Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 49 (1974)

Artikel: On the genus of finite CW-H-spaces
Autor: Zabrodsky, A.

DOl: https://doi.org/10.5169/seals-37978

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-37978
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

48

On the genus of finite CW-H-spaces

A. ZABRODSKY

The study of the Grothendieck groups of certain stable categories (initiated in
[1] and [2] and pursued in [3]) led to the study of two phenomenas: That of non
cancellation [4] and that of the genus of a space [7]. Their inter-relations
were observed and their study led to the discovery of new finite CW-H-spaces.
Our main reference in this study of the genus of an H-space should be [7]
but many of the facts studied here are closely related to those studied in [1], [4]
and [6]. Here we use the notion of genus with regard to p-equivalence in the
sense of Serre ([ 5]) rather than that of localization which are equivalent for H-spaces

(see [7]).
0. Notations, Definitions and Summary of Results

As usual we denote by P4 and QA the modules of primitives and indecomposables
in a Hopf algebra A.

We denote by P the set of all primes. All spaces considered are of the homotopy
type of simply connected CW complexes of finite type, all graded modules, according-
ly, are finitely generated in each dimension.

Let peP. A homomorphism ¢:G— G’ between two finitely generated abelian
groups is said to be a p-epimorphism (p-monomorphism) if coker¢ (ker) is a finite
group with order prime to p. If ¢ is both p-epimorphism and p-monomorphism then
it is said to be p-isomorphism. If P, <P then ¢ is said to be a P;-epimorphism (P;-
monomorphism or P,-isomorphism) if it is a p-epimorphism (p-monomorphism or
p-isomorphism) for every peP,.

A map ¢:Y—-X is said to be a P, equivalence iff m,(¢) (equivalenty
H,(¢,Z), H*(p,Z)) is a P, isomorphism. By the genus of the space X we
mean the set G(X) of homotopy classes of spaces ¥ which are p-equivalent to X for
every peP. _

If X is a CW complex the homotopy (or Postnikov) approximation of
X in dim<m is a pair (Ht,(X),,) where 7,:X— Ht,(X) is such that m,(t,,) is
an isomorphism for k<m and =,(Ht,(X))=0 for k>m. Similarly, the homology
(or Moore) approximation of X is a pair (HI,(X),,) where t,,:HI (X)X
yields an isomorphism H,(Hl,(X), Z)— H,(X, Z) for k<m and H,(HI,(X), Z)=0
for k>m.

Though we work in the category of CW complexes and continuous maps by a
commutative diagram we mean commutative up to homotopy.
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A commutative diagram

x13y,

lhz lhl (0 1)

Y, 5 X,
is said to be a fiber square induced by f;, A, if up to homotopy one has

X ={y;, y2, 0€Y; x Y, XPXo|f1(J’1)=(P(O)> hi(¥2) =0 (1)}.
h2=P1|X, f2=p2|X

where
p;:Y, xY, x PX,—Y; are the projections.

(0.1) is said to be a fiber square in dim <m iff it becomes a fiber square after apply-
ing Ht,, to the entire diagram. If X is a finite dimensional H-space then H*(X, Q)=
=A(Rnys Knys - oos Xn,)s X, €H" (X, Q) n;<n;4q. Xis thensaid to be of type (ny, n,,...,n,).
Given a vector 7i=(ny, n,,..., n,) of natural numbers we write K (Z, n)=[[i-,:K(Z, n;),
S=TT¢= ™.

In this study we consider G (X) for a finite dimensional H-space. Using exactly the
same (or dual) methods one can obtain similar (or dual) results for H-spaces with
finitely many non-vanishing homotopy groups (or for finite dimensional co-H-spaces).

To state results of this study concerning the structure of G (X') one needs few nota-
tions: If 4 and B are matrices (over any ring R) denote by A4 * B the matrix

A 0

(© 3)

Let X be an H-space of type (ny,n,,...,n,). Hom z(QH*(X, Z)/torsion,
QH* (X, Z)/torsion) can be identified with the set of all matrices (over Z) of the form
A xAg *... %A, A;, being an s;xs; matrix, sy, 5,,...s; uniquely determined by
Ry, Ay, ... n,. Denote all such matrices by # (s, s,,..., 5;3 Z). Given an integer ¢ let

o =2/, be the set of all matrices in . (sy, 5,,..., 5;; Z) which are invertible mod Z,.
Then one has:

Theorem (essentially 2.4). There exists an integer ¢ (=7, in 2.4) and a correspon-
dence ¢: 4/ =s7,— G(X) described as follows: Fix a map 4y:X— K(Z, i) so that
QH* (hy, Z)/torsion is an isomorphism. Given A€/ let fo=1o(4):K(Z, i) —» K(Z, 71)
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be given by H*( f,, Z) l,.,=z,- aijly, A=(aij)- If

y I ox
12 o
K (Z,7) 2> K (2, 7)

is a fiber square then

@ [HL(¥)]=[Y]=¢((4)eG(X) (k=dimX)

(b) QH* (hy, Z)/torsion is an isomorphism where h,: Y — K(Z, 7) is induced by
hihy=h.

Corollary (2.6) £ is onto.

If &: M (g, S25..er S13 Z)—> M (S, S35, 813 Z,) is the reduction it induces homo-
morphism

&:GL(Sq,..., i3 Z) = GL(sy, 83, ..., 55 Z;)

of invertible matrices and (coker&)=[(Z;)/{£1}]' where Z are the units in Z,.
Note that & =a" GL(sy, $35.-.» 81} Z,).

Structure Theorem (2.7) ¢ factors through cokerd to obtain a correspondence
&:[Z}/{£1}]" - G(X) which is onto.

The correspondence is given by

E(dla d2’ seny dl) = 6(561*142*'"*141)

where 1, is the s; x s; matrix given by

I O
La= (0 di)

One also obtains:

H-structure theorem (2.10, compare with [6] and [7] lemma 1.4):

Let X be a finite CW complex. If for every prime p there exists an H-space X(p) and
a p-equivalence f,,: X — X(p) and if H*(X(p), Q) are all isomorphic as Hopf algebras
then X is an H-space.

A Product Theorem (2.11). Let A, A’ex. Then

E(A)x E(A)=¢(I)x¢(A-A)=X xE(A-A).
Consequently if 4;, B;e</ and

A-A, A, =B,"B,- B,
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then
E(Aq) x E(Az) - x E(An) =~ E(By) x £(By) -+ x £(By).

Theorem (2.12). If [Y]eG(X) then

Y¢(t)/2 ~ X¢(t)/2

where ¢ is the Euler function. Finally, one obtains
A non cancellation theorem (3.5 and compare with [1], [2] and [7], p. 83). If
[Y]eG(X) then Yx S"~ X x S™

1. Some Algebraic Lemmas

The following are well known simple facts concerning finitely generated abelian
groups:

1.1. LEMMA:: Let G and G’ be finitely generated abelian groups. If for every prime
p there exists a p isomorphism ¢,:G— G’ then G and G’ are isomorphic.

1.2. LEMMA:: Suppose G=G'. Then ¢:G— G’ is a p-isomorphism if and only if
©®Z, is an isomorphism.

1.3. COROLLARY. Let {¢,|peP;} be a finite family, 9,:G—G' ~G a p-iso-
morphism. Put a=]],cp, p. Then ¢ =Y ,.p, (a'p~1) @, is a Py isomorphism.

Proof. For every po€P; 9®Z,,=ap; ' (¢,,®Z,,) is an isomorphism. Hence ¢ is
a P, isomorphism.

1.4. COROLLARY. If [Y]eG(X) then

(@) H*(Y)~H*(X) and n(X)==(Y).

(b) Let f: Y- X. If n(f)®Z, is an isomorphism for all peP, then f is a P, equiv-
alence.

Throughout this chapter let X be a finite CW-H-space.

1.5. PROPOSITION. If [Y]eG(X) then there exists a partition P=P; UP, and
two maps f;: Y~ X i=1, 2 so that f, is a P, equivalence.

Proof. Choose an arbitrary prime geP. Let f,: Y— X be a g-equivalence. Then
there exists a set P, of primes so that P, =P —P, is finite and f, is a P, equivalence.
For every peP, let f, be a p-equivalence. Let a be the product of all primes in P;.
Iff,: Y- Xis given by [ fi]=[1,cp, [ f,]°/? (where the product represents a product in
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the algebraic loop [Y, X] with an arbitrary bracketing) then by 1.3 =,(f;)=
=Y yep, (@p™') m,(f,) is a P, isomorphism and f; is a P; equivalence.
One notices that P, may be replaced by any larger (but finite) set of primes.

1.6. LEMMA. Given a commutative diagram

T 2y,
,th 11 (1.6.1)
Y, ‘—’Xo

If for i=1, 2 h; and f, are P; equivalences in dim<m, P=P; UP, then (1.6.1) is a
fiber square in dim<m.
Proof. Form the fiber square of f; and f,

72 x
lhx lfx
Y""—’XO

then there exists a:Z— Z’ with h;~hja i=1, 2. f; being P; equivalence in dim<m
implies that 4; is a P; equivalence and as 4; is a P; equivalence so is «. Now, « being
P, and P, equivalence in dim<m is a homotopy equivalence in that range.

Let R be aring. If M= {M,, | 0<n</} is a graded module over R, M,-free of rank
s, then .# (R)=Homg (M, M) can be represented by the set of matrices of the form
A %A %---x2f |, where A, 18 s, X 5, matrix over R and B;*B, is the matrix of the form

B, 0
0 B,

Denote this set by #(sy, s,..., 5;; R). Similarly define GL(sy, s5,..., 5;; R) and
SL(sy, S35.-., 5;3 R) as the invertible and determinant one matrices in
M (81, S35.-.5 513 R). The product *g in M (sy, s,,..., 5;; R) given by

(A1*A2*“'*Az)*g (1‘1\1*11\2*"'*14‘1) = (AI*JI)*(Az*A‘Z)*"'*(AI*A‘I)

corresponds to the natural homeomorphism Hom°(M, M)®Hom" (M, M)—
—» Hom° (MM, M@M). Let X be of type (ny, n,,..., n,). Define sy, s,,..., s, by the
relation

Ry 4524 t5m < ns1+s2+---+sm+1 = gy bsptecetsmtsmet 0 sm< l (1'7)
Put M,,=QH3 i, +..+s,, (X, Z)/torsion and one has

Hom°[QH™* (X, Z)/torsion, QH* (X, Z)/torsion] = # (sy, $3, ..., 53 Z).
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Let ¢ be an integer. Put
a:GL(n,Z) - GL(n, Z,)

Then one has

1.8. LEMMA. GL(n, Z,)/ima=Z}/{+1} where Z} are the units in Z, The
homomorphism GL(n, Z,)— GL(n, Z,)/ima is given by the determinant.
Let &: M (51, S35-.., 513 Z)—> M (Sy,-.., 8,3 Z,) induce

&:GL(sy, S35 ..., 83 Z) = GL(8q, S35 -, 813 Z;)
then

GL (S, S35 ..., 83 Z,)/im& ~ [ZF[{+ 1}].
2. The Structure of G(X)

Throughout this chapter let (X, 1) be an H-space of type i=(ny, n,, ..., n,). To this
one associate the sequence (s, §,,..., s;) defined by (1.7). Let dim X<k. Given an
integer m, m>k let t,,=t,,(G(X)) be the order of the finite group

Y (kero, + cokera,)
n<m

where 6,:7,(X)— PH,(X)/torsion is the Hurewicz-Serre homomorphism.
Another interpretation for #,, can be given by the following

2.1. LEMMA. Let hy:X—>K(Z,7)=[]; K(Z,n;) satisfy: x,=H*(ho, Z) 1,,
1<i<r, represent a basis for QH* (X, Z)/torsion. Let F=fiberhq. Then ordern, (F)=
=order (kero, +cokera, ). Hence, t,,=order Y ,<,, 7, (F).

(Note that cokero,,+; =PH,, ., (X, Z)/torsion=0).

Proof. One has the following commutative diagram

nX) s n(K(Z)
lon(®) . ~ | on(K)
PH, (X, Z)/torsion —— PH, (K (Z, /i), Z)|torsion

As QH*(hy, Z)/torsion is an isomorphism so is its dual 4,,. Hence, kerog,=
kerz,(h,) and cokers,=cokern,(h,) and obviously orderz,(F)=order [kern, (k)
+cokerm, . (ho)]-

2.2. PROPOSITION. Given a set {X, , X,,5.--» Xy }» X, €H™ (X, Z)/torsion which
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reduces to a basis for QH* (X, Z)/torsion and given maps g: Y- Y, f: Y X, (Yand ¥
arbitrary CW complexes of dim<m) so that im[H (g, Z)/torsion] is an ideal in
H(Y, Z)/torsion. For any set {z,,..., 2, }, z,,€H™ (¥, Z)/torsion there exist maps
Ji:¥-X,i=1,2,..., rwithtorsionr,(¥)cker z, (f,) for n<m so that

[H* (f, Z)/torsion — H* (f, Z)/torsion] x,, = t,,[(H* (g, Z)/torsion) z,] (2.2.1)

where f is given by

[F1=0frogl ([fi-1°8]... ([f2o8]l ([F1°8]-[fD-.))

(the products taken in [Y, X ]).

Proof. Let X,,=Ht, (X). As dim Y<m, dim Y<m and m>k one can replace all
maps in [ Y, X] and [¥, X] by the corresponding maps in [¥, X,,] and [¥, X,,]. Con-
sider x,, being in H™ (X,,, Z)/torsion and it suffices to prove relation (2.2.1) for X,,
instead of X. By 2.1 t,,=ordern, (F,) (F, the fiber of X,,— K(Z, 7i)). Hence, 1,[1]
([1]e[K[Zz, A), K(Z, ©)]) lifts to h,:K(Z, 7i)— X, [hooh]=1,[1]. We construct f;
inductively. Suppose fi, f5,..., f;—, where constructed so that if

[ﬂ—-l] =[i-1°8] ([fi-2°8] (---([fl"g]'[f])))

then

* N : _(t.(H*(g, Z)/torsion) z,, j<i
[H*(f.- 1, Z)torsion — H*(f, Z)/torsion] x, ;= {tm (H* (g, Z)ftorsion) z,, j > i

(there is no problem in starting the induction by starting with f,: Y- X being the
constant map and Z, =0). Let f; be the composition

P2 K (Z, n) —5 K (Z,7) —— X
Then torsionn(¥)ckern(f;). Let ( )* denote H*(,Z)torsion. If [ f]]=
=[fiog] [ /i-,] then

S0
* * L I * %
f: xn_; =A (_i;“g X f:—l) M xnj = 20 (i;og) xr,lj,...fi'-lx;l’j,,
s=
where x,,, and x,, , are given by u*x, =)o x,, ®X,, s (X5, 0=Xs,=Xp, s0
Xn,0=1=Xx,, . and for 0<s<s,, 0<dimx,, ,<n; 0<dimx, <n;).
As H"(fiog, Z)/torsion=0 for n<n; and f *x,,=F *h§ 1,,=1,(2,,— Z,,) one has
* * ;s L
[ x=fit 1%, i€ j<i,

ft*xn = j;t 1Xn, + tmg* (zm - Enz)
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and hence for j<i
(ﬁ* - f*) Xn; = (f:* - f;tl) Xn, + (ﬁtl - f*) Xp, = tmg*zn

For j>i (as f*x,,=0 for j#1i) one has

so—1

“.I' = (ﬁ* - f:tl) x"] = Zl .fitlxr’tfj,s(iiog)* x',lj,s
s=

and as im( f;og)*ct, (img*) and as img* is an ideal o€y img* and hence for
i>j (%) x0,=(fF—f2 1) %o +1,8*E,, =1,8*%,, and 2.2 follows.

Let 7,, be the smallest integer divisible by 7,, and by every torsion prime in H* (X, Z).
Let P,,={p|p| i,} and B,=P—P,. Applying 2.2 one obtains:

2.3. PROPOSITION. Let [Y]eG(X). Given a P, equivalence f: Y — X, a set of
integral classes X, X,,, ..., X,, representing a basis for QH* (X, Z)/torsion and a set
Zois Bnyeevs 2y Zn €H™ (Y, Z), there exists a P, equivalence f:Y— X with

[H*(f: Z) —H*(f; Z)] Xn, = sznj + GJ'

where 0 is a torsion element.

Proof. Apply 2.2 for Y=Y, g=1, z, ,= &/t Z,,. Then one has only to show that
f=71is a P, equivalence. (Note that if H*(X, Z) is a torsion free ¢,=f, and then
H*(f,Z)®Z, =H*(f, Z)®Z,, implies that f is a P, equivalence). By 2.2
torsionz ( f;)=0 and hence torsionn ( £ )=torsionz ( f).

Consider the following diagram:

n(f)/torsion

n (Y )/torsion 7 (X)/torsion

n(f)/torsion
IE(Y) lfr’(xy

PH, (Y )/torsion -——f-‘-;:{.—-—» PH, (X)/torsion

(¢ — the Hurewicz-Serre monomorphism).
Now all groups are isomorphic and det[6(Y)]=det[¢(X)]

H*(f, Z)/torsion ® Z,, = H* (f, Z)/torsion @ Z;,

It follows that H* ( f, Z) and its dual £, are P, isomorphisms. Now if G is free abelain
a homomorphism «:G— G is a P, isomorphism if and only if (deta, 7,)=1. Now,

(det £y) (det 6 (Y)) = (det 5 (X)) (det = (f)/torsion)

implies (detf,)=det(xn(f)/torsion) and hence n(f)/torsion is a P, isomorphism.
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As torsionn (f')=torsion=n (1) and = ( f )/torsion are P, isomorphisms so is 7 ( /')
and 2.3 follows. One can construct elements in G(X') as follows:

2.4. PROPOSITION. Let hy: X — K(Z, 7i) realize a basis for QH* (X, Z)/torsion
ie.: x,,=H*(hy, Z) 1, reduces to a basis for QH* (X, Z)/torsion. Given any matrix
A=(a;;)eM(sy, 83,..., 813 Z) with (detd, £,)=1 let fo:K(Z, 7)— K(Z, 7i) be given
by H*(fo, Z) 1,,=Y; a;; 1. Let Y=Y (A)=HI, (Y) where

¥ I ox

2 Lo
K(Z,7) 25 K (Z, %)

is a fiber square induced by hy, f,. Then:

(a) £(4)=[Y]eG(X)

(b) The set {y,,=H" (hy, Z) 1,,} reduces to a basis for QH* (Y, Z)/torsion, where
hy:Y— K(Z, 7i) is the composition

H ()= 7 K(Z 7).

Proof. By 2.1 hyis a §k=P——Pk equivalence in dim<k hence so is k. It follows
that in dim<k Y~ Y~; K(Z, i)~ X. Consequently, Y~ 3 X in dim<k but both
being of dim<k it follows that Y~ 3 X. Now, (detd, f,)=1 implies that A==n(f,)
is a P, isomorphism and hence £, (and consequently f;) are P, equivalences. Again in
dim <k Y~Y¥ and Y~} X and (a) follows. To prove (b) one notices first that in
dim <k one can consider

y L4 x
lh1 lho
K(Z, n) — K (Z, A)

as a fiber square. Further, if [Y]eG(X) then cokeros,(Y)=~cokers,(X) and
kero,(Y)=kero,(X) (as all these groups are finite they involve only a finite set P,
of primes and by the procedure of 1.5 there exists a P, equivalence Y — X which will
yield the desired isomorphisms). One obtains the following commutative diagrams
for n<k

s ™)
W/ m() S mX) N,
(17) un(hx)l lu,.(ho) L (F)

\\(mzw““mmmm?
7zn—l (F)
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where F=fiber f,=fiber f; ~[]; K(Z;,, n;—1) where the matrix diag(4;, 45, ..., 4,) is
equivalent to A. As j, =0 and as the order of ,, (F) is prime to that of =, (F) 7, (j;)=0
and , (f;) is a monomorphism. As ¢, factors through a free group ¢, (torz, (X))=0
and one has a commutative diagram with exact rows

0 — m,(Y)/torsion SELLEN m, (X )/torsion 2 (F)>0
Lon(®) Jon(%) e
0 —» PH, (Y )/torsion ELEN PH,(X)/torsion  — coker f*
Lhae Lo )
0 - PH,(K (Z, 1), Z)[torsion ELLEN PH, (K (Z,7), Z)/torsion — 7, _ (F)
on(K)] » ~ Ton(K) 00,/
0 - m, (K (Z, 7)) LCA2N n, (K (Z, i)

6,(Y) and 6,(X) are monomorphisms.

Cokeré,(Y)~cokero, (Y )~ cokero,(X)~cokerg,(X) are P, torsion groups and
as f, is a P, equivalence f; , and f;. are P, isomorphisms and they induce a P, iso-
morphism coker 6, (Y ) — cokerd, (X) and hence an isomorphism. It follows that the
left upper square in the last diagram is a push out diagram and ¢’ and consequently 4’
are isomorphisms. As /.« is an isomorphism so is 4. and so is its dual QH* (h,, Z)/
torsion.

Again let &: M (sy, Syy.s S5 Z)—> M (Sy, Sppee, 83 Zy) and let &=
=a"1 X GL(Sy, $35..-, 813 Z3,)- 2.4(a) defines a correspondence

£l > G(X). &(I)=[X].

2.5. PROPOSITION. Let [Y]eG(X). Let f:Y — X be a P, equivalence and let
Aesd represent QH* ( f, Z)/torsion. Then

[Y]=¢(4).

Proof. Suppose A represents QH* ( f, Z)/torsion with respect to bases represented
bY X5 eees X Xp,€H™ (X, Z) and y,,, ..., ¥y, Y, € H" (Y, Z). We shall replace f by
a P, equivalence f, QH*( f, Z)/torsion=QH?*(f, Z)/torsion and y,,..., ., by
Vnis---s Y, Tepresenting the same basis as y;,,...,y,. so that if hy:X- K(Z,7),
h:Y— K(Z, n), fo:K(Z,n)— K(Z, /i) are given by

H* (hy, Z) 1,, = x,,, H*(hy,Z) 1, =y,

H*(fo, Z) lng=2j:aij°lnj A=(aij):

then

ho°f~fo°h1'
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In the diagram

r L x
i3 Lo
K(zZ, 7)1 K (Z,7)

fo and fare P, equivalences and as QH (h,, Z)[torsion i=0, 1 are isomorphisms by 2.1
they are P, equivalences in dim <k. Hence, by 1.6 the last diagram represents a fiber
square in dim <k and hence [ Y]=¢(4). Equivalently one has to construct fand find
Vu, SO that

H*(ﬁ Z) Xny = Zaiiy"j‘

First note that without a loss of generality one may assume 4 to be diagonal for
otherwise D= E,AE, where E, are invertible and D-diagonal, D=diag(4,, 45, ..., 4,).
Then if E; ! applied on y, , ..., y,, yields the basis ,,, J,,, ..., 7, and E; applied on
Xn,s--e» Xy, yields a basis X, , ..., X, then

H* (f) Z) (fnn ooy JZ',,,_) = EIAEZEZ_1 (ynp Yngps ooes yn,-) = D(j;nla vy in,-)

So H*(f,Z)X,=);a;;y,, if and only if H*(f,Z)%,=1.7,. So assume
A=D=diag(4y, 25,..., 4,). Hence, it is given that

H*(f; Z) xm == }'iy:u 4 di + Oi’

d;-decomposable and 0, a torsion element. Now (det 4, #,)=1 implies (4;, 7;)=1. Let
1+a;-iy=b"4;. Now apply 2.3 for Z, =a; d;. f then will satisfy

H*(ﬂ Z)xm =H*(f; Z)xm +fka,—di+9,~=liy:,i -+ (1 -+ fka,-) dl+ 9,+ Bi'

As (Order (0i+9i)’ )'i)=1 0i+9i='{1.0; and H* (fl? Z)x,,i=l,(y,’,i+b,-'d,-+0£).
Vn,=Vn +bid; +0; are the desired classes.

2.6. COROLLARY. ¢:4—-G(X) of 2.4(a) is onto.

Proof. If [Y]eG(X) then by 1.5 there exists a P, equivalence f: Y — X and by
2.5 [Y]=¢(A) for some Ae.

It is quite obvious from the definition of £ in 2.4 that if Be GL (s, 55, ..., 5;; Z) then
&(BA)=E&(A). A simple application of 2.3 and 2.5 shows also that for any
CeM (s, S35, 513 Z) E(A+T,C)=E(A). Hence if,

&:GL(Sy5 S35 .05 83 Z) = GL (84, 83, ..., 5 Zy)

then & factors through coker@=(Z,'/{+1})' (see 1.8). Hence, one obtains the following
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2.7. A STRUCTURE THEOREM for G(X). There exists a correspondence
E:(ZX/{£1})' > G(X) which is onto. & is given by

E(dl’ d2’ seey dl) = é('[dl *Idz*“.*Idl)9

d;eZ,, where I, is the s;x s; matrix given by

I 0
I(di’ si) = Idg = (0 d)

By (2.4) it follows that Y~ fiber (§: X - K,) for some map g where K, =[;-; K(Z;, n;)
and the 4;’s are defined by the fact that 4 is equivalent to diag (4, 4,, ..., 4,). Moreover,
if 0;,:H*(,Z)->H*(,Z,,) is the reduction then H*(g, Z,)) i,,=0, X, where
I,.€H,(K(Z,,n), Z;;) is the fundamental class and x,, x,,,..., x, are integral
classes representing a basis for QH* (X, Z)/torsion. Note that given [Y]eG(X) by
1.5 there exists a P,, equivalence f:Y— X and by 2.5 [Y]=¢(4), (detd, f,,)=1.

2.8. PROPOSITION. Let m=2k. Given integers Ay, 4,,..., A, prime to [, and
elements x,,, X,,, ..., X, € H* (X, Z) representing a basis for QH* (X, Z )/torsion, there
exists an H-structure p, for X with respect to which g, x,, are primitive.

Proof. As all A; are prime to all torsion primes of H*(X,Z) H*(X, Z,)~
~H*(X, Z)®Z,,. Replacing each A, by the product A=1,4," --- - 4, suffices to prove
the theorem for A, =4,=--=4,=41.

Denote ( )*=H*( , Z)/torsion. Let X,, be the image of x,, in H* (X, Z)/torsion.
Given any H-structure p of X one has

a
ﬂ*im = im® 1+1 ®£m + Zl ﬁ;u,S®JT’;l,t.S'
s=

Put w,=[*%, =p*x, —%,01-1@%, =iy x, ®x,, then w,=A*®, where
@;e H* (X A X, Z)[torsion and A: X x X — X A X is the reduction. As dimX x X<m,
dim X' A X<m one can apply 2.2 for

Y=XxX, Y=XAX, f=u, g=4.

(and note that imA* is an ideal) and z,,=k®, where k is an integer satisfying
1+7,k=>bA. If f=p, then, as each f; of 2.2 factors through XA X, f; | Xv X=* and
fo | Xv X=p| Xv X. Hence p, is an H-structure. Now,

Ho Ry, = oKy, + F k0, =%, ®1 + 1 @ X, + @, + t,hko,
=%, @1 +1Q%, + bw,.
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As g;x,,=0,%,, (8,: H*(X, Z)/torsion > H* (X, Z,))

H* (10> Z5) QaXn, = H* (1o Z).) 0%,
= é).)‘ém ® 1 + 1 ® é’ling = lem ® 1 + 1 ® len,

and g;,x,, are primitive.

2.9. COROLLARY. If [Y]eG(X). Then Y is an H-space and there exists a Py
equivalence f: Y — X which is an H-map with respect to some H-structure of X.

Proof. By the remarks preceding 2.8 one may replace k by m =2k in 2.7 and then
f1: Y- Xis the fiber of a map g: X - K, K; =[[; K(A;, n;) (s, £21)=1. By 2.8 choosing
the H-structure of X properly g is an H-map and so Yand f; become an H-space and
an H-map. As Hl,,(Y)=HI,(Y)=Y Y and ©": Y- Y admit H-structure and so does

f1=f1°"7'-

2.10. COROLLARY. (See [6]and [7]). Let X be a finite CW complex. If for every
prime p there exist an H-space X(p) and a p-equivalence f,:X— X(p) and if all
H*(X(p), Q), peP, are isomorphic as Hopf algebras then X admits an H-structure.

Proof. Let H* (X, Q)= H* (X (p), Q)R A (5> Xnps---s X, ). As X (SP=8" x S x

x -+« x S™ for almost all primes one may assume that the number of different spaces X (p)
and maps £, isfinite.Now, foreveryp,qeP H*(X (p), @)~ H*(X(q),Q).Hence K (Z, 1) =
=[[i=1 K(Z, n;) admits an H-structure and there exist Q equivalences 4,: X (p)—
— K(Z, i1) which are H-maps. Moreover, using the procedure of [8] one may replace

X(p) by X’ (p) so that h, decomposes into two H-maps - X (p)—-»X (p)——»K (2, n)
where h, is a p- equlvalence and %, is a P—{p} equivalence. The pullback
X’=H,,~pX’(p) is then an H-map, and X'~ ,X'(p)~,X. Hence [Y]eG(X") and

apply 2.9.
Let A, Aes/ =M(sy, 5,..., 513 Z). Then

&A= a(I(dy, sq)*I(dy, s3)%+-+I (d}, ) modim&.
&4 = a(I(dy, s,)*I (d,, 55)%+-*I (d}, 5,)) mod im &

(If A=A A *---% A, then d;=detA4;eZ, and similarly for A; and d)). Tt can be
easily seen that :

E(A) x &(A) = E(Ang )G (X x X)

As I(d;s;) *1(21” s)=IxI(d;-d;, s)=1(d;* d;, 2s;) modim&@ one has &(A*, A=
=§(I*,AA) modim& and therefore

E(A) x E(A) = E(Ax, A) = E(IxgAA) = E(I) x E(4-A).
We thus proved
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2.11. A PRODUCT THEOREM. Let 4, Ac.o/. Then £ (A)x E(A)=XxE(A-A)
and consequently if A;, Bjes/ and if Ay*A,*----A, and B,*B," --- - B,, have the same
image in GL(sy, 8, ..., 8;:Z; )/im& then

E(A1) x £(A4z) X+ % & (An) = E(By) X £ (B,) X+ x £(B,,).

If ¢ is the Buler function then as I(d;, 5;) *™/?>=1I modim&@ one obtains (see [7],
p. 82):

2.12. COROLLARY. For every [Y]eG(X) Y202 xotl2,
Similarly one obtains

2.13. COROLLARY. Let Y be a finite CW H-space if QH"(Y, Z)/torsion#0
whenever QH" (X, Z)[torsion#0 then G(Xx Y)={X} x G(Y).

3. Genus and non-Cancellation

3.1. DEFINITION. (See [5]). Let K be a finite CW complex, P, — a set of primes.
K is said to be P; universal if for every prime g¢P, there exists a P, equivalence
fa:K— K so that H*(f,, Z,)=0.

A space Y is said to be an H,, space if H* (Y, Q) is a free (commutative and asso-
ciative) algebra. If H*(Y, Q)=A(x,,, Xn,>-.., X,,) then Y is said to be of type
ny, ny,..., n,. The following is a generalization of [7] Lemma 1.5:

3.2. PROPOSITION. Let P=P,UP,. Let X,Y,, Y, be finite CW complexes
[ X->Y xY, If Xis an Hy-space, Y;—P,; universal i=1, 2 and if p;of is a P; equiv-
alence where p;: Y, x Y,— Y, i=1, 2, is the projection then f admits a homotopy left
inverse.

Proof. We may assume that P, nP,=0. Let h,: X — X,=K(Z, /i) be a rational
equivalence. Put m=max(n,, dimY, x ¥,). Factor ho:Ht,(X)—X, by maps
hii—1:X;> X;_y, 0<i<s X;=Ht,(X), h; ;—, being the fiber of a map k;: X;_;—
- K(Z,,m;)p;eP. Let «;:Y,;xY,»Y;xY, be given as follows: If p,¢P; let
gi:Y; > Y, be a P, equivalence with H*(g;, Z,,)=0. If p,¢P, let g/ : Y, > Y, be
defined similarly. Let
_ {g: x1 if p;¢P,

Tl x gl if pi¢P,

suffices to find a left inverse for f=o, oa,0-+- oa;ofand one has p;o fis a P, equivalence.
Let y,, =H*(ho, Z) 1,,, (14,5 .- 1,,)EH* (K(Z, 7i), Z) the “fundamental vector”. As
piof is a P, equivalence Ay, eimH* (piof, Z) A, prime to P,. Similarly
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A’Zyllt €im H* (pz Oﬂ Z). As (11, A‘z)=1 A'ly"i’ Azy"i €im H*(j‘, Z) implies
yn€imH*(f, Z). Hence, h, factors through Y;xY,, hy=roof,ro:Y;xY,—
— K(Z, i)=X,. Suppose one obtains inductively the following commutative diagram:

X —L oy, x ¥, ¥, x Y, Y, x Y,

- Yrnes

Htm(X) — Xs hs Pl’Xs-l _;...Xn hn,n-1 ’Xn-l kn)K(Zp”, mn)

Without loss of generality suppose p,¢Py. Then H*(a,, Z,)=H*(g,, Z,)®1=¢®1
(where e: H* — Z ,— H* is induced by augmentation). Hence, one obtains

Y, x Y, e > Y,
Jon I

Y, x Y, 25 X, <K (2, m,)
D200, 410 cagofis a Py-equivalence, and as k,oh, ,_ 1~ %, * ~K,or, 400,00, 00
ossroggof~Fop, o, ot oagof. It follows that F~ *, k,or,_jca,~*andr,:Y; x ¥,
— X, exists so that A, ,_,or,~r,_joa, Comparing ¢@,=r,o0, o -c0sof and
P2=Nps1 nolnia ns1°0hg, s— 1T, there exists w: X —» K(Z, , m,—1) so that w*¢@, ~
~@, (where * denotes the action of [X, K(Z,,, m,—1)] on [X, X,] induced by the
principal fibration K(Z,,, m,—1)— X, > X,_;). But a, ;00,50 cat;of is a P, equi-
morphism, hence, o factors as @oa, ;o oazef, @:Y; x Y, > K(Z, , m,—1).

Replacing r, by @*r,=r, one obtains r,: Y; x Y, = X, and

TpOOyyqomer o f= (65*":’:)°06n+1 0ree Qg A~
~ (ci')ooc,,+1 °"'°as°f)*(rp’;°“n+1 °"'°as°f) ~

~ O¥Py ~ @y = hn+1,n°hn+2.n+l°"' hs,s-lo'rm'

The final step of lifting r;: Yy x Y, > X;=Ht,(X) to r: Yy x ¥, > X with rof~1 is
automatic as dimX<m, dimY;x ¥Y,<m and hence [X,r,]:[X, X]>[X, X,],
[Yl X Yz, ‘L‘m]I [Yl X Yz, X]E‘-)[Yl X Yz, Xs] and Tm= [X, Tm] [1 ].

3.3. LEMMA. Let

x 2y,
hnl ,l,f:

Y, X,
be a fiber square. If X, is an H-space then X- (h1Xh2)ed

fibration.
Proof. Denote py,(x, x’) by x-x’ and if ¢:X— X is the homotopy inverse put

Lf210f1]1
—_—

Y, xY, Xy is a (quasi)
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c(x)=x"1. Now,
X ={ys, ¥2, p€Y; x ¥, x PX, ,f1 (1) =90(0), ()= £2(».)}

and

F={p, y2, 0¥, x Y, x X, | f2(32) f1 (1) ' =0 (1)}

is the fiber of [ f] [f;]™'. Let a: X — F be given by a(y,, ¥2, ®)=y1, y2, a(f; (¥1)) +
¢-f,(y1)"! where a(z) is the homotopy connecting the base point with z-z~*, The

obvious maps X— Y, x Y, and F— Y, x Y, are (Hurewicz) fibrations with the same
fiber QX, and « | QX,=1. Hence, « is a homotopy equivalence.
Combining 1.6, 3.2 and 3.3 one gets

3.4. THEOREM. Given a commutative diagram

X 25,

Imln
YZ_-)XO

Suppose f;, h; are P; equivalences in dim<n, i=1,2, P,UP,=P. If Y, is P, universal
i=1,2, X is an H, space and X, is an H-space then

Y xY,~X x X, in dim<n.

Proof. By 1.6 3.3.1 is a fiber square. By 3.3 one has a fibration

(hy X h2)4

X Y, x Y, > X,
where h; are P, equivalences and one can apply 3.2 to find a left inverse for (h, x h,)4
and 3.3 follows.

Let X be again an H-space of type (ny, n,, ..., n,) and of dimension <k. The set of
primes P, contains all primes involved in H, (X, Z), r,(X) n<2k and coker (m, (X)/
torsion — PH,, (X, Z)/torsion). One can easily see that every map S”— X yielding an
isomorphism of = ( )/torsion is a $,=P—P, equivalence. (Hence P, contains only
regular primes). Let [Y]eG(X) and let f/:Y— X be a P,, equivalence which is an
H-map (see 2.9). Diagonalizing = ( f )/torsion one obtains bases a, ..., a,en (Y )/tor-
sion and b,,..., b,en (X )/torsion so that (n(f)/torsion)a,=4b; A; prime to P,,.
Ifd,en, (Y), b,en, (X) represent a; and b, respectively then n(f) d,=4,6,+0,,0,-a
torsion element. But A; is prime to the torsion primes in =, (X) n<2k hence to the
order of 6, and 8,=1,8,. Replacing b, by b, +§, if necessary one may assume n (1) 4;=
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=J;b,. Hence one obtains the following commutative diagram:

S™My Sy S 2 Ly

S
Mo, v by v g, | h=T]h,, l p
S

v
S"Mv Sy v S

As fis an H-map one can add h=]T; A;,, to the above diagram to obtain a commutative
diagram:

siiy
In ; r
S"5 X

Now fand % are P, equivalences while @ and 4 are P,-equivalences and one can apply
3.4 to get the following:

3.5. A NON CANCELATION THEOREM. (Compare with [1], [2] and [7],
p. 83). If [Y]eG(X) then Y x S~ X x S™.

REFERENCES

[1] Freyp, P., Stable homotopy. Proceeding of the conference on categorical algebra (La Jolla, 1965).
Springer 1966.

[2} ——, Stable homotopy II. AMS, Proceedings of symposia in pure mathematics, Vol. XVII, 1970,
pp. 161-183.

{31 HiLTON, P. J., On the Grothendieck group of compact polyhedra, Fund. Math. 61 (1967), pp.
199-214,

[4] HiLTON, P. J. and ROITBERG, J., On principal S3 bundles over spheres, Ann. of Math. 90 (1969),
pp. 91-107.

[5] MiMURA, M. and Toba, H., On p-equivalences and p-universal spaces, Comment. Math. Helv.
46 (1971), pp. 87-97.

[6] MisLIN, G., H-spaces modp. H-spaces conference, Neuchatel 1970, Springer lecture notes 196.

[7} ——, The Genus of an H-space, Symp. on algebraic topology, Seattle 1971, Springer lecture notes
249, pp. 75-83.

[8] ZADBRODSKY, A., Homotopy associativity and finite CW complexes, Topology 9 (1970), pp.
121-128.

The Hebrew University of Jerusalem, Israel
and Forschungsinstitut fiir Mathematik ETH Zurich, Switzerland

Received July 16, 1973



	On the genus of finite CW-H-spaces

