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Spines of Topological Manifolds

Erik Kjaer Pedersen

In this paper we prove that a closed 2-connected topological manifold has a PL-

spme, î.e there îs a locally tamely embedded complex such that a regular neighbor-
hood of this complex îs the manifold with a dise deleted (dimension îs assumed to be

at least 6). This "spine method" together with the relative édition of regular neighbor-
hoods of complexes in topological manifolds [5] makes ît easy to use gênerai position
arguments m topological manifolds. This will be used in a fortheoming paper to ex-
tend vanous embedding theorems to the topological category.

The methods we use are PL-approximation theorems due to Cernavskii, Connally,
Miller, Rushing as quoted in [5] theorem 2 and blocktransversahty for PL
complexes and PL submanifolds as was first considered by C. Morlet [4] and later extend-
ed by D. Stone [6].

DEFINITION 1 A spine of a topological manifold M with dM^Q îs a locally
tamely embedded complex Kc M so that K îs a strong déformation retract of M and

Kc M îs a simple homotopy équivalence. In case dM=0 by the spine of M we mean

a spine of M with a dise deleted.

THEOREM 2. Let (M9d_M,d+M) be a triad of topological manifolds

dim(M) m, and assume m^6 and

I7,(M, a+M) 0 for j<m-r, r^m-3.
Further assume there is a PL-complex P locally tamely embedded in the interior of
d+M, dim(P) =p andm-p^A. Then there is a complexKofdimension max(p +1, r, 2),

locally tamely embedded in M such that

Knd_M=K'
Kf a subcomplex of K, K' has a neighborhood of theform K'xl in K and

ô.MuKczM
is a strong déformation retract and a simple homotopyéquivalence.

Theorem 2 has an immédiate corollary:
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COROLLARY 3. Let M be a closed topological manifold, dim(M)^6 and

7tj(M)=0for j^r,r>2. Then M has a spine of dimension m — r.
Proof. Let M=M - (interior of a dise). Put 3_M=0, d+M=Sm~\ P=0, and

apply Theorem 2.

Proof q/Theorem 2. First let us consider the case where P=0. Put fc max(r, 2).
According to Kirby and Siebenmann [3] M has a handlebodydecomposition relative
to 3_M with no handles of dimension greater than A:: Kirby and Siebenmann prove
that (M, d_M) has a handlebodydecomposition, and one can then cancel handles
to get a minimal handledecomposition. Because of problems with torsion one needs

at least 1- and 2-handles.
We filter M by the handlefiltration

where Mi+l is obtained from Mt by adjoining a single handle, no handles of dimension

greater than m —3. The proof will be by downwards induction on the statement:
There is a locally tamely embedded complex

such that

Ki =KiC\d+Mt

iscontained in the interior ofd+Mi9 ^hasaneighborhoodinÀ^oftheformi^x [0,1]
and Mt u Kt is a simple strong déformation retract of M.

It is easy to start the induction, we let Ks_t be the core of the last handle. Then
clearly Ms^x vKs_1 is a simple strong déformation retract of M=MS9 so assume the
statement for /+1. Now

Afl+1 =Mt vsJ-ixDm-jDj x Dm~J

for somey^fc. Let

£=Dj x Dm~j n ôMi+1=Dj x S"1"^"1

take an outside collar 55 x [0, 2] of dis in d+Mi+1 and let

JS'^jÇua^xfO, 1], E2=£udEx[092~].

E has a PL structure being a codimension 0 submanifold of the boundary ofDj x Dm~J\

and we can extend this PL structure to Et and E2 using the collar. Kfi+1 is of codi-
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mension more than 3 in d+Mi+u so by [1], see e.g. [5] Theorem 2, since

dimd + Mi+1^5, there is an ambient e-isotopy of E2 fixing dE2 that moves K[+1 to be

PL embedded in E2 except in a neighborhood of 8E2 which can be assumed small. So

we may assume, since this can be taken to be the restriction of an ambient isotopy of
M, that K[+ 1nE1czElis PL. Using [4] we can isotop K\ + ± further by a small ambient
isotopy so that K'i+1 intersects dE=SJ~1 x^"-1'"1 blocktransversally. Assume this
done, and dénote

Z K'i+lndË.

Since the normal blockbundle of dis in El is a trivial one dimensional bundle we obtain
that dË has a neighborhood in E of the form dËx (— 1, 1) and

ôEx(-\, l)nK'i+1=Zx(-l, 1)

since it is the restriction of the trivial blockbundle to Z, by blocktransversality. Z is a

PL subcomplex of S-7""1 x Sm~J~\ which is the boundary of S-*'1 x Dm~J, of dimension

m— 1 — r, so of codimension at least 3. By [2] Theorem 5.2 there is a subcomplex
Zr oî Si~1xDm~j of dimension min(dim(Z)+l,y) so that

and S-7'"1 xDm~J simplicially collapses to Z' (SJ~l xDm~j is the mapping cylinder
of the projection S-7'""1 x S"1'-1'1 -> S-1'1, so take Z' to be the mapping cylinder of the

restriction to Z). Using [2] lemma 2.20 this implies that

simplicially collapses to

so taking S-7'"1 x Dm'j x I to be a collar of Sj'1 x Dm~J in Dj x Dm~J we see that if
we define D to be

there is a simple strong déformation retract of Mi+1vKi+lto MtuZ' xIuKi+i\jD.
However D is a dise, and Z' x 1 uKi+l ndD is of codimension bigger than 3 in ôD,

so we may as before assume it is PL-embedded and D now simplicially collapses to the

cône ofZ'xluKi+lnôD thus fînishing the induction step. It is clear by construction

that K\ has a product neighborhood in Kv
In case P#0 the proof is the same except we hâve to go through the motions of

the induction step in the initial step of the induction too.
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