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Ein Mittelwertsatz fur Dirichletreihen, die Modulformen

assoziiert sind

von Anton Good

§1. Einleitung

Bezeichnet Ç (s) die Riemannsche Zetafunktion, dann gilt

• it)\2 dt ~ Tlog T, T-*oo

Hardy und Littlewood [3] bewiesen dies mit Hilfe ihrer approximativen Funktionalgleichung

fur Ç(s) [4]. Spâter benutzte Ingham [8] die approximative Funktionalgleichung

fur £2 (s) [4] um

(1)

zu beweisen. Chandrasekharan und Narasimhan [2] gaben eine allgemeine Méthode
an, um von einer Funktionalgleichung fur Dirichletreihen eine approximative
Funktionalgleichung herzuleiten. Dièse wurde von ihnen dann verwendet, um Mittel-
wertsâtze fur die Dedekindsche Zetafunktion im ,,kritischen Streifen" zu beweisen.
Aber in besonderen Fâllen konnten solche Mittelwertsâtze auch ohne eine approximative

Funktionalgleichung bewiesen werden. Titchmarsh ([12], p. 134-145) ver-
wendete eine angenâherte ,,Modulrelation" und den Tauberschen Satz fur Intégrale
von Hardy und Littlewood um (1) zu beweisen. Auf dieselbe Art bewies Motohashi
[9] fur die Dedekindsche Zetafunktion eines reellquadratischen Zahlkôrpers einen
Mittelwertsatz auf der ,,kritischen Linie".

Gemeinsam an ail diesen Dirichletreihen ist, dass sie réelle nichtnegative Koeffi-
zienten haben. Prof. Chandrasekharan stellte mir die Frage, ob Titchmarchs Ver-
fahren auch fur Dirichletreihen anwendbar ist, die réelle Koeffizienten mit wechseln-
dem Vorzeichen haben, z.B. fur ££.t % (n) n~s9 wo die Funktion r (n) von Ramanujan
durch

definiert ist. Dièse Frage wird hier positiv beantwortet:
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Die Reihe XJLit(ji)/T* konvergiert fur Re^>6i absolut und definiert eine

analytische Funktion F(s), die in die ganze .s-Ebene analytisch fortsetzbar ist. Auf
der ,5kritischen Linie" g=6 gilt dann

\F(6 + it)\2 dt ~ CTlog T, T->oo,

wobei C eine positive Konstante ist. Dies ist ein Spezialfall des Satzes in §4. An dieser
Stelle môchte ich Prof. Chandrasekharan fur die Unterstiitzung bei dieser Arbeit
danken.

§2. Hilfssâtze I

In diesem Paragraphen werden bekannte Sâtze, die spâter gebraucht werden,
ohne Beweis zitiert.

Fur positive ganze Zahlen TVbezeichne T (N) die nichthomogene Hauptkongruenz-
gruppe zur Stufe N9 d.h. T(N) ist die Gruppe der Transformationen T:zt->(az + b)l
l(cz+d) der oberen Halbebene Imz>0 in sich mit ganzen Zahlen a, b, c, d und

ad-bc=l, a=d=l (modiV), b c 0 (modN).
Sei k eine positive ganze Zahl und H(z) eine ganze Spitzenform der Art (—k,N)

im Sinne von Hecke [7], d.h. H{z) ist fur Imz>0 eine analytische Funktion und er-
fùllt fur aile T:zt-+(az+b)/(cz+d) in T(N) die Gleichung

Ferner besitzt dann H(z) an allen beziiglich T(N) inâquivalenten Spitzen eine

Fourierentwicklung mit Période N9 in der aile nichtpositiven KoefBzienten verschwin-
den. Also gilt insbesondere

£ ane2ninz/N9

H0(z) (-iz)-fcH — S bn

\ z J w=i

Unter den zu H{z) assoziierten Dirichletreihen verstehen wir

F{s)=£ ann~s und F0(s)= f bnn~\
1 ïfn=ï

LEMMA 1. (Hecke [6]). (a) Die einer ganzen Spitzenform H(z) der Art (-k,N)
assoziierten Dirichletreihen F(s) undF0(s) konvergierenfiir Res>%(k+1) absolut.
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(b) F(s) und Fo (s) sind ganze Funktionen und genugen der Funktionalgleichung

(^j kr(k-s)Fo(k-s).

LEMMA 2. (Rankin [11]). Fur die Koeffizienten einer ganzen Spitzenform H{z)
der Art (-k, N) gilt:

und

mit

A 12
GNkr(k

wobei D ein beliebiges Fundamentalgebiet vonT(N) in der oberen Halbebene z x+iy9
y>0 und G der Index von T(N) in T(l) ist:

N3 1\
G — Yl U —2 ' Q i fUr N ^ 2 ww^ ^ 1 /"r ^ > 2 •

2^ p | jv \ JP /
p prim

LEMMA 3. (Hardy [5], p. 166). Sei C>0. Ist f eine nichtnegative messbare

Funktion auf dem Intervall [1, oo), sodass fur ô > 0

î

und

log-

i

r
J f(t)dt~CTlogT, r->oo.
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§3. HilfssâtzeD

Fur den Beweis des Satzes brauchen wir noch folgende Lemmata:

LEMMA 4. Sei k eine positive ganze Zahl und C>0. Ist f eine nichtnegative
messbare Funktion auf dem Intervall [l,oo), sodassfur ô>0

ou

f

und

r log

dann gilt

r(k) ô
510.

Beweis. Wir verwenden vollstândige Induktion nach k. Der Fall k—l ist klar.
Sei also

log:
S / i \

fur O<<5<<50

Dann ist fur

ÔQ 00 ôo

80

k

(3)

«'"~*"7
Andererseits ist nach der Théorie der Laplacetransformation

»0 oo °o

n 1
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also nach (3)

log-
,10.

Mit der Induktionsvoraussetzung ergibt sich nun die Behauptung.

LEMMA 5. Sei (cn)^°=1 eine Folge reeller, nichtnegativer Zahlen. Sei C>0,
p>09 e>0. Wenn

x->oo,

dann gilt

undfiir l<k

n=l

Beweis. Durch partielle Integrationen ergibt sich fur l^k mit (4)

n=l
dx

n**x
1 1

J? f (o(jc*-f)+/ j {Cyk-l~l + Oi/-*"1-1)} dy)

1 1

oo

f (O(l) + lClosx)e-"dx, fur / A:,

i
00

P f 0{xk"l)e'§xdx9 fur l<k.

(4)

dx
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Nun ist

ANTON GOOD

-<e-'*rfx jS J. 0

und
oo oo

p\{0 (1) + IC logx} e~*" dx F W (1) + 7C logj> + IC \og-X e~y dy.
1

00

7 die Eulersche Konstante und

ist das Lemma bewiesen.

LEMMA 6. Mit den Bezeichnungen von Lemma 1 ist fur 0<<5<rc/2

dt

Beweis. Nach [6] hat F(s) fur Res>i(k+l) folgende Darstellung
00 00

C^\ °r(s) F (s) f H(O0 /-1 dy e->W2)s [ HO» (iyy-1 d(iy). (5)

0 0

Fur ein festes ô, 0<ô^n/2, fur u>0 und z=*—ve~iâ gilt wegen den Reihenentwick-
lungen (2)

(6)



Ein Mittelwertsatz fiir Dirichletreihen 41

Deshalb ândert sich nach dem Satz von Cauchy das Intégral (5) nicht, wenn wir
in der komplexen z-Ebene anstatt lângs der positiven imaginâren Achse, lângs einer

Halbgeraden z= — ve~iô9 v>09 ô fest, 0<<5^tc/2, integrieren, und aile dièse Intégrale
konvergieren fur jede komplexe Zabi s a + it absolut. Also ist

2?^ r{s)F(s)

oo

e-iW2)s f H(- i dv

G(s) (2nlN)-sei(ô-(n/2))sr(s)F(s) ist also die Mellintransformierte von
H(-ve~~iâ). Mit der Stirling'schen Formel

it)\ (2n) lf2 e~ 0 Q), ¦oo, (7)

gleichmâssig fur — oo<(j0^(T<(71<oo5 folgt aus Lemma 1 (b) und dem Phragmén-
Lindelof Prinzip, dass

8>0, (8)

Da nach (6) fur festes ô H{-eu~iô) euk/2 als Funktion von w logt;, und nach (7), (8)

G(k/2-hit) als Funktion von t L2-summierbar sind, liefert der Satz von Plancherel

+ ft

Mit u=l/v und der Funktionalgleichung (2) erhalten wir

1 00 00

f |iï(_ ve~iô)\2 v*-1 dv=ï H (^lYu-*-1 du f \H0(ueiô)\2 u^'
0 1

(9)

Dies ergibt mit (9) die Behauptung.

LEMMA 7. Sei H(z) eine Spitzenform der Art (-k,N) mit Koeffizienten

i *n (2) und A die Konstante von Lemma 2, dann ist fur k>\
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oo

f - ve-")\2 + \H0(vels)\2} f*"1

ir (k +1) ¦*(iogl+o(i)), no.
Beweis. Fur den Beweis brauchen wir von H(z), respektive H0(z) nur das

asymptotische Verhalten von ^n<JC \an\2, respektive Yn^x l^nl2» das nach Lemma 2

fur (an)£L und (bn)™= t dasselbe ist. Es genûgt also zu zeigen, dass

oo

j \H(- ve-'W S'1 dv T(k + 1)a(J^ Lg± + 0(l)\ S 40.
1

Da die Doppelreihenentwicklung von \H{—ve~iô)\2 absolut konvergiert, durfen wir
die Summation und Intégration vertauschen. Wenn wir dann noch fc-mal partiell
integrieren, erhalten wir

00 00

n,m-l 1

oo

\ anâm|exp| (---[(« + m)sin <5 + i (n - m) cos 5] j
h, m— 1

i=i — i(n + m) sin o + ï (w — m) cos <5J 1

\iV /
Der Hauptterm auf der rechten Seite von (10) ist

(10)
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nach Lemma 2 und 5. Das Lemma ist bewiesen, wenn wir zeigen, dass aile ùbrigen
Terme auf der rechten Seite von (10) von der Ordnung O(ô~k) sind:

Nach Lemma 2 und 5 ist fur 1 <l<k

(An \ (An X~l
El^lexpl --wsin<5j(-^sin<5

(An \ (An X~l °° / An \l --wsin<5j(-^sin<5j O(S~l) £ |an2K'exp( - - n sin<5j

und fur

exp I - ¦

N

l<V*ml
\{n + m)sin<5 + i(n — m)cosô\1/

m 2 n=l

r=l

r=l m r+l

Nun gilt fur die innere Summe

\ 2 oot |amaM_r|exp(-^(2m-r)sin5)) < f |aj
l \ JV // m=r+l

2

£ |am_r|2 exp( --^(m - r)si

0(5"*) £ Kl2exp(- — msinô =0(<T2*),
m=r+l \ N

Damit ist r,=O(<T*), fur l</<)fc. Sodann gilt

wenn
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Nach Hecke [7] Satz 5 gilt fur Spitzenformen

\H(-ve-iô)\2 o( * Y fur vsinô^l

und nach (6)

p(-~vsmô\), fur
V N

Dièse Abschâtzungen ergeben fur k> 1

l/sin<5

f
/

[\H{-ve-ii)\zâv= f |//(-t)e-w)l2dy+ [ |JÏ(- oe"")!2
1 1 l/sina

"°(?)J?+0( ï
i

de

1/sind

womit das Lemma bewiesen ist.

§4. Ein Mittelwertsatz

SATZ. Seien k und N positive ganze Zahlen. Sind (^n)^°=i die Fourierkoeffizienten
einer Spitzenform H(z) der Art {—k, N), so gilt fur die ganze Funktion F(s), die fiir

durch F(s)=Y*=i an^~s definiert ist wenn k>\.

dt~CTlogT9 T-+00,

T

f F(- + it\
o

wobei C=2kA und A die Konstante von Lemma 2 ist:

G^Ordnung von T(l)IT(N) und D ein Fundamentalgebiet von T(N) ist.
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Beweis. Nach Lemma 6 und 7 ist

45

dt

2A
KNJ \2nJ " - ¦ ' (2ôf

Nach Stirlings Formel (7) und (8) ist

fur

also nach Lemma 4

dt

1

20

Wieder mit (7) erhalten wir

KH

Nach (8) ist voerst fur jedes e>0

00

i dt;0{ô h

(H)
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womit (11)

ANTON GOOD

liefert. Mit der Ungleichung von Schwarz ergibt sich nun fur den zweiten 0-Term
in (11) die verbesserte Abschâtzung

1+t e"2o or1"*) o( i

Wâhlen wir £<•£, erhalten wir

dt\ o(ô-1-2e), <5 ; o.

2d

nach Lemma 3 also die Behauptung des Satzes:

dt + O (1) - CTlog 7\ T-+QO

KOROLLAR 1. Nach einem allgemeinen Mittelwertsatz von F. Carlson [1] uber
Dirichletreihen folgt nun sofort (siehe auch Potter [10]), dassfiir a>kj2

T

o

KOROLLAR 2. A 00=17= i *(") e2ninz ist eine Spitzenform der Art (-12,1) mit
ganzzahligen Koeffizienten. Also giltfur die in der Einleitung erwâhnte Funktion F(s)

T

I \F(6 + it)\2dt~CTlogT,

c
24(47r)n

iy)\2y10dxdy.
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