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Inner Illumination of Convex Polytopes

PETER MANI

Dedicated to Professor H. Hadwiger on his Sixty-fifth Birthday.

1. Introduction

The notion of an n-polytope which is illuminated by its vertices is due to H.
Hadwiger [4], who continued earlier work by P. S. Soltan [6] and B. Griinbaum [3].
An n-polytope P is said to be illuminated by its vertices, if for each vertex x of P there
is another vertex y of P such that the line segment joining x and y meets the interior of
P. Dually, P may be called facet-disjoint, if each facet of P has an empty intersection
with some other facet of P. Set k(n):= min{f""*(P):P is a facet-disjoint n poly-
tope}=min{ f°(P):P is an n-polytope illuminated by its vertices}. In [4], H. Had-
wiger asked whether & (n) equals 2n, for all dimensions n. Easy considerations show
that this is the case for all <4, and that, in these dimensions, the crosspolytopes are
the only n-polytopes with 2n vertices which are illuminated by them. Several geo-
metrists, myself included, have tried hard to prove the corresponding statement in
higher dimensions. Here we determine the numbers & (n). It turns out that k (n)=2n,
for all <7, whereas, for large n, the situation changes drastically, the approximate
value of k (n) being n+2,/n. The problem treated here was first discussed at a seminar
which H. Hadwiger held in summer 1970. I would like to express my gratitude to him
and, with him, to all those whose conversations have encouraged me to think about
inner illumination.

2. Notation

Those geometric terms for which we don’t give a definition here shall be under-
stood as in the book [2] by B. Griinbaum. It is only when dealing with polyhedral
complexes that our notation differs slightly from Griinbaum’s. We find it convenient
to introduce a unique (— 1)-dimensional polytope, namely the empty set §. The bound-
ary complex of a polytope P shall be denoted by dP. We set 00: =0, whereas, for
dimP >0, the boundary complex of P is understood in the usual way.

DEFINITION 1. A polyhedral complex in the n-dimensional Euclidean space
E" is a finite collection C of convex polytopes P< E" such that
(1) for each PeC, the boundary complex 0P is a subset of C,
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(2) whenever P, Q are elements of C, we have

PnQe({P}uiP)n({Q}uoQ).

Let C be a polyhedral complex in £”. We define the star, the antistar and the link
of an element xeC in the usual way. Namely, for xe C we set

st(x,C):={yeC: there is an element zeC such that xuycz},
ast(x, C):={yeC:xny=0},
link (x, C):=st(x, C)nast(x, C).

If C is a polyhedral complex in E" we set, for each integer i, 4'C:={xeC: dimx=i},
and fiC:=card4'C. If there is no risk of confusion, we use the same letters for a
polytope and for its boundary complex. For example, if P is a polytope and x an
element of its boundary complex 9P, we often write /P and link (x, P), instead of
f'0P and link (x, oP).

3. Iluminated Polytopes

If x and y are points in E, we denote the line segment joining them by [x, y]:=
=conv {x, y}.

DEFINITION 2. We say that an n-polytope P< E" is illuminated (by the set of
its vertices through its interior), if for each xe A°P there exists a vertex yeA°P such
that [x, y] nintP#0.

Equivalently, P is illuminated if the set 4°P of its vertices is not contained in the
star st(x, P):=st(x, OP) of any vertex xe A°P.

DEFINITION 3. For n>1, set k(n):=min{f°P:PcE” is an illuminated n-
polytope} and K(n):= {P:PcE" is an illuminated n-polytope with f °P=k (n)}.

If a is a real number we denote by {«) the smallest integer which is not smaller
than a. For n>1, set {\/n}:=<(\/4n+l —1)/2) and k(n):=min{2n, n+{\/n}+
+{n/{/n}> +1}. The purpose of this paper is to prove the following result.

THEOREM 1. For each positive integer n, the equation k(n)=x (n) holds.
By duality this theorem is equivalent to the following statement.

COROLLARY 1. Let PcE" be an n-polytope such that, given any facet
x€d"" 1P, there exists ye A"~ *P with xny=0. Then f"~'P >« (n). Furthermore, there
are n-polytopes for which equality holds. |

It is easy to see that K(n) always contains simplicial polytopes. On the other hand
we don’t know whether all elements of K(n) must be simplicial.
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4. Blocks
In this section we want to prove that k (n)<x(n).

DEFINITION 4. A simplicial n-polytope P is called a block of order k>2 if
there is a set X< 4"~ !'P of cardinality k, such that " X=0 and 4°Pc U X.

The set X is called a fundamental system for the block P. Recall that a vertex x of
a polytope P is called r-valent in P, if there are exactly r edges of P issueing from x.

DEFINITION 5. A simplicial n-polytope P is called an enlightened block of order
k>2 if there is a set X< A°P of cardinality k& with the following properties:

(3) each element of X is n-valent in P,

(4) Q:=conv(4°P~ X) is an n-dimensional block,

(5) Y:={conv4® link(x, P):xe X} is a fundamental system for Q.

The set X< A°P is called an enlightening set for P. Clearly, P arises from Q by
adding pyramids above the facets of Y.

LEMMA 1. Let P<E" be an n-dimensional enlightened block. Then f °P >k (n).

Proof. Assume that P is of order k+1>2, and let X, with card X=k 41, be an
enlightening set for P. Notice that k+<{n/k)>{/n}+{(n/{\/n})>. The polytope
Q:=conv(4°P~X) is an n-dimensional block of order k+1, and since f°P=
=f°0+k+1, it suffices to prove f°Q>n+{n/k). Let Y, with cardY=k+1, be a
fundamental system for Q, and consider a facet yeY. For each ze Y~ {y}, set
a(z):=4%~A4%(zny). ny=0 implies U {a(z):ze Y~{y}} =4, hence there is a
facet z, in Y~ {y} such that carda(z,)><n/k), or card (4°z, LU 4°)>n+<{n/k), and
the proof of Lemma 1 is completed.

LEMMA 2. Assume n>8. There is an n-dimensional enlightened block P < E"such
that f°P=x(n)

Proof. For n>8 we have k (n)=n+{/n}+<{n/{{/n}>+1. If k and [ are positive
integers, we set A(k,/):={xeZ:I<x<I+k—1}. To abbreviate our notation, set
p:={/n}, g:=<{n/{/n}>. Consider the moment curve ¢:R — E” defined by ¢ (t):=
i=(1,1%,...,t"). Q:=conved (n+p, 1)is a cyclic n-polytope with n+p vertices. For
jeZ,1<j<q, we set x;:=conve(A(n+p,1)~A(p, (j—1)p+1)), and, further
Xg+1:=conve (A4 (n+p, 1)~A(p, n+1)). By Gale’s evenness condition, each member
of X:={x,:1<l<q+1} is a facet of 0. Furthermore

(6) card X=gq+1

(7) 4°Qc uX

8) n X=0.
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Hence Q is an n-dimensional block of order ¢+ 1, and X is a fundamental system
for Q. By adding a pyramid above each facet of X we obtain an n-dimensional en-
lightened block P with f°P=x (n), which proves Lemma 2.

PROPOSITION 1. For each integer n>1, we have &k (n)<x(n).

Proof. For n<7 we have k(n)=2n, and Proposition 1 immediately follows from
the observation that the n-dimensional crosspolytope is always illuminated. For n>8
our proposition is a corollary of lemma 2.

5. Simple Lights

In this and the next two sections we collect the material which we need to prove
k(n)=x(n).

For n>2, the n-dimensional crosspolytopes are illuminated, whereas the n-sim-
plices are not. This gives us the trivial estimate n+2<k (n)<2n, for all n>2.

Here we want to show that, under certain circumstances, there is an enlightened
block in the set K(n) of minimal illuminated n-polytopes. We obtain this result by
pulling a vertex of some element Pe K (n). Such pulling processes have been useful in
many geometric situations, see [1] or [5], for example.

DEFINITION 6. Let P E" be an illuminated n-polytope and x a vertex of P.
We say that Y= A°P lies opposite to x in P, if
(9) for all ye¥, [y, x]nintP#0,
(10) for each ueU:=4°P~({x}uY), there is an element veU such that
[u, v] nintP#0.

DEFINITION 7. Let P< E" be an illuminated n-polytope, and x a vertex of P.
We set y(x, P): = max{card Y: Y= A°P, and Y lies opposite to x in P}.

PROPOSITION 2. Let PeK(n) be a minimal illuminated n-polytope, and assume
that there is a vertex xe A°P such that y(x, P)>2. Then there exists a simplicial poly-
tope QeK(n), which has an n-valent vertex..

Proof. If P E" is an illuminated n-polytope with y(x, P)>2, for some xe4°P,
then each polytope combinatorially equivalent to P, and each polytope Q with
f°0=f°P, whose vertices are sufficiently close to those of P, has the same property.
This remark allows us to make the following assumptions about P.

(11) P is simplicial.

(12) There are a vertex x€A°P, a set Y = A°P which lies opposite to x in P, elements
y and z#y in Y and a hyperplane H separating x from the remaining vertices of P
such that {y, z} <[(relint(Hn P))+pos{y—x}].
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To see (12), choose a vertex x of P with y(x, P)>2,let Y= 4°P be a set of cardinal-
ity at least 2 which lies opposite to x in P, and y, z two different elements of Y. If H
is an arbitrary hyperplane strictly separating x from the remaining vertices of P, set
L:=Hnconv{x, y, z}. By the choice of ¥ we have Lcrelint(Hn P). Let R be the
ray R:=x+pos{x—y} issueing from x. There is a point x'#x on R such that
Hnconv{x', y, z} crelint(HnP). Let H' be the hyperplane which is parallel to H
and contains x’. There is a P-admissible projective transformation 7 of E”, which sends
H' to infinity, such that nP has the property required by (12). Since =P, being com-
binatorially equivalent to P, shares all the other relevant properties with P, we may
assume, without lack of generality, that P itself satisfies (12).

By moving the vertices of P a little we can reach that the following additional
conditions hold

(13) 4°P is a set in general position, and the vertex x is the origin of E”".

(14) Whenever g, and g, are different facets of P, none of which contains one of
the points x, y, then aff(g,)nlin{y}#aff(g,)nlin{y}.

By (12) and by the fact that x is the origin of E", we find a number 1> 1 such that,
with u:=J1y, the relation zeint conv((4°P~{y})u{u}) holds. For each number
tel:=[0, 1] we set y,:=tu+(1—1) y and P,:=conv((4°P~{y}) v {1:}).

Define I':={rel:there is no ged" 'P such that y.eaff(g)}. We may assume
lel’. I' is the disjoint union of a finite set W of intervals, which are all open in I. Let
< be the ordering of U which is induced by the natural ordering of I. By (13), P, is
a simplicial n-polytope, for each tel’. For tel’ set A,:=ast(y,, P,). We have A,cdP,
and each of the sets | J 4,, tel’, is a polyhedral (n—1)-ball, containing the vertex
xeA°P in its interior. If 7 and 7’ are contained in the same interval of U, then 4,=A4..,
and the polytopes P,, P,. are combinatorially equivalent.

If 1<, and 7, " are contained in successive intervals of U, then there is a facet
ged" 14, such that 4,. is the complex generated by 4"~ 14,~{g}. This easily follows
from (14).

By zeintP; we find f°P; <f°P. Let Ke be the first interval with the property
that fOP,<f°P, for the numbers teK. By (14), f°P,=f°P—1, for all TeK. Let
ve4°P~{y} be the vertex which does not belong to 4°P,, for teK, and set H:=
:=(pos{v})~{x}. If we choose teK arbitrarily, there is a facet ge4"”'P, with
y.€4° such that HnbdP, is a point w of relint g. Choose £>0 such that w(e):=
:=w+¢evis beyond g, with respect to P, and beneath all remaining facets of P,. Notice
that P<P,. The simplicial polytope Q:=conv(P,u{w(e)}) belongs to K(n), and
w(e) is an n-valent vertex of Q, as required by Proposition 2.

PROPOSITION 3. Assume that for an integer n=>3 there is a simplicial polytope
PeK(n) which has an n-valent vertex. Then K (n) contains an enlightened block.
Proof. For a simplicial polytope PeK(n), let Z(P) be the set of n-valent vertices
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of P, and ¢ (P) their number. o:=max{c (P):PeK(n), P simplicial} satisfies the re-
lation 1 <a<2n. Let PeK(n) be a simplicial polytope with ¢ (P)=a. We may assume
(15) 4°P is a set in general position.

If P is not an enlightened block, we easily derive that the set L: = (") {4° link(x, P):
x€XZ(P)} is not empty. We choose peX (P) arbitrarily and find L=A4° link(p, P).
Consider the set C:={zeA°P:[z, u]nintP=0, for all ue4°P, u#p}. If C is empty,
let y be an arbitiary vertex of the n-polytope Q:=conv(4°P~{p}). Since C=0, there
is an element ze 4°Q with [y, zZ]nintP#9. Since n>3, we easily conclude [y, z]n
NnintQ#0, and Q is illuminated by its vertices, contradicting the fact that Pe K(n).

Hence C is not empty. We choose xe L and ye C arbitrarily. By the definitions of
L and C we find

(16] [x, y]ea'P,

(17) xe N {link (u, P):ueZ (P)~{p}}.

We may assume

(18) x is the origin of E",

(19) whenever g, and g, are different facets of P, none of which contains one of
the points x, y, then aff(g,)nlin{y}#aff(g,)nlin{y}.

We choose ze 4°P such that [x, z]nintP#0 and set R:=lin{y, z} nconv4°P~
~{p}), where p is the vertex of P mentioned below (15). R is a 2-polytope with
{x,y,2z}=A°R. Let ac 4°R be such that a#y, aclink(x, R), and beA°R such that
b+#x, belink(a, R).

We may suppose that

(20) aftf{a, b} npos{y}#0. Namely, if (20) is not fulfilled for the polytope P, we
subject Q to an appropriate projective transformation. We choose a point uepos{y}
such that aff{a, b} n pos{y} =[x, u]. We can assume

(21) [p, u] N relint conv link (p, P)#0.

If this is not fulfilled for P, we may bring p closer to the hyperplane aff 4° link (p, P).
For each number tel:=[0,1] we set y,:=tu+(l1—t)y and P,:=conv((4°P~
~{yPDU{p:}). Define I':={rel:there is no ge 4" 'P such that y,eaff(g)}. We may
assume lel’. I’ is the disjoint union of a finite set ¥ of intervals, which are all open
inI. Let < be the ordering of 9 which is induced by the natural ordering of I. By (19),
P, is a simplicial n-polytope, for each zel’.

By (21), each complex st(x, P,), tel’, is isomorphic to st(x, P) under an iso-
morphism which maps y, into y and leaves the remaining vertices fixed. If T and 7’
belong to the same interval of U, then P, and P,. are combinatorially isomorphic.
If 1<’ and 1, 7’ are contained in successive intervals of U, then the relation between
P, and P,. is similar to the one described at the corresponding stage in the proof of
proposition 2.

By (20) we find z¢ A°P, and hence f °P, <f°P. Let Ke be the first interval with
the property that f°P,<f°P, for the numbers te K. By (19), f°P,=f°P—1 for all
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1eK. Let ve 4°P~{y} be the vertex which does not belong to 4°P,, for te K, and set
H:=(pos{v})~{x}. If we choose teK arbitrarily, there is a facet ge4" 'P, with
y.€4°% such that HnbdP, is a point w of relint g. Choose £¢>0 such that w(e):=
:=w+e¢vis beyond g. with respect to P, and beneath all remaining facets of P,. Notice
that P< P, and p¢link (w (), Q) where we have set Q:=conv(P,u {w(e)}). The poly-
tope Q belongs to K(n), and we have ¢(Q)>¢(P)+1 contradicting the maximality
of o(P). Hence P must be an enlightened block and Proposition 3 is proved.

6. Antipodal Systems of Sets

Let C be a set, and € a finite set of nonvoid subsets of C. For each xe® we set
a(x, €):={yeC:xny=0},
B(x,€):={yeC:ynz#0, forall zeC~{x}}.

DEFINITION 8. The collection € is called antipodal. if « (x, €)#9, for all xeE.

DEFINITION 9. The collection € is called primitive, if € is antipodal and if,
further, €={x} U B(x, C) for some xe@.

DEFINITION 10. The collection € is called free, if the elements of € are pair-
wise disjoint.

PROPOSITION 4. Let € be an antipodal collection of sets. € is a disjoint union
of collections, each of which is either primitive or free.

Proof. We proceed by induction on card&. The case card € <2 is trivial. We as-
sume card€ >3 and distinguish two cases.

A. There is a set xe@® such that f(x, €)#0. We set W:={x}up(x,€) and
B:=EC~UA. Clearly, A is primitive. We may assume B#0 and have to show that
B is antipodal. Given ye B, there is an element ze® such that ynz=0. Since
y¢B(x, €), we may assume z#x, and by the definition of f(x, €) z does not belong
to B(x, €), hence z belongs to B, and B is antipodal.

B. B(x, €)=9, for all xe€. We choose x;€C and x,ea(x,, €). We may suppose
that there is x;e®~ {x,, x,} which has a nonvoid intersection with all elements in
€~ {x,, x,}. Since B(x,, €)=p(x,, €)=0, we conclude x; N x3=x, " x3=0. We may
assume that there exists xe®C~{x,, x;} which has a nonvoid intersection with all
elements €~ {x;, x;}. In the case x#x, we would have xef(x,, €)#0.

Hence, if we set A:={x,, x,, x3} and B:=C~UA, we have

(22) ynx,#0, forall ye®B.

Similarly,
(23) ynx,#0, forall yeB.
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Since each element of B has a nonvoid intersection with x;, too, we conclude that B
is either empty or an antipodal system of sets. Because U is free, our proposition
follows.

7. Scattered Sets in Complexes

DEFINITION 11. Let C be a polyhedral complex. 4 set xc | C is called scat-
tered of order k£ in C, if x is the union of k sets x;= | C, 1 <i<k, each of which is
the disjoint union of finitely many cells of C.

Notice that the empty set is always a cell of the polyhedral complex C. We don’t
worry about the fact, that xc ) C may be scattered of different orders k and /#k.
By H;(x) we denote the i-th singular homology group of the space x, with integer
coefficients. We have H;(0)=0, for all i >0. Our next proposition easily follows from
the exactness of the Mayer-Vietoris sequence for excisive couples, as it is described,
for example, in the book [7].

PROPOSITION 5. Let C be a polyhedral complex, and x<=\_) C a set, which is
scattered of order k in C. Then H;(x)=0, for all i>k.

Proof. We proceed by induction on k. The case k=1 is trivial. For £>2, assume
that x= | {x;:1<i<k} where each x; is a disjoint union of cells of C. Set y:=
1= |J {x;:2<i<k} and z:=x, ny. By the inductive assumption we have H;(y)=
= H,(z)=0, for each i>k—1. Further, the sequence...-% H,(z)-» H,(y)® H;(x,) -
— H,(x)-% H;_,(z)— ---is exact. For i>k we have H;_, (z)=H;(z)=0 hence H,(x)
is isomorphic to H;(y)® H,(x,)=0, which implies the desired result.

Now we are able to derive our principal result.

8. The Main Theorem

Proof of Theorem 1. Theorem 1 clearly holds for all n<2. So we may assume
n>3, for the rest of this section.

A. For all n>3, k(n)<x(n). See Proposition 1.

B. For all n>3, k(n)>x(n). We distinguish two cases.

Bl. Assume that K(n) contains a polytope P with y(x, P)>2, for some vertex
x€4°P. By Proposition 2 and Proposition 3, K(n) contains an enlightened block Q.
Lemma 1 shows k(n)=£°Q>«(n).

B2. Assume that K (n) contains no polytope as described above under B1. Choose
an element P in K(n), let P be its dual polytope, and ¢: (0P~ {0})— (0P ~{0}) the
antiisomorphism which assigns to each xedP, x#0 its dual face pxedP.

Since P is illuminated, the set 4"~ *P is an antipodal collection of sets. By Propo-
sition 4 there is a set A of pairwise disjoint collections of sets such that | J A=4""1P
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and such that each member of U is either primitive or free. Consider an element
AeU. If A were free, with card 4 >3, we would have y(¢ ™'y, P)>2, for each facet
y€ A, contradicting our assumption B2 about K(r). Hence

(24) A={x}up(x, 4), for each AeW and some xeA4, where, again by
y(¢~'x, P)<1, B(x, A) consists of a single facet of P.

If we had f °P <2n, this would imply "~ 1P <2n, and by (24) bdP would be scat-
tered in 0P of some order k <n— 1. By proposition 5, we could conclude H,_, (bdP)=0,
contradicting the fact that bdP is a polyhedral (n—1)-sphere. Hence f°P>2n>k (n),
and our theorem is proved.
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