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Inner Illumination of Convex Polytopes

Peter Mani

Dedicated to Professor H. Hadwiger on his Sixty-fifth Birthday.

1. Introduction

The notion of an «-polytope which is illuminated by its vertices is due to H.
Hadwiger [4], who continued earlier work by P. S. Soltan [6] and B. Grûnbaum [3].
An «-polytope P is said to be illuminated by its vertices, if for each vertex x of P there
is another vertex y of P such that the Une segment joining x and y meets the interior of
P. Dually, P may be called facet-disjoint, if each facet of P has an empty intersection
with some other facet of P. Set k(n):= min{/n~1(P):P is a facet-disjoint n poly-
tope} min{/°(P):P is an «-polytope illuminated by its vertices}. In [4], H.
Hadwiger asked whether k(n) equals 2n9 for ail dimensions n. Easy considérations show
that this is the case for ail n^4, and that, in thèse dimensions, the crosspolytopes are
the only «-polytopes with 2n vertices which are illuminated by them. Several geo-
metiists, myself included, hâve tried hard to prove the corresponding statement in
higher dimensions. Hère we détermine the numbers k(n). It turns out that k(n) 2n9

for ail n ^ 7, whereas, for large n, the situation changes drastically, the approximate
value of k(n) being n + l^jn. The problem treated hère was first discussed at a seminar
which H. Hadwiger held in summer 1970.1 would like to express my gratitude to him
and, with him, to ail those whose conversations hâve encouraged me to think about
inner illumination.

2. Notation

Those géométrie terms for which we don't give a définition heie shalJ be under-
stood as in the book [2] by B. Grûnbaum. It is only when dealing with polyhedral
complexes that our notation differs slightly from Grûnbaum's. We find it convenient

to introduce a unique — l)-dimensional polytope, namely the empty set 0. The bound-

ary complex of a polytope P shall be denoted by dP. We set 30: 0, whereas, for
dimP^O, the boundary complex of P is understood in the usual way.

DEFINITION 1. A polyhedral complex in the «-dimensional Euclidean space
En is a finite collection C of convex polytopes PcEn such that

(1) for each PeC, the boundary complex dP is a subset of C,
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(2) whenever P, Q are éléments of C, we hâve

PnQe({P}KjÔP)n({Q}udQ).

Let C be a polyhedral complex in En. We define the star, the antistar and the Jink
of an élément xeC in the usual way. Namely, for xeC we set

st(x,C): {yeC: there is an élément zeC such that xvyaz},
ast(*, C): {yeC:xny 0},

link(x, C): st(x, C)nast(x, C).

If C is a polyhedral complex in En we set, for each integer/, AiC: {xeC: dim;c /},
and/'C:=cardJlC If there is no risk of confusion, we use the same letters for a

polytope and for its boundary complex. For example, if P is a polytope and x an
élément of its boundary complex dP, we often write/T and link(x, P), instead of
/ï#aPandlink(x,aP).

3. Illuminated Polytopes

If x and y are points in E, we dénote the line segment joining them by [x, y] :

conv {*,}>}.

DEFINITION 2. We say that an «-polytope PcEn is illuminated (by the set of
its vertices through its interior), if for each xeA°P there exists a vertex yeA°P such

that [jc,^]nintP#0.
Equivalently, P is illuminated if the set A°P of its vertices is not contained in the

star st(x, P): st(x, dP) of any vertex xeA°P.

DEFINITION 3. For n^\, set k(n): min{f°P:PczEn is an illuminated n-

polytope} and K(n):= {P:PaEn is an illuminated w-polytope with/°P=k(n)}.
If a is a real number we dénote by <a> the smallest integer which is not smaller

than a. For w^l, set {jn}: ((yf4n+l -l)/2> and ?c(«): min{2«, n + {yjn} +
}. The purpose of this paper is to prove the following resuit.

THEOREM 1. For each positive integer n, the équation k(n) K(n) holds.

By duality this theorem is équivalent to the following statement.

COROLLARY 1. Let PcEn be an n-polytope such that, given any facet
xeA"'1?, there exists yeAn~1P with xny 0. Thenfn~1P>K(n). Furthermore, there

are n-polytopes for which equality holds.

It is easy to see that K(n) always contains simplicial polytopes. On the other hand

we don't know whether ail éléments of K(n) must be simplicial.
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4. Blocks

In this section we want to prove that k(n)^K(n).

DEFINITION 4. A simplicial «-polytope P is called a block of order k ^2 if
there is a set Iczi""1? of cardinality k, such that n X=Q and /Pcul

The set X is called a fundamental System for the block P. Recall that a vertex x of
a polytope P is called r-valent in P, if there are exactly r edges of P issueing from x.

DEFINITION 5. A simplicial «-polytope P is called an enlightened block of order

k^2 if there is a set Xa A°P of cardinality k with the following properties:
(3) each élément of X is «-valent in P,

(4) Q: conv(A°P~X) is an «-dimensional block,
(5) Y: {convA° link(x, P):xeX} is a fundamental System for g.
The set XczA°P is called an enlightening set for P. Clearly, P arises from Q by

adding pyramids above the facets of Y.

LEMMA 1. LetPcE" be an n-dimensional enlightened block. Thenf°P^K(n).
Proof. Assume that P is of order k+l°^2, and let X, with cardJf=A:+1, be an

enlightening set for P. Notice that k + (njky^{yjri} + (nl{<jri)y. The polytope
Q: conv(A°P~X) is an n-dimensional block of order fc+1, and since f°P=
=f°Q + k+l, it suffices to provef°Q>n + (n/k}. Let Y, with cardY=k+l, be a

fundamental System for Q, and consider a facet >>e7. For each zeY~{y}, set

a(z): J°jK^/^0(zn>'). nj> 0 implies u {a(z);zeY~{y}} A0y, hence there is a

facet z0 in Y~{y} such that carda(zo)^<«/à;>, or card(J°zou Aoy)^n + (n/k}, and

the proof of Lemma 1 is completed.

LEMMA 2. Assume n^S. There is an n-dimensional enlightened block PcEnsuch

thatf°P=K(n)
Proof. For n^8 we hâve ?c(n) « + {v/n} + <n/{>/n}> + l. If k and / are positive

integers, we set A(k9 l): {xeZ:l^x^l+k— 1}. To abbreviate our notation, set

p: {jn}9 q: (nl{y/n}y. Consider the moment curve q>:R-+En defined by (p(t):
: (f, r2,..., tn). Q: convq>A(n+p, 1)is a cyclic n-polytope with n+p vertices. For

jeZ,l^j^q9 we set Xj: conv<p(A (n+p, l)~A(p, (j-l)p+1)), and, further

xq+1: con\(p(A(n+p9 l)~A (p, n+1)). By Gale's evenness condition, each member

of X: {xt : 1< /< q +1} is a facet of g- Furthermore
(6) cardZ=?+l
(7) A°QczkjX
(8) n Z=0.
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Hence Q is an «-dimensional block of order q+l, and Xis a fondamental system
for Q. By adding a pyramid above each facet of X we obtain an w-dimensional en-
lightened block P with f°P=K(n), which proves Lemma 2.

PROPOSITION 1. For each integer n> 1, we hâve k(n)^K{n).
Proof. For n<7we hâve K(n) 2n, and Proposition 1 immediately follows from

the observation that the w-dimensional crosspolytope is always illuminated. For «^8
our proposition is a corollary of lemma 2.

5. Simple Lights

In this and the next two sections we collect the material which we need to prove

For n^2, the w-dimensional crosspolytopes are illuminated, whereas the «-sim-

plices are not. This gives us the trivial estimate n + 2^k(n)^:2n9 for ail n^2.
Hère we want to show that, under certain circumstances, there is an enlightened

block in the set K(n) of minimal illuminated «-polytopes. We obtain this resuit by
pulling a vertex of some élément PeK(n). Such pulling processes hâve been useful in

many géométrie situations, see [1] or [5], for example.

DEFINITION 6. Let PaEn be an illuminated w-polytope and x a vertex of P.
We say that YcA°P lies opposite to x in P, if

(9) for ail ye Y, [>, x] nintP^O,
(10) for each ueU: A°P~({x}u Y)9 there is an élément veU such that

[m, t?]

DEFINITION 7. Let PaEn be an illuminated «-polytope, and x a vertex of P.
We set y (x, P): max{card Y: YczA°P, and 7 lies opposite to x in P}.

PROPOSITION 2. Let PeK{n) be a minimal illuminated n-polytope, and assume
that there is a vertex xeA°P such that y(x,P)^2. Then there exists a simplicialpoly-
tope QeK(n), which has an n-yaient vertex.

Proof. If PaEn is an illuminated «-polytope with y(#,P)^2, for some xeA°P,
then each polytope combinatorially équivalent to P, and each polytope Q with
f°Q=f°P, whose vertices are sufficiently close to those ofP, has the same property.
This remark allows us to make the following assumptions about P.

(11) Pis simplicial.
(12) There are a vertex xe A°P9 a set YczA°P which lies opposite to x in P, éléments

y and z^y in Y and a hyperplane H separating x from the remaining vertices of P
such that {^zJ^ f}]
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To see (12), choose a vertex x ofP with y (x, P) ^ 2, let YcA°P be a set of cardinal-

ity at least 2 which lies opposite to x in P, and >>, z two différent éléments of Y. If //
is an arbitrary hyperplane strictly separating x from the remaining vertices of P, set

L. — Hnconv{x, 7, z}. By the choice of Y we hâve Lczrelint(#n P). Let R be the

ray jR: x+pos{x—3;} issueing from x. There is a point x'^x on R such that
7/nconv{x', j>, z} crelint(HnP). Let if' be the hyperplane which is parallel to H
and contains x'. There is aP-admissible projective transformation n ofEn, which sends

H' to infinity, such that nP has the property required by (12). Since nP, being com-
binatorially équivalent to P, shares ail the other relevant properties with P, we may
assume, without lack of generality, that P itself satisfies (12).

By moving the vertices of P a little we can reach that the following additional
conditions hold

(13) A°P is a set in gênerai position, and the vertex x is the origin of En.

(14) Whenever gt and g2 are différent facets of P, none of which contains one of
the points x, y, then aff(g1)nlin{j>}7*aff(g2)^lin{.y}.

By (12) and by the fact that x is the origin of En9 we find a number X> 1 such that,
with u: — Xy, the relation zeint conv((J°P~{j/})u{w}) holds. For each number

Define I': {tgI:there is no geAn~1P such that j>teaff(g)}. We may assume
1 e/'. l'is the disjoint union of a finite set 21 of intervais, which are ail open in /. Let

< be the ordering of 21 which is induced by the natural ordering of 7. By (13), PT is

a simplicial w-polytope, for each zel'. For te/' set At: ast(yX9 PT). We hâve AtcdP,
and each of the sets (J AT, tel', is a polyhedral («—l)-ball, containing the vertex
xeA°P in its interior. If x and t' are contained in the same interval of 21, then At Ax,9

and the polytopes PT, PT> are combinatorially équivalent.
If t<t', and t, t' are contained in successive intervais of 21, then there is a facet

geAn~1At such that ^4T> is the complex generated by An~1At~{g}. This easily follows
from (14).

By zeintPi we find f°P1<f°P. Let Ke% be the first interval with the property
that/°Pt</°P, for the numbers xeK. By (14), /°Pt=/°P-l, for ail xeK. Let

veA°P~{y} be the vertex which does not belong to A°PT, for xeK, and set H:
: (pos{i;})~{jc}. If we choose xeK arbitrarily, there is a facet geAn~1Px with
yx€A°g such that HnbdPx is a point w of relint g. Choose e>0 such that w(e):
: w + et; is beyond g, with respect to PT and beneath ail remaining facets of Pt. Notice
that P<=.PX. The simplicial polytope g: conv(PTu{>v(e)}) belongs to K(n), and

w(e) is an «-valent vertex of Q, as required by Proposition 2.

PROPOSITION 3. Assume that for an integer n^3 there is a simplicial polytope

PeK(n) which has an n-valent vertex. Then K(n) contains an enlightened block.

Proof. For a simplicial polytope PeK(n), let I(P) be the set of «-valent vertices
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of P, and 0"(P) their number. a: max {<x(P):PeJ£(ii), P simplicial} satisfies the
relation 1 <a<2w. Let PeK(n) be a simplicial polytope with cr(P)=a. We may assume

(15) A°P is a set in gênerai position.
If P is not an enlightened block, we easily dérive that the set L : f) {A ° link (x, P :

xel(P)} is not empty. We choose pel(P) arbitrarily and find Lez A0 link(p9P).
Consider the set C: {ze^°P:[z, w]nintP=0, for ail ueA°P, u^p}. If C is empty,
let y be an arbitiary vertex of the w-polytope Q : conv(A°P~ {p}). Since C=0, there
is an élément zeA°Q with [j>, z]nintP^0. Since n^3, we easily conclude \_y, z]n
nintQ^0, and Q is illuminated by its vertices, contradicting the fact that PeK(ri).

Hence C is not empty. We choose xeL and yeC arbitrarily. By the définitions of
L and C we find

(16] \x,y\eAlP,
(17) xe H {link(W,P):We2;(P)~{/>}}.
We may assume

(18) x is the origin of En,

(19) whenever gt and g2 are différent facets of P, none of which contains one of
the points x,y, then aff(g1)nlin{j}^aff(g2)^liri{.>;}.

We choose zeA°P such that [x, z]nintP#0 and set R: lin{y, z}nconvJ°P~
~{p}), where p is the vertex of P mentioned below (15). R is a 2-polytope with
{x, y, z}aA0R. Let aeA°R be such that a^y, aelink(x, R)9 and beA°R such that

6#x5èelink(a, R).
We may suppose that
(20) aff{a, b}npos{y}^0. Namely, if (20) is not fulfilled for the polytope P, we

subject Q to an appropriate projective transformation. We choose a point wepos{j}
such that aff{a, b} n pos {y} c [x, i*]. We can assume

(21 O, u]nrelint conv link(p,P)¥>0.
If this is not fulfilled for P, we may bringp closer to the hyperplane affA ° link (p, P).

For each number re/: [0,1] we set j>t:=Tt/+(l—x)y and Pt: conv((J°P~
-{j})U{>;t})- Define /': {te/:there is no ge^l11"^ such that j>teaff(g)}. We may
assume 1 el'. l'is the disjoint union of a finite set % of intervais, which are ail open
in/. Let < be the ordering of 31 which is induced by the natural ordering of/. By (19),
Pt is a simplicial w-polytope, for each tel'.

By (21), each complex st(x, Pt), tel', is isomorphic to st(x, P) under an iso-

morphism which maps yt into y and leaves the remaining vertices fixed. If t and t'
belong to the same interval of % then PT and Px, are combinatorially isomorphic.
If t<t' and t, t' are contained in successive intervais of 31, then the relation between

Pt and Pt. is similar to the one described at the corresponding stage in the proof of
proposition 2.

By (20) we find z$A°PX and hence f°P± </°P. Let Ke% be the first interval with
the property that/°Pt</°P, for the numbers teK. By (19),/°Pt=/°P-l for ail
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tgK. Let veA°P~{y} be the vertex which does not belong to A°PX9 for teK9 and set

H: (pos{v})~{x}. If we choose reK arbitrarily, there is a facet geAn~1Px with
yxeA°g such that Hr\bdPx is a point w of relint g. Choose e>0 such that w(e):
: w + ci? is beyond g. with respect to Pt and beneath ail remaining facets of Pt. Notice
that PczPx and/?£link(w(e), Q) where we hâve set Q: conv(Pxu{w(e)}). The poly-
tope Q belongs to K(n), and we hâve g(Q)^<t(P)+\ contradicting the maximality
of cr(P). Hence P must be an enlightened block and Proposition 3 is proved.

6. Antipodal Systems of Sets

Let C be a set, and G a finite set of nonvoid subsets of C. For each xe(£ we set

a(x, (£): {ye(£:xny Q}9

p(x,(Z): {ye(£:ynzïÇ), for ail ze£~{x}}.

DEFINITION 8. The collection G is called antipodal. if a(jc, (£)#05 for

DEFINITION 9. The collection G is called primitive, if G is antipodal and if,
further, £ {x} u/?(x, C) for some

DEFINITION 10. The collection (£ is called free, if the éléments of G are pair-
wise disjoint.

PROPOSITION 4. Let G be an antipodal collection of sets. £ is a disjoint union

of collections, each of which is either primitive or free.
Proof We proceed by induction on card£. The case card£<2 is trivial. We

assume card(£^3 and distinguish two cases.

A. There is a set xed such that p(x, (E)^0. We set %: {x}up(x, (£) and
93: (£~2I. Clearly, 3t is primitive. We may assume 93^0 and hâve to show that
93 is antipodal. Given >>e93, there is an élément ze(£ such that ynz=®. Since

y$P(x, G), we may assume z^x, and by the définition of p(x, G) z does not belong
to P(x, G), hence z belongs to 9î, and 93 is antipodal.

B. P(x, (£)=0, for ail xe&. We choose xle(£ and x2e<x(xi, G). We may suppose
that there is x3e(£~{xl9 x2} which has a nonvoid intersection with ail éléments in
G ~ {xu x2}. Since P(xu(l)=P (x2, (£)=0, we conclude xinx3=x2nx3=0. We may
assume that there exists xe&~{xi9 x3} which has a nonvoid intersection with ail
éléments (£~{xi9 x3}. In the case x¥"X2 we would hâve xep(xl9

Hence, if we set $l: {xi9 xl9 x3} and 93: (£~9I, we hâve

(22) j/n*2#0, for ail jg93.
Similarly,

for ail j;e93.
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Since each élément of 93 has a nonvoid intersection with x3, too, we conclude that 23

is either empty or an antipodal System of sets. Because 31 is free, our proposition
follows.

7. Scattered Sets in Complexes

DEFINITION 11. Let C be a polyhedral complex. A set xc (J C is called
scattered of order k in C, if x is the union of k sets xtc (J C, l</<fc, each of which is
the disjoint union of finitely many cells of C.

Notice that the empty set is always a cell of the polyhedral complex C. We don't
worry about the fact, that xcz{J C may be scattered of différent orders k and l^k.
By Ht (x) we dénote the i-th singular homology group of the space x, with integer
coefficients. We hâve Ht(0) O, for ail /^0. Our next proposition easily follows from
the exactness of the Mayer-Vietoris séquence for excisive couples, as it is described,
for example, in the book [7],

PROPOSITION 5. Let C be a polyhedral complex, and xc \J C a set, which is

scattered of order k in C. Then Hi(x) 0,for ail i^k.
Proof. We proceed by induction on k. The case k= 1 is trivial. For k^2, assume

that x= (J {Xi'A^i^k} where each xt is a disjoint union of cells of C. Set y:
:= U {xt:2^i^k} and z: x1ny. By the inductive assumption we hâve Ht(y)

Ht(z) 0, for each i>Jfc-l. Further, the séquence... -^Ht (z)^Hi(y)®Hifa)-»
-*jffl(x)-^fri-.1(z)-^—is exact. For *>& we hâve Hi^1(z) Hi(z) 0 hence Ht(x)
is isomorphic to Hi(y)®Hi(x1) 0, which implies the desired resuit.

Now we are able to dérive our principal resuit.

8. The Main Theorem

Proof of Theorem 1. Theorem 1 clearly holds for ail n^2. So we may assume

n^3, for the rest of this section.
A. For ail n>3, k(n)^K(n). See Proposition 1.

B. For ail n^3, k{n)^K{n). We distinguish two cases.

Bl. Assume that K(n) contains a polytope P with y(x,P)^2, for some vertex
xeA°P. By Proposition 2 and Proposition 3, K(n) contains an enlightened block Q.
Lemma 1 shows k(n)=f°Q'^K(n).

B2. Assume that K(n) contains no polytope as described above under Bl. Choose

an élément P in K(n)9 let / be its dual polytope, and q>:(dP~{0})-+(dP~{0}) the

antiisomorphism which assigns to each xedP, x^Q its dual face çxedP.
Since P is illuminated, the set An~1P is an antipodal collection of sets. By Proposition

4 there is a set 31 of pairwise disjoint collections of sets such that \J%=An~1P
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and such that each member of 31 is either primitive or free. Consider an élément
AetyL. If A were free, with cardv4^3, we would hâve y((p"1j>^>)^2, for each facet

yeA, contradicting our assumption B2 about K(n). Hence

(24) A {x}vP(x, A)9 for each AetyL and some xeA, where, again by

y (cp " 1x, P < 1, P (x, A) consists of a single facet of P.

If we had/0P<2n, this would implyfn~1P<2n, and by (24) bdP would be scat-

tered in dP of some order k < n — 1. By proposition 5, we could conclude Hn _ 1 (bdP 0,

contradicting the fact that bdP is a polyhedral (n— l)-sphere. Hence f°P^2n^K(n),
and our theorem is proved.
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