using [2] lemma 2.20 this implies that

SI~tx D™ IixI
simplicially collapses to
SI lx pm=ix0uZ' xITuS/~tx D" Ix1

so taking S7~! x D"~J x I to be a collar of $/~* x D™~4 in D/ x D™~/ we see that if
we define D to be

D=Dix D" I—Si"t1x D" IxI

there is a simple strong deformation retract of M;, ;U Kj,, to MuZ' xIuK,;,,uD.
However D is a disc, and Z’' x 1 UK;,; ndD is of codimension bigger than 3 in D,
so we may as before assume it is PL-embedded and D now simplicially collapses to the
cone of Z’ x 1 UK, ndD thus finishing the induction step. It is clear by construction
that K has a product neighborhood in K;.

In case P#0 the proof is the same except we have to go through the motions of
the induction step in the initial step of the induction too.
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