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Ein Mittelwertsatz fiir Dirichletreihen, die Modulformen
assoziiert sind

VON ANTON GOOD

§1. Einleitung

Bezeichnet { (s) die Riemannsche Zetafunktion, dann gilt
T

f IC(3 +it)>dt ~ Tlog T, T—o0.

0

Hardy und Littlewood [3] bewiesen dies mit Hilfe ihrer approximativen Funktional-
gleichung fiir {(s) [4]. Spater benutzte Ingham [8] die approximative Funktional-
gleichung fiir {*(s) [4] um

T

1
J‘IC(% + it)|4 dt ~ ‘2-——152 T10g4 T, T—)(x) , . (1)
0

zu beweisen. Chandrasekharan und Narasimhan [2] gaben eine allgemeine Methode
an, um von einer Funktionalgleichung fiir Dirichletreihen eine approximative
Funktionalgleichung herzuleiten. Diese wurde von ihnen dann verwendet, um Mittel-
wertsdtze fiir die Dedekindsche Zetafunktion im ,,kritischen Streifen‘ zu beweisen.
Aber in besonderen Fillen konnten solche Mittelwertsdtze auch ohne eine approxi-
mative Funktionalgleichung bewiesen werden. Titchmarsh ([12], p. 134-145) ver-
wendete eine angendherte ,,Modulrelation* und den Tauberschen Satz fiir Integrale
von Hardy und Littlewood um (1) zu beweisen. Auf dieselbe Art bewies Motohashi
[9] fiir die Dedekindsche Zetafunktion eines reellquadratischen Zahlkorpers einen
Mittelwertsatz auf der ,,kritischen Linie*‘.

Gemeinsam an all diesen Dirichletreihen ist, dass sie reelle nichtnegative Koeffi-
zienten haben. Prof. Chandrasekharan stellte mir die Frage, ob Titchmarchs Ver-
fahren auch fiir Dirichletreihen anwendbar ist, die reelle Koeffizienten mit wechseln-
dem Vorzeichen haben, z.B. fiir } >, 7(n) n~*%, wo die Funktion 7 () von Ramanujan
durch

@ 0

z[[-2P=% t(m)", |z <1,

k=1 n=1

definiert ist. Diese Frage wird hier positiv beantwortet:
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Die Reihe )2, t(n) n™° konvergiert fiir Res>64 absolut und definiert eine
analytische Funktion F(s), die in die ganze s-Ebene analytisch fortsetzbar ist. Auf
der ,,kritischen Linie* =6 gilt dann

T

le(6+ it))>dt ~CTlogT, T-o,
0

wobei C eine positive Konstante ist. Dies ist ein Spezialfall des Satzes in §4. An dieser
Stelle mochte ich Prof. Chandrasekharan fiir die Unterstiitzung bei dieser Arbeit
danken.

§2. Hilfssitze I

In diesem Paragraphen werden bekannte Sétze, die spidter gebraucht werden,
ohne Beweis zitiert.

Fiir positive ganze Zahlen N bezeichne I' (N) die nichthomogene Hauptkongruenz-
gruppe zur Stufe N, d.h. I' (&) ist die Gruppe der Transformationen T:z+>(az+b)/
[(cz+d) der oberen Halbebene Imz>0 in sich mit ganzen Zahlen a, b, ¢, d und
ad—bc=1, a=d=1 (modN), b=c=0 (modN).

Sei k eine positive ganze Zahl und H (z) eine ganze Spitzenform der Art (—k, N)
im Sinne von Hecke [7], d.h. H(z) ist fiir Imz>0 eine analytische Funktion und er-
fullt fiir alle 7z (az+b)/(cz+d) in ' (N) die Gleichung

H(“Z T b) (cz+d)* = H(2).

cz+d
Ferner besitzt dann H(z) an allen beziiglich I'(N) indquivalenten Spitzen eine
Fourierentwicklung mit Periode N, in der alle nichtpositiven Koeffizienten verschwin-
den. Also gilt insbesondere
H (Z) — Z an eZninz/N’

n=1

-1

Ho(2) = (i)™ H(__;) = 5 e, @

Unter den zu H(z) assoziierten Dirichletreihen verstehen wir
@ L o]
F(s)= ) an™° und Fo(s)= ) bn"".
n=1 n=1

LEMMA 1. (Hecke [6]). (a) Die einer ganzen Spitzenform H(z) der Art (—k, N)
assoziierten Dirichletreihen F(s) und F(s) konvergieren fiir Res>% (k+ 1) absolut.
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(b) F(s) und F,(s) sind ganze Funktionen und geniigen der Funktionalgleichung

(ng’f)_ I(s)F(s) = (fv—”)s-k I (k = 5) Fo (k — 5).

LEMMA 2. (Rankin [11]). Fiir die Koeffizienten einer ganzen Spitzenform H (z)
der Art (—k, N) gilt:

Y la,)? = Ax* + 0 (x*72/%)
n<x

und

z |bn|2 — Axk+0(xk—2/5)

n<x

(47I)k_ 1

A=12
GN*r (k + 1)

jj |H (x + iy)]* Y 2 dx dy,
D

wobei D ein beliebiges Fundamentalgebiet von T (N) in der oberen Halbebene z=x+1y,
>0 und G der Index von T (N) in I (1) ist:

N? 1
G=— ] (1—-7), o=% fir N=1,2 und 9=1 fir N>2.
20 pIN

pprim

LEMMA 3. (Hardy [5], p. 166). Sei C>0. Ist f eine nichtnegative messbare
Funktion auf dem Intervall [1,00), sodass fiir 6>0

ff(t) e dt <oo
1

und

‘[f(t)e—‘”dt~CT, 610,

T
ff(t) dt ~CTlogT, T—>.
1
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§3. Hilfssiitze I
Fiir den Beweis des Satzes brauchen wir noch folgende Lemmata:

LEMMA 4. Sei k eine positive ganze Zahl und C>0. Ist f eine nichtnegative
messbare Funktion auf dem Intervall [1, ), sodass fiir >0

ff(t) #le ¥ dt <o
1

und

1
log -

Jf(t) =le ¥ gt = c_g,;f +0@67%, él0

dann gilt
1
log -

C 0
e *dt= +0(57! 610.
ff()e S TR N T

Beweis. Wir verwenden volistindige Induktion nach k. Der Fall k=1 ist klar.
Sei also

1
log -

1
ff(t)t"e"‘dt C—5FT+O(5k+1) fir 0<d<J,

Dann ist fiir 0<n<d,

1
% Jog - do o

J‘daff(t)t"e"‘”dl‘—c —Skii— O(J;i)
n n (3)

1 %o 1
lOg— ) log_
¢ ( 6_1 . C_n .
=T I ok 0 (o kldoy_ —. 0 k .
F "rt/|, TN = 0@
Andererseits ist nach der Theorie der Laplacetransformation
do © - o
fdé ff(t) e de = j SO e di - ff(t) 1 em% g,

L)
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also nach (3)
1

c %y /1

- n

f@O & e ™dt= —r+0( ) nlo0.

J ) ) 7"

Mit der Induktionsvoraussetzung ergibt sich nun die Behauptung.

LEMMA 5. Sei (c,);~1 eine Folge reeller, nichtnegativer Zahlen. Sei C>0,
B>0, e>0. Wenn

”gx ¢, =Cx*+0(x*%, x-oo, 4)
dann gilt

21 c,n ¥e P =kC log—; +0(1), BloO,
und fiir 1<k

3 ane =0, plo.

Beweis. Durch partielle Integrationen ergibt sich fiir /<k mit (4)

i c,n e P = ﬁj (Z c n") e % dx

= n<x

=p (x fy"" Y e, dy) e P dx
n<y

8 R 8

o(x*+1 f{Cy" lpo@preh) dy) ~P* dx

18HL

(
=B (o k')+ley""dy) e P* dx

[

ﬂf(O(l)+lClogx)e"”"dx, fir 1=k,

1
"

B J 0(x*") e P*dx, fir I<k.
1
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Nun ist

e o)
ﬁfx""’ e P ax = | (2
1
und

(E) Cevdy< ﬁ’""fy"“ edy=0(8", BloO

= S 8

1
ﬁf {0(1)+IClogx} e dx = j {O ()+1IClogy + IC logﬁ} e ’dy.
1

Da
f logye Y dy=—1y,
0

y die Eulersche Konstante und

[« o]

fe"’dy=1+0(/3), 10
B

ist das Lemma bewiesen.

LEMMA 6. Mit den Bezeichnungen von Lemma 1 ist fiir 0<d<n/2

1 k k
- (n—26)t r{= it JFR(Z it
o f e (2+1) (2+1)

_ (3’_‘>k jf (1H (= ve™) + |Ho ()2} &~ do.

2 2

dt

N

Beweis. Nach [6] hat F(s) fiir Res>4(k+1) folgende Darstellung

> o]

(%) rere- j HO) ™ dy = [HO) WY @) ©

Fiir ein festes 8, 0<d<n/2, fiir v>0 und z= —ve™ % gilt wegen den Reihenentwick-
lungen (2)
H(Z)= O(e-Znu siné/N)’ v — 00 ]
H(Z)= O(U-k e-—2n/stin6), v—0 ( )
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Deshalb dndert sich nach dem Satz von Cauchy das Integral (5) nicht, wenn wir
in der komplexen z-Ebene anstatt ldngs der positiven imagindren Achse, lings einer
Halbgeraden z= —ve™ %, v>0, & fest, 0 <5 < /2, integrieren, und alle diese Integrale
konvergieren fiir jede komplexe Zahl s=0+it absolut. Also ist

(%) rore=ee j H (= ve™) (= ve™) ™ (= e ™) dv

o)
— ei(n/Z—J)SJ.H(_ ve—i&) Us-—l dU.
0

G(s)=(2n/N) 5 e!@®~®/s [ (5) F(s) ist also die Mellintransformierte von
H(—ve™%). Mit der Stirling’schen Formel

1
IT (o + it)] = (2n)"/2 e~ /DM g~ 1“(1 +0(I I)) lt| - o0, (7

gleichmadssig fiir — o0 <06,<0<0,; <0, folgt aus Lemma 1 (b) und dem Phragmén-
Lindel6f Prinzip, dass

k
F<§+ it)=0(|t|1/2+8), e>0, |t| > o0, ®)

Da nach (6) fiir festes § H(— e~ %) ¢*/? als Funktion von u=1logv, und nach (7), (8)
G (k/2+it) als Funktion von ¢ L,-summierbar sind, liefert der Satz von Plancherel
o0

1 27\ 7k k k 2
. - (—20) _ . - it
o (N) e F<2+lt> F(2+z>

Mit #=1/v und der Funktionalgleichung (2) erhalten wir

2

dt =J |H (= ve ™) o* ! dv.
° €))

jIH( e ) dv= H ( ) u ¥ ldu = T |Ho (ue®)|> v* " 'du.

Dies ergibt mit (9) die Behauptung.

LEMMA 7. Sei H(z) eine Spitzenform der Art (—k, N) mit Koeffizienten (a,),- 1
(b)r=y in (2) und A die Konstante von Lemma 2, dann ist fiir k> 1
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J {lH (— ve™")|* + [H, (ve®)|?} v* 1 dv
1

=2I'(k +1) (ZI—Z)k A(26)7* <1og:2-15 + 0(1)), 510.

Beweis. Fir den Beweis brauchen wir von H(z), respektive H,(z) nur das
asymptotische Verhalten von <, |a,|?, respektive ¥ ,<, |6,/%, das nach Lemma 2
fiir (@,),=; und (b,),= dasselbe ist. Es geniigt also zu zeigen, dass

JIH( ve ) ldv=r(k+1)4 <4N5)k(log-21—6+0(1)), 510.

Da die Doppelreihenentwicklung von |H (—ve™'?)|? absolut konvergiert, diirfen wir
die Summation und Integration vertauschen. Wenn wir dann noch k-mal partiell
integrieren, erhalten wir

f!H(—ve“")I’v""dv= Z j exp(——v[me B im e"’])dv
1 n,m=1

= Z a,d.,lexp| (— 2—NE [(n + m)sind + i(n — m) cos&])

n,m=1
k

) (k=1 (k=2)(k=1+1) (10}

- (2 [(n+ m)sind + i(n—m) 0085])

Der Hauptterm auf der rechten Seite von (10) ist

4 rk
Zla,flexp (-— Wn n siné) —4—&———,‘-

(jnsiné)
N
rao( Y la2(n~* 4”nsin5)
=I'(k) 4n sin 6 L W
n=1
N\ N
=) [—) (k41 o1
(k) (41:5) ( o8 (41: sin 5) +0( ))

=T (k+ 1)A(4N5)k <Iog515+0(1)), 510,
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nach Lemma 2 und 5. Das Lemma ist bewiesen, wenn wir zeigen, dass alle iibrigen
Terme auf der rechten Seite von (10) von der Ordnung O (6~ %) sind:
Nach Lemma 2 und 5 ist fir 1 </<k

© 4n 4n -t o 4n
2 — e gt 1 e p s — -1 2, -1 .
Y Ia,,lexp( 7 sin ) (N n s1n5> 0(s )nglla,,ln exp( N smé)

n=1
=008 M=0(0"%, él0,
und fiir 1 </<k

o exp<_i_z[...])

2
% m—1 exp(—%(m+n)sin6>
o lan m‘ . . 1/ =
|(n + m)sind + i (n — m) cos §|

m=2 n=1

o med exp _?.l’(zm_r)sina)
(5§ e enms)).

(r cosd)

=0

m=2 r=1
[¢ o]

—O(Z Z |4 @ e — ,lexp(——«(2m——r)sm6)> 410.

m=r+1
Nun gilt fiir die innere Summe

@ 2n . 2 @ 7
( Z (@G| exp(—l—v—(2m-—r) smé)) < Z [@ml

m=r+1 m=r+1

4 o 4
X exp(— I—VT—t m siné) Z |am_r|2 exp(-— I_VE (m —r) sin5> =

m=r+1

4
=0(67% 2 |a,,|? exp(—— ﬁn m siné) =0(@"%), wenn 6}0.

m=r+1

Damit ist X;,=0(67%), fiir 1 <I<k. Sodann gilt

o (- ]) ,
Z a,d, ( f |H (— ve™ )| do.
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Nach Hecke [7] Satz 5 gilt fiir Spitzenformen

fir vsind <1

. 1
H(-ve ) =0——],
1 (= ve™) ((v siné)")
und nach (6)

4
|H (— ve ?))? = 0(exp(— ﬁn v sin5)>, fir vsiné>1.

Diese Abschitzungen ergeben fiir k>1

0 1/siné ©
J |H (— ve )2 dp = f |H (— ve™)|* dv + J |H (—ve™ )| dv
1 1/siné
1 d 4
=0(37‘)J’5§+0( J exp<—ﬁnvsin6)dv)
1 1/siné

ofg)eoy-of e

womit das Lemma bewiesen ist.
§4. Ein Mittelwertsatz
SATZ. Seien k und N positive ganze Zahlen. Sind (a,),~- | die Fourierkoeffizienten

einer Spitzenform H(z) der Art (—k, N), so gilt fiir die ganze Funktion F(s), die fiir
Res>4(k+1) durch F(s)=) - a;n"* definiert ist wenn k> 1.

oo

wobei C=2kA und A die Konstante von Lemma 2 ist:

2
dt~CTlogT, T—o0,

Oty

(4m)+1

A=12
GN*T'(k+1)

JIH(x +iy)l* Y~ dx dy,
D

G=Ordnung von T (1)/T'(N) und D ein Fundamentalgebiet von I (N) ist.
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Beweis. Nach Lemma 6 und 7 ist

r(® i) (54 u
2T T

1
- 2A(?]§>k (%)k r(k+1) 1052%? +0(™%), slo.

Nach Stirlings Formel (7) und (8) ist

r(% i) F(E 4
2 ’) 2!

also nach Lemma 4

2

dt

1

J e(n —20)t

- 0

2
dt=0(1), fir 60,

1 k k

o t—k+1 (c—26)t I'v - -t . F - + -t

ZnJ ¢ p T 2!
1

Ik + 1) log—
83 1

=24 % 5+0<5)=C(25)”1(log21~5+0(1)), 510.

2 2

dt

Wieder mit (7) erhalten wir

F k + it
2
1
1 k.
1
Nach (8) ist voerst fiir jedes ¢>0
N 2 dt [
‘HF(~ + it) e ¥ _ = 0<j t° e~ 2% dt>
2 t
1 1

=0(6"1—“Jtae—‘dt)=0(5_1—“), 510,

25

2

1
=28 gy _ € (26) ! log —
e (29) 085

2 dt
e—ZJt _t_). (11)
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womit (11)

[+ ¢}
F k + it
—+ i
2
1
liefert. Mit der Ungleichung von Schwarz ergibt sich nun fiir den zweiten O-Term
in (11) die verbesserte Abschitzung
e 2% dtJ‘ ,F( + n‘)

(e of =)< e of

=0(57179) O(J §Vk g2k dt) =057 1"%), s}0.

1

2

e dt=0(5"1"")

dt

e 2% .
t

Waéhlen wir <1, erhalten wir

Fl-+it
JFGo)
1
nach Lemma 3 also die Behauptung des Satzes:
T T
k 2 k 2
Fl-+it) dt=||F|=-+it
JPG ) =[G -2)
0 1

KOROLLAR 1. Nach einem allgemeinen Mittelwertsatz von F. Carlson [1] iiber
Dirichletreihen folgt nun sofort (siehe auch Potter [10]), dass fiir 6 > k/[2

og—
20
e ¥ dr=C

1, élo,

dt+0(1)~CTlogT, T-oo.

T

fIF(a+ii)|2 dt~T(uZ |a,%|n‘2‘), T-o.
=1

0

KOROLLAR 2. 4(z)=Y2 t©(n) €™ ist eine Spitzenform der Art (—12,1) mit
ganzzahligen Koeffizienten. Also gilt fiir die in der Einleitung erwdhnte Funktion F(s)

f |F (6 + it)|* dt ~ CTlog T, T—o0,

24(47‘)11 2 .10
C=—-—"— A4 i dx dy.
ey || 146+ 0P ¥ dxay
D
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