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Equivariant Function Spaces and Stable Homotopy Theory I

J. C. BEckerl) and R. E. SCHULTZ %)

Let F(S") denote the space of self-maps of the n-sphere with the compact-open
topology and the identity as its basepoint. Results of Dold and Lashof [10] and
Stasheff [27] show the importance of F(S") in the classification of fiber spaces with
fiber (homotopically equivalent to) S”, and because of this the topological properties
of F(S™) yield (or should yield, at least) considerable information about the topology
of manifolds. Actually, for purposes of studying manifolds it is preferable to replace
the spaces F(S™) by a so-called stable version. To construct this, we embed F(S") in
F(S"*1) via the unreduced suspension functor and set

F = inj lim, F(S*¥).

(In the literature, this space is usually called G; however, we shall soon find it conve-
nient to let G designate a compact Lie group).

If we are given an action of a compact Lie group G on S”", we shall let F;(S")
denote the subspace (submonoid, in fact) of all self-maps of S" that are equivariant
with respect to the given actions of G; we shall restrict our attention to group actions
given by free orthogonal representations (see §3). In this paper we shall study the
homotopy properties of these spaces F;(S™) and their corresponding stable versions.
Perhaps the most interesting consequence of our work is a relationship between the
stable versions of the spaces Fg(S") and stable homotopy theory that generalizes
the fundamentally important natural isomorphism

0X:[X, F] ~ {X, §°}

essentially due to G. Whitehead [32], where [ , Jand { , } denote homotopy classes
of ordinary maps and S-maps respectively and X is a CW complex.

Just as the spaces F(S") and F and the isomorphism X are applicable to the
topology of manifolds, the spaces Fg (S"), their stable analogs, and the results of this
paper are applicable to the study of manifolds with G-actions. Applications of our
results along these lines appear in [35] and [36].

We wish to thank Mark Mahowald for suggestions which contributed substan-
tially to the formulation of our results.

1) Partially supported by NSF Grant GP-34197
2) Partially supported by NSF Grant GP-19530
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1. Introduction

We shall describe some of our results more precisely in this section. Let G be a
compact Lie group and W a free G-module (see §3). Let S(W) denote the underlying
unit sphere of W. If V is a submodule of W, we denote by F(V[ W) the space of
G-equivariant maps S(V*)— S(W), where V* is the orthogonal complement of ¥
in W.If W’ is another free G-module, then S(W® W') is equivariantly homeomorphic
to the join of S(W) and S(W’); furthermore, the orthogonal complement of V in
WeW' is V*@W'. Hence the join functor induces an inclusion of F(¥ | W) in
F(V| WeW'). We define

F(V)=injlim F(V| kW),

where kW denotes the k-fold sum of W with itself and V is included in the first
factor. If V is the trivial G-module {0} we write F in place of F({0}).

Our main result (Theorem (6.6)) gives a description of F(¥) as a space constructed
from the classifying space of G in a natural way. For example, F; is describable as
follows: let B, be a classifying space for G with total space Eg, let ® be the Lie algebra
of G and G act on ® via the adjoint representation; the balanced product of E; and
® is a vector bundle over BG which we shall call { and whose Thom space we shall
call B%. Then F is homotopy equivalent to Q (B%), where Q (Y) is defined for pointed
spaces Y by

Q (Y) = inj lim, Q*S*Y .

The homotopy equivalence is best understood using its alternate stable homotopy
theoretic interpretation. Namely, under the canonical natural isomorphism

0x:[X, Q(Y)] = {X, Y}
it takes the form of a natural isomorphism
oX:[X, F;] = {X, BG*}.

If G is the trivial group, then @X is essentially the same as the previously mentioned
0X.

There are many generalizations of the spdces Fg, and it is natural to ask whether
they too are describable as Q (Y) for suitable choices of Y. We mention two results
in this direction:

(1) If G is finite and acts orthogonally on its real group algebra via the regular
representation, the homotopy type of F; is essentially given by results of Graeme
Segal [25, Prop. 2 and Corollary to Prop. 7]. Using the techniques of [24] one can
derive special cases of Segal’s results from some of our results and vice versa.
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(ii) Suppose G is finite and acts freely and topologically on S”; results of R. Lee
[17] and T. Petrie [22] show that some finite groups admit such actions (smooth
actions, in fact) but not linear ones. In this case one can still define F; and prove
analogs of our results. Details will appear in Part II of this paper.

Sections 2 through 4 contain preliminary material on ex-spaces, vector bundles,
and the transfer map for fiber bundles. Our main results are stated in Sections 5
and 6; some of the more technical arguments are postponed to Sections 7, 8, and 9.
Finally, we consider the following problem: If H is a closed subgroup of G, there is
an inclusion of F; in Fy because every G-equivariant map is automatically H-equiv-
ariant; determine the image of n,(Fg) in =, (Fy). The last three sections (10-12)
contain some quantitative results on this problem.

2. Sectioned Bundles

Let B denote a locally finite CW-complex. In the terminology of James [14], an
ex-space of B is an object &{=(E,, B, ps, 4,) consisting of maps p,:E,— B and
Ag:B— E; such that p,A, is the identity. If ¢ and £’ are ex-spaces, we denote by
[£, &'] the set of homotopy classes of fiber and cross section preserving maps E; — E,..
Ex-spaces may be regarded as generalizations of pointed spaces and many of the
standard constructions for pointed spaces, such as reduced join, wedge, etc., carry
over to ex-spaces. This is usually done by performing the construction ‘fiberwise’.
For detailed accounts see [14], [15], [4].

An ex-space & will be called a sectioned bundle if it has the following local product
structure. There is a pointed space F, with base point (say) x,, a cover {U} of B by
open sets, and homeomorphisms y/: Ux F—p; * (U) such that the following dia-
grams are commutative.

UxFYp;(U)  UxF 25 prt(U)

\p /Pg "\A P
U U

Here p is the projection and 4 is the cross section b— (b, x,). We will also assume
that F is a finite complex and (E,, 4,:(B), p¢) has the homotopy extension property
[4; section 2].

The fiberwise reduced join of ¢ and « will be denoted by &£ A«. There is a sus-
pension map

o:[€ €] > [Enw & Ad] @.1)

defined by f—f A1, and the following suspension theorem is proved in [15] (see
also [14]).
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(2.2) THEOREM. Suppose that o is a sphere bundle and the fiber of &' is (n—1)-
connected. Then o is injective if E, is (2n—1)-connected and surjective if E; is 2n-co-
connected.

If Y and ¥ are homeomorphic pointed spaces let H(Y, ¥) denote the space
of base point preserving homeomorphisms from Y to Y. If ¢=(E, B, p, 4) and
&=(E, B, p, A) are sectioned bundles with the same fiber F, let

HEE= U H@ " (0).57'(5)

(b,b) e Bx

and let q: H(E, E)— Bx B denote the obvious projection. For each pair of coordi-
nate maps

Yup:Ux F->p~ 2 (U), Yp:VxEF-p~ (V)
we obtain
I//ny:(UX V) X H(F, F)—-) q"l(UX V)

by (b, b, ©) = Y,0Y,-1. Let H(E, E) have the smallest topology such that each Yy
is continuous. Then, with this topology, it is easy to check that (H(E, E), Bx B, q)
is a fiber bundle which we denote by H (¢, E) Now the following bundle covering
homotopy property is an immediate consequence of the covering homotopy property
for H(¢, &).

(2.3) THEOREM. Let H:BxI- B and k:E - E be such that pk=H,, k is cross
section preserving, and k is a homeomorphism on each fiber. Then there is K:ExI— E
such that pK=H, K,=k, K, is cross section preserving, and K, is a homeomorphism
on each fiber.

We conclude this section with some notation and remarks. If X is a pointed space
with base point x,, let X denote the sectioned bundle (B x X, B, p, 4) where p (b, x)=b
and 4 (b)= (b, x,). If « is a vector bundle over B, define & to be the sectioned bundle
obtained by taking the fiberwise one point compactification of E, and letting 4; be

the cross section at infinity. Observe that &-é—,é is canonically equivalent to & A B.

There is a functor T from sectioned bundles to pointed spaces defined by 7'(¢)=
E,/A4.(B). If a is a vector bundle, 7'(&) is simply the Thom space of « which we will
alternately denote by T'(«) or B*. More generally, if A< B let

(B, A)* = E;/4;(B) v pi’ (4).

If X is a pointed space we have T(X A &)=XAT(£). Note also that projection
onto the second factor induces a bijection

[¢& X1 - [T (&), X]. (2.4)
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3. Vector Bundles

Suppose that M is a compact differentiable manifold without boundary and G is
a compact Lie group acting freely and differentiably on M. By a result of Gleason
[11] the orbit map p: M — M/G has the structure of a principal G-bundle (in fact, a
smooth bundle, compare [34]). The tangent bundles of M and M/G are related as
follows. Let Ad(G) denote the G-module determined by the adjoint representation
of G. The vector bundle with fiber Ad(G) associated with p: M — M/G will be de-
noted by {. One then has an identification

T (M)/G =~ { @t (M[G), 3.0

and this identification is natural with respect to smooth G-maps [28].

A G-module ¥V will always be assumed to be real, finite dimensional, and equipped
with a G-invariant metric. The unit sphere of ¥ will be denoted by S(V) and the
quotient space S(V)/G by M (V). We say that V is free if G acts freely on S(V). In
this case M (V) is a smooth manifold and p:S(V)— M (V) is a principal G-bundle.

Suppose now that W is a free G-module and ¥'< W is a submodule. Let U denote the
orthogonal complement of ¥ in W and let n denote the balanced product vector bundle

n=(S(U) x V|G, M(U), p) 32)
Let £ be the sectioned bundle

¢ = (S(U) x S(W)IG, M(U). p, 4) (3.3)
where 4 [u]=[u, u]. We have an identification

(@t (S(U))/G 3.4)
given by

7 v ' :
[w.00u] [u, 1 —u-u’:|®[u’ 1—u-u

Combining this with (3.1) we have

(@@, (3.5

where 7 is the tangent bundle of M (U).
We will also need a description of the Thom space of n@®{ along the lines of
[2, Proposition (4.3)]. The map

S(U) x (V®Ad(G)) » S(W) x Ad(G)
by
(1,0, ) = (/T = (ol/(L+ o)) u® (1/(1 + [0] v), »))
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is equivariant and its quotient extends to an identification

M (U)Y"® ~ (M (W), M(V)). (3.6)
4. The Transfer

In this section we will give a brief description of the transfer or ‘umkehr’ map
associated with a differentiable fiber bundle. Our account follows that of Boardman
[6]. By a manifold we mean a compact differentiable manifold without boundary.
Let N be a manifold and M a submanifold of N with normal bundle w. Choose an
embedding E,cN of E, as a tubular neighborhood of M. Let o be a sectioned
bundle over N and consider the maps

E,|E,>E,|E,
Pa Pa
E, 3 E,, 0<t<l1. 4.1)

where j, is the canonical homotopy given by j,(x)=(1—¢) x, and k, is a sectioned
bundle morphism covering j, such that k, is the identity, k, is the identity on E, | M
(where McE,, is the O-section), and k, is a homeomorphism on each fiber. Such a
homotopy exists by (2.3). Define

h:o | E,— ph(a| M) (4.2)
by h,(a)=(p.(a), k, (a)) and let
hyoa|E, > a|M 4.3)

denote the map k,. The Pontrjagin-Thom map
c:T@)->T@Aa|M) 4.4)
is then given by

_[xAh,(a;), x€E,
C(“x)“{oo, if X¢E,.

It follows by a standard argument that the homotopy class of ¢ does not depend on
the particular choice of covering homotopy.

Let p: M — N be a differentiable fiber bundle. Choose an embedding p: M — N x
x R* homotopic to p and let w denote the normal bundle. If « is a sectioned bundle
over N there is the product bundle ax0 over Nx R® and ax0 | M=~p*(x). Since
T(xx0)=T(x)x R°/R®, the Pontrjagin-Thom map has the form

c:T(a) x R°IR* > T(p* (@) D w).
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Representing S* as the one point compactification of R®, ¢ may be extended to a map
1:T() A S* > T(p*(x) ® w). 4.5

In particular, if G is a compact Lie group acting freely on a manifold M and H
is a closed subgroup, we have the fiber bundle p: M/H — M|G. Let {; (respectively,
{y) denote the bundle over M/G (respectively, M/H) having fiber Ad(G) (respec-
tively, Ad (H)). Now

T(M/H)® o ~ p* (1 (M|G) @ K).
Adding {;®p* ({¢) to both sides and using (3.1) we have
(M) H®p*((6)@w~t(M)HOz® R

For sufficiently large s we may cancel (M )/H obtaining an equivalence

PP~y ®R. (4.6)
Thus, the map ¢ of (4.5) yields
t:T(x A Zg) A S* > T(p*(x) A ly) A S°. 4.7)

The stable homotopy class of this map does not depend on the particular choice
of embedding because of the following: (a) isotopic embeddings determine homotopic
maps. (b) the effect of replacing p: M/G — M|H x R* by ip: M|G - M/H x R**', where
i is the usual inclusion, is to replace ¢ by its suspension. (c) for sufficiently large s,
any two embeddings homotopic to p are isotopic.

We shall call ¢ in (4.7) the transfer associated with the bundle p: M/H —- M/G. It
is easily seen that ¢ is functorial with respect to smooth G-maps. Moreover, if H has
finite index in G (so that p is a finite covering map) ¢ agrees with the transfer defined
and axiomatized by Roush [23]. A proof of this fact will be given in the appendix.

Consider now the situation of the previous section. If ¥ is a G-module write
V=V, and let ¥ denote its underlying H-module. Suppose that V@ Uz = Wj. Let
n¢ and ng be as in (3.2). We have the fiber bundle p: M (Uy)— M (Ug) and since
P*(ng)=ng we obtain a transfer map

T(eg® L) AS* > T(ng®Lly) A S*.

Making the identification (3.6) we have

t:(M (Wg), M (V5))® A 85— (M (Wyg), M (Vg))™ A S°. (4.8)
5. The Spaces F(V | w)

If « and B are sectioned bundles, let .# (o, ) denote the space of fiber and cross
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section preserving maps E, — E,, with the compact-open topology. Recall that if ¥
is a pointed space

Q(Y) = inj lim, # (S*, Y A S¥).

Let V and W be free G-modules such that V= W and V# W. Let V* denote the
orthogonal complement of ¥ in W. We define F(Vl W) to be the pointed space of
G-equivariant maps S(V*)— S(W), the inclusion map being the base point. Our
objective is to construct a map

AF(V| W) - Q((MW), M(V))). (5.1)
Let
E=(S(V*) x S(W)[G, M(V*),p, 4) (5.2)

where p and 4 are induced by the projection and diagonal respectively. From (3.4)
we have an identification

ézﬂ@‘:@‘f, (5'3)
where tis the tangent bundle of M (V*)and n = (S(V*) x V|G, M (V'*), p). The function
0:F(V|W)—> M (S8°¢) (5.9

defined by sending f:S(V*)—>S(W) to f':S°x M(V*)-> S(V*)x S(W)|G, where
'O, [yD=L[y, f(¥)] and f' (o0, [¥])=Ly, ¥] is easily seen to be a homeomorphism
of function spaces.3) Making the identification (3.4), 8 becomes

O:F(V|W)—> 4 (S, n® D). (5.5)

Choose an embedding M (V*)cR® and let v denote the normal bundle. Let
Y:1®v— R® denote the associated trivialization and c¢:S°— T'(v) the Pontrjagin-
Thom map. The map A is to be the following composition.

F(V|W)S (S, 10l00)> A 10(0T0Y) (5.6)

A MG NDLOR)S M(TO), T(®L) A S°)

H(c)

=S A (ST A S)->Q(T(®Y))
—Q((M (W), M(V))).

Here o is suspension and the last map is given by the identification (3.6). It is easy
to check that the homotopy class of A does not depend on the choice of embedding.

3) We use S to denote the one point compactification of R®. The sphere of unit vectors in R#+1
will be denoted by S(R7+1),
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(5.7) THEOREM. J is an n-equivalence where n=dim (V)+dim (W )+dim(G)—-
-2.

Proof. 1t follows from the suspension theorem (2.2) that ¢ is an n-equivalence. It
remains to show that .# (¢) T is an n-equivalence for large s. Let a =y @®{@® R®. Choose
a complementary bundle § and let ¢:f@a — R* be a trivialization. We then have a
duality map

wStHt S THh@B) A T(x)
given by the composite

St T(1®ep~1

LT(v@®B®a)
T(v®p)AT(x),

S LT (9) A

4

where 4 is the diagonal map. Let X be a finite complex such that dim(X)<n. The
associated correspondence

D[ XAT(ve®p),S]—-[XAST,T(a)AS]
defined by sending f: X AT (v@p)— S’ to the map
XASHIEEXATO®B) AT(@)ESS AT () T () A S

is bijective, provided we are in the stable range. Let us take ¢ to be large enough so
that this is the case.
We have the following commutative diagram.

[X A ¥, §]———[X A T(), T(2)] iLaar »[X A S, T (2)]
[XAVOR, a@ R S[X A T() A S, T(@) A STELD5TX A $5, T(a) A S
IIA(1@¢_1)# 1
[XAv®BDa a®R]
1 i
(XAv®pDa, RRDa]
[X Av® B, R] d [X A T(v® B), 5]

For sufficiently large s the suspension maps in the above diagram are bijective
and therefore (1 A ¢)* T is bijective as desired.
We will now consider the functorial properties of the map 1. We identify the un-

reduced join S(¥V)*S(W) with S(V@ W) by the map [v, w, t]—»tv@\/l —t*w. If
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Vo Uc W there is an inclusion map
JF(V|U)->FWV|W) (5.8)

induced by the join operation as follows. Let V* denote the orthogonal complement
of Vin U and U* the orthogonal complement of U in W. Then j is defined by sending
f:8S(V*)->SU) to fx1:S(V*)xS(U*)> S(U)*S(U*). Let

i (M(U), M(V) > (M(W), M(V)Y (59)

denote the inclusion, and let X denote a finite complex.

(5.10) The following diagram is commutative.

[X, T(V! U)] 5 [X, 0 (M), M(N))]
Je Q@) »
[X, F(V| W)]-5[X, @((M (W), M(V)))].

Let

rrF(V|w)- F(U| W) (5.11)
denote the map defined by restricting f:S(V*)— S(W) to S(U*), and let

c:(M(W), M(V)) ~ (M (W), M(U)) (5.12)
be the collapsing map.

(5.13) The following diagram is commutative

[x, F(v| W)] 55X, (M (W), M(M))]
rs Q(c)#
[X, F(U | W)]25[X, Q((M (W), M(U))].

Finally, if H is a closed subgroup of G thgre is the natural forgetful map

@:F(Vg l We) = F(Vy ' Wy), (5.14)
and for sufficiently large s, there is a transfer map

t:(M (Wg), M (V)¢ A S*— (M (Wy), M (Vg))* A S° (5.15)

as in (4.8).
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(5.16) The following diagram is commutative

[X, F (Vs | We)] 25X, Q((M (W), M (Ve)Y)]
Q% o(t) »

[X, F (Va | Wa)] 25 [X, (M (W), M (Vi)f™)] .
Proofs for (5.10), (5.13) and (5.16) are given in section 8.

6. The Spaces F(V).

Given a free G-module V, choose a free G-module W such that Ve W and V£ W.
Let kW denote the k-fold direct sum of W and define

F(V)=injlim F(V| kW) (6.1)
and
B(V)* = inj lim (M (kW), M (V))* (6.2)

If X is a pointed finite CW-complex the map
Ao:[X; F(V [ kW)] > [X, Q((M kW), M(V)))]
is, by (5.10), compatible with the above inclusions. Hence we obtain
A(V):[X; F(V)] - [X; @ (B(V))] (6.3)

as the injective limit of the A,. As a result of theorem (4.5) we have

(6.4) THEOREM. A(V) is a natural equivalence of homotopy functors on the cat-
egory of finite CW-complexes.

We next show that F(¥') has the homotopy type of a CW-complex. To do this
it is sufficient to show that the spaces F(V | W) have the homotopy type of a CW-
complex. Since F(V| W) is homeomorphic to the space of cross sections to the
bundle S(V*)x S(W)/G~ M (V*), the result for F(V'| W) is a consequence of the
following.

(6.5) LEMMA. Let p: E— B be a Hurewicz fibration with fiber F. Suppose that B
is compact and both B and F have the homotopy type of a CW-complex. Then the space
of cross sections to p has the homotopy type of a CW-complex.

Proof. Let €4 denote the category of spaces having the homotopy type of a
CW-complex. First, suppose that p: E— B is a fibration such that E and B are in
€. We will show that the fiber Fis in €5#. If we replace the inclusion i: F— E by
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a fibration i":F' — E in the usual way, the fiber over e has the homotopy type of
Q(B, p(e)) [21]. By a result of Milnor [19], Q(B, p(e)) is in ¥#. Hence by a theorem
of Stasheff [27], F’ is in €5#. Therefore F is in €F.

Now let p: E— B be as in the statement of the lemma. By the exponential law,
p':E®— BB is also a Hurewicz fibration and since both E® and B® are in ¥ [19],
the fiber over the identity is in ¥5#. This is just the space of cross sections to p.

As a consequence of (6.4), we have proved the following:

(6.6) THEOREM. The space F (V) is homotopy equivalent to Q (B(V)*).
Since the homotopy type of B(V)* clearly does not depend on the choice of am-
bient G-module W, Theorem (6.6) has an obvious consequence.

(6.7) COROLLARY. The homotopy type of F(V') depends only on the representa-
tion V.

There are two functorial properties of the transformation A (V). Firstly, if Vis a
submodule of U we obtain from (5.13) the following commutative diagram

[X:F(V)]=2[X; 0(B(V))]
re 0(c)# (6.8)
AU)

[X; F(U)]—[X; 2(B(U))].

Secondly, if H is a closed subgroup of G, we have a transfer

te:[X; Q(B(Va)™] - [X; Q(B(Vs)e)] (6.9)

defined to be the injective limit of the maps Q(¢)4, where Q(¢) is the map appearing
in (5.16). Then by (5.16) we have a commutative diagram

A(Vg)

[X; F(Ve)] —[X;Q(B (VG)CG)]

(4] te
A(Vw)

[X; F (Va)]—=[X; (B (Va)™)].

Actually, by the methods of [6], one can construct in a natural way, a map
t:Q(B(V5)*)— Q(B(Vy)*¥) which realizes the transfer ¢,. Since we will not need
such a map, we do not carry out the construction here.

If V is the trivial G-module {0} we shall write Fg in place of F(V) and B in
place of B(V)*. Thus, Fyg is the injective limit of the space of G-equivariant self maps
of S(kW) and B, is the Thom space of the bundle with fiber Ad(G) associated to
the universal principal G-bundle.

We shall now examine some special cases of the preceding results. First, if G is
the trivial group we write F in place of Fg;. In this case B5=S* may be identified

(6.10)
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with §° by collapsing S to a point. Let us write 0 (S°) (respectively, 0*?(5°))
to denote Q (S°) with the constant map (respectively, the identity map) as base point.
We will relate

2:[X; F] > [X; 0© (%] (6.11)
to a more familiar map. Let
T:[x; 0 (S°)] ~ [X; 0 ()] (6.12)

be defined as follows. First let 7": Q*(S*) - Q*(S*) send f to the composite

1vRf g
k'————)Sk Vv Sk"')Sk,

skhsky s
where A is the pinching map, R is the reflection (x, x,,..., X;) = (=X, X2,..., X),
and g is the folding map. (With respect to loop addition 7"’ sends f to 1—f). Let
H:S*x I— S* denote the canonical homotopy from 7" (1) to the constant map. Then

T is to be the injective limit of
(X2 (SY] =5 [X; @4 ()] =5 [X; 24(s)]

There is also a natural inclusion 1: F— Q™ (S°) defined by sending f:S(R*) -
— S(R¥) to its radial extension f:S*— S* given by f (tv)=1tf (v), t=0, |v|>1.

(6.13) THEOREM. The triangle
: > [X; 09 ()]

[X; Q™ (5]

is commutative.

A proof of (6.13) will be given in Section 9.

Now let K denote one of the fields R, C or H, the real, complex, or quaternionic
numbers and let d denote the dimension of K over R. Let G=S%"! and let ¥ denote
the standard representation of G on R? given by scalar multiplication. Then the space
F(kV), which we shall now denote by L, is the injective limit over n of the spaces
L}, where L} is the space of S¢ !-equivariant maps S4("~%~1_, gdn=1,

Let S ! act on S ' x S by (x, y)— (gx, gyg~!), geS*~*. The quasi-projec-
tive space P, defined by James [12] is the space obtained from S ! x §971/§9"1 by
identifying the section $%*~*x {1}/S~! to a point (see [2; section 5]). It is easy to
see that P, is the Thom space of the bundle with fiber Ad(S?~!) associated with the
bundle §%"~! - P,, where P, is the projective space S ~1/S~1 [2]. Let P, =injlim, P,
and let P, be the base point of P_. Then with these changes in notation we obtain

[X, F]
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from (6.6) a homotopy equivalence
L,~Q(P,|B,). (6.14)
In particular,
Fsa-i~Q(P,). (6.15)
Note that RP,=RP®* and CE*=(CP**)A S'.

7. Morphisms of Sectioned Bundles

In this section we take up some properties of the mapping set [«, f] which will
be needed to establish the functorial properties of the transformation A.

Suppose that N is a manifold and M <N is a submanifold with normal bundle w.
Let E,c N as a tubular neighborhood. Then if « is a sectioned bundle over N we
have

hyo|E,—>ps(x| M), hpa|E,»a|M
as in (4.2) and (4.3). Let B denote another sectioned bundle over N and define

e:[@na|M, B|M]-[aB] (7.1)

I x w

The map e is easily seen to be natural with respect to suspension. That is, if y is
another sectioned bundle over ¥, the following diagram is commutative.

[BAa|MB|M]S[@A@AY)|M, (BAy)|M]
. (1.2)

e

[, B]

The relation between e and the Pontrjagin-Thom map ¢:T(«)>T(@Aa | M) is
given by the following commutative diagram.

s[e Ay, BAY].

[@Aa|M,B|M]>[T(@ Ao|M),T(@|M)]

e [T (a), T(B| M)] (7.3)
[ £] [T (@), T(B)]
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Here i:T(B | M)~ T(B) denotes the inclusion. To prove (7.3) we have

T e(f) (a,) = {”El(x, fxAah(a)), xek,

0, x¢E,,
and

A connecting homotopy H is given by

H(a,, t) = {2’ ’1 (tx, ;’ ész\ F.(a))), xeE,

Now consider the restriction map

rifa, Bl - [« | M, B| M]. (7.4)

Note that for f:a— f we have h, f~f| Mh, since both are the end of a homotopy
from o | E, to B | E, which begins at f and covers the homotopy j, of (4.1). From
this observation and a straightforward calculation we obtain the following commuta-
tive diagram.

[« B] »[T (), T (B)]
[«| M, B| M] [T (x), T(B| M A @)] (7.5)

c c*

[| MA@, B|MAD]S[T(|MAD),TE|MA )]

Suppose now that p: M — N is a map and «, f§ are sectioned bundles over N. There
is then the induced map

p*:[o, 1 - [p* («), p* (B)] (7.6)

defined by p*(f) (m, a)=(m, f (a)), me M, acE,. Suppose further that p:M — N is
a differentiable fiber bundle. Let p: M — N x R®° be an embedding homotopic to p, let
o denote the normal bundle, and let n: N x R®*— N denote the projection. Let us also
choose p so that np=p. Then p* («)=n* («) | M and under this identification the map
p* of (7.6) corresponds to

[, B15 [n* (2), 7* (B)] = [P* (), P* (B)].

where 7 is the restriction map. Hence by the commutativity of (7.5) and the definition
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of the transfer 7, we have the following commutative diagram

[, B] 5 [T(x), T (B)]——[T () A §°, T (B) A §°]

[2* (@), p* (B)] [T (@) A 5% T (p* (B) A @)] (1.7)

[p* (2) A @, p* (B) A @] - [T (p*(«) A @), T (p* (B) A @)].
8. The Functorial Properties of 4

We will first establish property (5.10). Let U, V, and W be free G-modules such
that Ve Uc W. Let V'* denote the orthogonal complement of ¥ in W and V** the
orthogonal complement of ¥ in U. We then have M (V**)c M (V*). Weletn, {, ©
denote the bundles over M (¥*) which appear in the definition of (¥ | W) and 7,,
{o» To those over M (V**) which appear in the definition of (¥ | U). Let w denote
the normal bundle of M (V**) in M (V*).

Let X be a finite complex. Since the restriction of 7 to M (V**) is 1,@w, we have

[X,nO@COGBTO]:)[XA69"0@C0®70@w]£’[xaﬂ®€@7]-

and we denote this composite by é. A lengthy but straightforward calculation shows
that the following diagram is commutative.

[X, F (V| U)] 25X, 10 ® Lo ® 7o
jj, jé (8.1)
[X, F(V| W)]-5[X, 7© &7

Now let M (V*)< R® with normal bundle v and let v, denote normal bundle of
the composite embedding M (V**)<= R®. Then vo~w@® (v | M(V**)) so that, by (7.2)
and the definition of é we obtain a commutative diagram

[X, ﬂoC‘BCo@To]f*[X A Vo, o D Lo @ To @ Vo]
le 1 (8.2)

(X, n@(@1] ——=[XA¥n@®{®TtdV].

Let Y :t®v— R® and y:1,@ vy — R® denote the trivializations associated with the
embeddings. Since Y, is the restriction of y we have the commutativity relation.

[X A Vg, T@Co@‘to@vo]%[x A Vg, ’IO@C‘)@RS]
. . 8.3)

[XAD1@({@t@V] —2L L[X Av,®LBR].
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Now, by (7.3) we have a commutative diagram

[X A Vo, ﬂo(@Co@Rs]_T’[X AT (v), T (1o @ (o) A S7]
e [XAT®), TMe® ) A ST] 8.9)
[XA31®LOR] —[XATE), T AST.

Property (5.10) now follows easily from the commutativity of the diagrams (8.1)
through (8.4), together with the relation

/T (Iv)
c/ I
Ss\/\ lc (8.5)

T (vo).-

We turn now to the proof of (5.16). Let V; and W be free G-modules such that
Vo= Wg and let ¥y and Wy denote their underlying H-modules. Let p: M (V3)—
— M (V'§) denote the projection and choose an embedding p: M (V) —» M(VE) x R*
such that np=p, where n: M(V§) x R — M (V' §) is the projection. Let w denote the
normal bundle to this embedding. The bundles over M (V'§) which appear in the
definition of A will be denoted by a subscript G and those over M (V' };) by a subscript
H. We then have p* (n5)=ny and p* ({;D16)={yD1y.

We have the following commutative diagram

[X, F (Vs | we)] 5 [X, ’IG ® {cD76)]
[X, F (Ve | Wi)] = [X, 12 @ {g ® 7]

Now choose an embedding M (V' §)<= R** with normal bundle v and let vy denote
the normal bundle of the composite embedding

M ()5 M(VE) x R > R ¥,

(8.6)

We then have the relation

Vg~ p*(v) ® @, (8.7
and from (4.6),

(a® R~ p*({p) D ow. (8.8)
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Let Yg:16@ve— R* and Yy 15 = vy — R 752 denote the trivializations associated
with the embeddings. Making use of the identifications (8.7) and (8.8) we have the
following commutative diagrams

(1OVG)s0 o -
L2V X A T, 16 D L ® R

P [X A p* (F6), 1a @ p* ((c) ® R*] (8.9)

ag

[X AV, g @ (g @D Rslﬂz]

[X, 76 ® {6 @ 16]

[X, 'IH@€H69TH]M

Next, by the commutativity of (7.8) we have (see (4.7))

[X A V6 16 ® L6 ® R?]——[X A T (v), T (116 ® L6) A 5] (8.10)

a

p‘ v
! [X AT () A S T(e®{e) A Ssl”z]

[X A p* (%), 1a ® p* ({) ® R*] .
[X A T (v) A S*, T (g ® L) A S

(1A)*

[X A Vi 1 @ L @ R ] S[X A T (), T (1 @ L) A 5]

a

Finally, from the relation

¢/ T(vg) AS*™

Ssl +s2 t
c
T (v)
we obtain the following commutative diagram.

[X A T (%), T (16 ® Le) A S"1————[X A 5%, T (1 ® (&) A 5]

tpo

[X A T (ve) A S*, T (g ® L) A S%¥] oo (8.11)

(1an)* (1Aac)*
L Aa)*

[XAT(g), T(Ma®Ln) A ST ]——[X A S, T (ng @ {n) A 5777]
Property (5.16) now follows from the commutativity of the diagrams (8.6) through
(8.11).

Property (5.13) requires a similar analysis but we will leave the details to the
reader. The key relation needed here is given in (7.5).
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9. Proof of (6.13)

Let X be a finite complex such that dim (X)<n—1 and let p, denote the projec-
tion X' x S"— S". The proof of (6.13) is based on the following commutative diagram

[X x S(R"), S(R")] >[X x S", S"]——[X x 5", S"]
! ! !
[X, F]————[X, 0V (5°)] 5 [X, 0 (5%)]

Here s is defined by s(f) (x, tv)=1f (x, v), t =0, |[v|=1. The vertical maps are given
by the obvious exponential correspondence and 7" is the map 7" (u)=[p,]—u. Since
we are in the stable range [ X' x S”, S"] has a natural abelian group structure.

Let f: X x S(R")— S(R") represent an element of [X, F] and let

A(f): X xS8"—> 8" 9.2)

represent its image under the equivalence A:[X, F] - [X, 0‘°’(S°)]. From the com-
mutativity of the above diagram it is sufficient to show that

[A(F)]=L[p.]1-[s(F)]- (9.3)

To do this we will give an explicit description of A(f). The standard embedding
S(R™)<=R" has a trivial normal bundle and a tubular neighborhood map S(R") x
X R— R" is given by (v, ) — €'v. Hence, the associated Pontrjagin-Thom map

c:S" — S x S(R")/S(R")

is given by ¢(v)=(log|v|, v/|v]). (It will be understood throughout this section that a
point for which a formula is not defined is to be mapped to the base point.)

Let ¢/: y®R— R" denote the standard trivialization y ((v, w)®t)=tv+w. If vis a
non-zero vector let #=v/|v|. Using this data to construct A, we have

_ S 0)— (@S (x0)D

A = 1 D.
() (5 ) = T g S logl
Let
h:S" x S" —» S" 9.4
be defined by
w—(D-w)D
h = 1] .
(v, w) T p + log|v|

Let aen,(S™) denote a generator and let @,, a,€n,(S" x S") denote the image of
a under inclusion onto the first and second factor respectively.
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(9.5) LEMMA. Suppose that n is odd. Then h (a,)=a and hy (a,)= —a.

Proof. Since h maps the diagonal to the base point we have h, (a, +a,)=0. Now
let d:S"— S"x S" send v to (v, —v) and consider the composite id:S"— S". Its ad-
joint (hd)':S(R")— Q(S") is given by

iy @) ) ={' 205170

Let i:S(R")— Q(S™) denote the adjoint of the identity. Evidently, (hd)’ represents
[i]1—[iA4], where A:S(R")— S(R") is the antipodal map. If n is odd [i4]= —[¢{] and
(hd) represents 2[i]. Therefore hd has degree 2. Since dy (a)=a,—a, we have

hy (@, —a,)=2a. The lemma follows now from this and the relation 4, (a, +a,)=0.
We suppose now that » is odd. The map A(f) admits a factorization

XxxS"hsxsths

where f (x, v)=(v, s(f) (x, v)). Because of the dimensional restriction on X we may
deform finto S™ v S™ Thatis, there exists a homotopy commutative diagram of the form

Xxs"hs s
\f“ 1
S"v S"
It now follows from the lemma and an elementary diagram chase that Af =1(f)
represents [p,]—[s(f)]-

10. The Image of 7, (Fg) in n, (F), G = Z,.

The stable homotopy theoretic interpretation of the forgetful homomorphism
from F; to Fy yields considerable information on the image of m, (Fg) in 7y (Fy).
There is a natural division into two cases depending on whether G is finite or infinite;
we defer the infinite case to the next two sections.

We begin with an easy observation.

(10.1) PROPOSITION. Suppose G is ﬁmte and admits a free linear representation.
Then the induced homomorphism

7y (F6) ® Z[IGI™1] > m (F) @ Z[IGI77]

is an isomorphism.
Proof. According to (6.10), the above map is equivalent to the transfer homo-

morphism

7454 (Bg ) = S (S°7)
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tensored with Z [|G]™"]. However, if p: S ©— By is projection, the composite (p* )y o7y
is an isomorphism when tensored with Z[|G|™'] (see [23]). By a spectral sequence
argument, (p*), is an isomorphism when tensored with Z[|G|~']. Hence the same
is true of 7.

As one might expect, considerably stronger results hold for suitable choices of G.
We limit our discussion to the following

(10.2) THEOREM. Let G=Z,, where p is a prime. Then the forgetful map from
iy (Fg) to my (F) is surjective in positive dimensions.

Proof. By (10.1) the image of the forgetful map contains all torsion in 7, (F) of
order prime to p. Since 7, (F) is finite in positive dimensions, it suffices to prove that
the p-primary component of 7, (F;) maps onto the p-primary component of x, (F)
in positive dimensions. We shall establish this using results of D. S. Kahn and S. B.
Priddy [16]; the cases p=2 and p#2 require separate treatment.

Case 1. p=2. In this case B;=RP*®. Embed RP® in the infinite special ortho-
gonal group via the reflection construction; since SO is contained in Fg (linear maps
are Z,-equivariant) and F,, is homotopy equivalent to Q (RP®¥), this yields a map
from RP® to Q(RP®™). The results of [18] imply the existence of a unique map

h:Q(RP®) - Q(RP*™) (10.3)
which is a map of infinite loop spaces and makes the following diagram commute:

g (RP®) ————— 7, (Q (RP%))

74 (SO) > 7y (F1,) =5 1, (Q (RPH)) (10.4)

BN I

7y (F) A, 4 (Q (SO))

It is well-known that A,Jp induces an isomorphism of fundamental groups. Thus by
[16, Theorem 4.1] its adjoint induces a surjection of 2-primary components in po-
sitive-dimensional homotopy. But this adjoint induces #,A, in homotopy by standard
adjoint functor formulas, and hence ¢, must also induce a surjection of 2-primary
components in positive-dimensional homotopy.

Case 2. p#2. Suppose f: X — QY is continuous where X and Y are pointed CW-
complexes. Then there is an essentially unique factorization of f through Y as an
S-map (i.e., in the category of CW-spectra). Hence for any cohomology theory h*
there is a canonical induced homomorphism

FEn*(Y) > B (X) (10.6)
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making the following diagram commutative

r*(Q(¥))-5 n* (X)

I o
#(7)

Furthermore the correspondence f — f* is functorial. Let L=B, andlet :Q(L*)—
— Q(S°) denote some map which realizes the transformation

ty:[ QL] >[5 Q(8%)].

For any such choice of ¢+ we have the following commutative diagram (where H*
denotes singular cohomology with Z, coefficients).

H* (F) —— H*(Q(5%))

H* (U)« H*(F,,) <<~ H*(Q(L")) (10.7)

e, )
H* (L")

Let o(q;)e H2*®~1~1(F) represent the loop-suspension of the i-th Wu class
q,€ H*®=1 (BF) (10.8)

and let r;=A*"1(0 (q;)). By the results of Kahn and Priddy [16, Remark 4.3] together
with a lemma of Tsuchiya [30, Lemma 6.3], in order to show that the adjoint of the
composite

L" 5Q(LY)5Q(s°)

induces an epimorphism of p-primary components in stable homotopy (in positive
dimensions) it is sufficient to show that the images of the r; in H?*®~D~1(L*) are
non zero. From the diagram (10.7) this will follow by showing that the classes o (q;)
map non-trivially into H*(U). Now the image of a(g;) in H*(U) is the loop-sus-
pension of the i-th Wu class in H*(BU) which is a non zero multiple of the Chern
class of dimension (p—1) i modulo decomposables (see [33] or [30, p. 120]). Hence
it is non zero in H*(U).

In contrast to the above results for G=Z, the image of =, (Fg) in m, (F) is always
a proper subgroup if G is infinite and k= +1 mod8 with the exception of k=1 if
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G#S? (since Fys is 2-connected by (6.6), clearly the generator of n, (F)=Z, does
not come from n, (Fs3)). The proof has two basic ingredients — an investigation of
the image of , (U) in n, (F) and a computation of the Adams e-invariant of elements
in 7, (F) which come from torsion in 7, (Fg1).

In [8] Browder essentially proved that =, (U)— m,(Fs1) is monic. Using his
methods one can prove a much stronger result.

(11.1) THEOREM. The map from n, (U) to ny(Fs1) is an injection onto a direct
summand, and the complementary summand of the latter group is finite.

We shall need the notion of G-equivariant fiber bundle as defined by Tom Dieck
[29]; however, all of our equivariant bundles will be over trivial G-spaces, and hence
the formulation of equivariant local triviality is easily understandable. In particular,
if Top (X, @) is the group of G-equivariant homeomorphisms of the G-space X with
action ¢:G x X — X, then equivariant (X, ¢) bundles over a trivial base are classified
by maps from the base into B Top (X, ¢).

The Dold-Lashof classification of ordinary fiber bundles up to fiber homotopy
type [10, Theorem 7.5, p. 303] generalizes to equivariant fiber bundles over trivial
G-spaces with only minor changes.

(11.2) PROPOSITION. Let (X, @) be as above, and let F(X, @) be its space of
equivariant self-maps. Two equivariant fiber bundles over a CW complex with fiber (X, @)
are equivariantly fiber homotopy equivalent if and only if the composites of their classi-
fying maps with the induced function

are homotopic.
The following result generalizes the main step in Browder’s argument. It is ap-
parently well-known but (to our knowledge) unpublished.

(11.3) LEMMA. (i) Let ¢ be an n-dimensional complex vector bundle over a finite
complex, and assume that its unit sphere bundle is equivariantly fiber homotopically
trivial (with the obvious free S* action). Then the complex K-theoretic Chern classes of &
are trivial. (ii) Let & be an n-dimensional quaternionic vector bundle over a finite complex,
and assume that the unit sphere bundle of ¢ is equivariantly fiber homotopically trivial
(with the obvious free S3 action). Then the real K-theoretic symplectic Pontrjagin
classes of ¢ are trivial.

The characteristic classes mentioned above are defined in [9].

Proof. (i) Let S(&) be the associated S2"~! bundle of ¢ and let P(£) be the
associated CP™~! bundle. Then S(&)—P(¢) is a principal S* bundle projection we
shall call the canonical line bundle of . An equivariant fiber homotopy equivalence
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from S(&) to B x $?"~! induces a fiber homotopy equivalence from P(¢) to Bx CP"~*
under which the canonical line bundle over Bx CP"~! (namely, id xp:Bx S?" ! >
— Bx (P""!) pulls back to the canonical line bundle on ¢. Since K-theoretic Chern
classes satisfy an analog of the Grothendieck relation for ordinary Chern classes
(compare [9, pp. 45-48] or [3, pp. 84, 109], Browder’s argument [8, p. 33] works for
complex K-theory as well as singular cohomology.

(ii) This follows from a virtually identical argument with canonical quaternionic
line bundles replacing complex line bundles and KO-theoretic symplectic Pontrjagin
classes [9, pp. 45-48, 52-58] replacing K-theoretic Chern classes.

(11.4) COROLLARY. If ¢ satisfies the hypotheses of Proposition 8.3, it is stably
trivial.

Proof. The results of [9, Section 9] show that the first K-theoretic Chern or
symplectic Pontrjagin class of ¢ is its stable equivalence class in K?(X)=K(X) or
KO*(X)=KSp(X).

Proof of Theorem (11.1). Since U and Fg. are both arcwise connected, the result
is trivial for m,. We shall first prove the result for z, and use the low-dimensional
cases in providing the higher-dimensional ones.

Let F(CP"™1) be the space of self maps of CP"~!. Regarding C" as an S* module
we have the space Fgi1(C"). A result of James [13] states that the ‘passage to orbit
space’ homomorphism

Fs:(C™) » F(CP™™ 1) (11.5)

is a fibration whose fiber is homeomorphic to the space of functions from CP"~ ! to S*.
It is easy to show that the latter is a K(Z, 1) and the inclusion of S* as the set of
diagonal matrices is an explicit homotopy equivalence. Thus we have the following
commutative diagram whose rows represent fibrations and whose left-hand vertical
map is a homotopy equivalence;

s'—- U, ——PSU,

1; l l (11.6)
X - Fg(CY)—»F(CP™™)

as usual, PSU, denotes the projective group. Consider the induced mappings of
fundamental groups; in the first row one obtains the short exact sequence 0 - Z —
—Z > Z, - 0. By (11.4), the induced map from =, (U,)=Z to =, (Fs:(C")) is
monic. Thus the induced map from =, (X) to 7, (Fs«(C™)) is also monic; notice that
7y (Fs1(C™))=Z holds if n>2 by Theorem (5.7). An application of [26, Theorem
4.11, p. 452] shows that x, (F(CP""'))= Z,, and it follows that the bottom row of the
above diagram also yields the short exact sequence 0 - Z - Z — Z, — 0 in funda-
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mental groups. But this forces the map from =, (U,) to =, (Fs:(C")) to be an iso-
morphism. Since n, (U,)=n, (U) and =, (F5:(C"))xm, (Fs:) if n is large, the proof
of the theorem in dimension 1 is complete.

Consider the following extended fibration sequence

U, Fs (CM 5 Y, 5 BU, 5 BFg: (C7). (11.7)

By the results of the previous paragraphs, Y, is 1-connected. Thus Lemma (6.5) and
results of Stasheff [27] and Milnor [19] imply Y, has the homotopy type of a CW
complex with finitely many cells in each dimension.

Let W, be the 2n-skeleton of such a complex homotopically equivalent to Y,
and let j: W,— Y, be the ‘inclusion’ map. Then Afj is homotopically trivial, so that
the composite of f; with the canonical map from BU, to BU is homotopically trivial by
Corollary(11.4). Since (BU, BU,)is (2n+1)-connected and dim W, <2n, it follows that
fj is homotopically trivial. Since f is a fibration, this means that j factors through g up
to homotopy. Since g is a fibration, this means that the induced fibration

U, = j*Fs:1(C") = W,
has a cross section. Therefore
Ty (f*Fsl (Cn)) = 7y (W) @ s (U,,).

However, the pair (Fs:(C"), j*Fs:(C")) is 2n-connected, and hence it is immediate
that =;(U,)—> n;(Fs:(C")) is an injection onto a direct summand if i<2n. Since
(U, U,) is 2n-connected and (Fy:, F51(C")) is (2n—2)-connected by 5.5 and 6.6, an
obvious diagram chase shows that n, (U) - 7, (Fs1) is also an injection onto a direct
summand. The finiteness of the complementary summand follows because rank
7;(Fs1)is 1 if i is odd and 0 if i is even, the same as the corresponding rank of 7; (U).

(11.8) Addendum to 11.1. A completely analogous argument shows that n, (Sp) —
— 1, (Fg1) is an injection onto a direct summand with finite complementary summand;
we shall omit the details.

(11.9) THEOREM. Let n be odd, and let uen,(Fsi) have finite order. Then the
image of u in n,(F) has trivial complex e-invariant.

See [1, §3] for the definition and properties of the complex Adams e-invariant.

Proof. Let T:S*™*1(CP™)—S§?™(S?"*1*) be the transfer, where r>n and
2m>r. Let u': 82" §2m*1(CP"*) correspond to u. The image v of u in =, (F)
corresponds to cTu’, where c:S2"(S%'*1*)— 82" collapses the S?™*27*! wedge
factor.

To show e (image u) =0, it suffices to prove that K(C(v))= K(S*™)@K(S*"*"**)
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as modules over the Adams y operations (compare [1, §6]). Consider the following
diagram

SZm+n v S2m___) C(v)_’S2m+n+1 __)SZm+1

(11.9)

w = Su’ =

SZm+l(CPr+)__"'_7_‘_)S2m__)Y_*SZm+2(CPr+)_)SZm+1

Apply K to this diagram; since K(X)=0 if X is a finite complex with cells of only odd
dimensions, we have the following commutative diagram:

0K (S*™) <R (Y)«—EK(S™2CP*)«0
! ! l (11.10)
0« K (S*™)« K (C(v))« K (S*™*"*1) «——0

Let « generate K(S*™)=2Z, let £’eK(Y) map to «, let £eK(C(v)) denote the image
of &.
It suffices to show that y*(¢)=k™¢. By naturality,

YrE) =k + 1, (11.11)

where relmage (1')*. But the order of (u')* is finite since the order of #' is; since
R(S*m*m*1)=Z, this means (#')* must vanish. Therefore K(C(v)) splits as a y-
module.

Theorems (11.1) and (11.9) readily yield the following result:

(11.12) THEOREM. (i) Let w,(k>1) denote the Adams-Barratt element in
Tige+1 (F). Then w is not in the image of ngy 4 (Fs1).

(ii) Let o, (k>1) denote the generator of the image of J in dimension 8k — 1. Then o,
is not in the image of mg;_ (Fs1).

(iii) In the notation of (ii), twice oy is not in the image of mg;—1 (Fs3)-

Proof. The results of Adams show that y, and 20, have nontrivial e-invariant
[1, pp. 68 and 44-45]. Thus they can only come from elements of x, (Fgs) or m, (Fs:1)
having infinite order. An easy application of Theorem (11.1) and its addendum
shows that if they come from =, (Fss) or =, (Fs:), they also come from =, (Sp) or
7, (U) respectively. Since g is not in the image of J, conclusion (i) follows. On the
other hand, the Bott periodicity theorems imply that ng,_, (G)=Z if G=0, U, or Sp
and the canonical maps

Tigk—1 (U) — Tgx—1(0)
Tak—1 (SP) = 7ax—1 (0)

are multiplication by 2 and 4 respectively (for example, see [7]). This shows that o,
and 20, do not come from 7g; | (Fg1) and ng, _, (Fgs3) respectively, proving (ii) and (iii).
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12. The Image of 7, (Fs;) in 7, (Fs1)

The pathologies discussed in Section 11 are definitely 2-primary in nature. For
example, if p is odd the generators of the p-primary components of the image of J
always come from =, (Fgs); in fact, they come from =, (Sp) because the canonical
map from =, (Sp) to 7, (0) is an isomorphism mod (graded) finite 2-groups. Thus one
is led to ask whether the induced map from =, (Fs:)®Z[3] to 7, (F)®Z[4] is
surjective in positive dimensions. Although we cannot prove this, we can prove that
the images of 7, (Fss)®Z[3] and n, (F51)®Z[4] in n, (F)®Z[3] are the same.

By Theorem (5.15) the above statement is equivalent to saying that the images of
the transfer homomorphisms

S« ((HP)*)®@ Z[1] - S« (S°) ® Z[4]
S« (S(CP**) @ Z[1] - S« (S°) ® Z[4]

are equal. We shall deduce this using the following result.

(12.1) THEOREM. Let k be the involution of CP® given by conjugation. Then
the transfer from Sy (HP®)®Z[}] to S, (S(CP®))®Z[3] is surjective, and its image
is the subgroup left fixed by S (k™ )x.

Assuming this, we state and prove the fact mentioned above.

(12.2) THEOREM. The images of S, (HP®)®Z[4] and S,(S(CP**))®Z[4] in
S« (S®)®Z[1] are equal.

Proof. Let S® be the total space of the universal S* bundle over CP®. Then k
lifts to an involution / of S, and by the naturality of the transfer we have the follow-
ing commutative diagram:

S(CP*T)—»8§°* ~ 8°
S(k'*)l z+l id
S(CP**)—- §°* ~ §°

It follows that if yeS, (S(CP®™")), then y and S(k™), y have the same image in
S« (S°). Clearly this remains true after tensoring with Z[4].

Consider the element 3 (y+S(k*), ») in S, (S(CP**))®Z[4]. By the discussion
of the preceding paragraph its image in S, (S°)®Z[ 4] is the same as the image of y.
On the other hand, it is clearly left fixed by S(k*),, so that it lies in the image of
S« (HP*)®2Z[1] by Theorem (12.1).

Let N be the normalizer of S! in S3; then the transfer from HP® to S(CP*")
factors through BN®. The proof of Theorem (12.1) has two parts — an examination
of the image of S, (HP*)®Z[4]in S, (BN°*)®Z[}] and an examination of the image
of S, (BN)®Z[4] in S4((CP=*))@Z[3].



28 J.C.BECKER AND R.E.SCHULTZ

(12.3) PROPOSITION. The induced homomorphism from S,(HP®)®Z[}] to
Sy« (BNY)®Z[1] is an isomorphism.

Proof. Let k>0 be given, and let n be large with respect to k. It suffices to prove
that

15, (HP" 1Y) o> 8, ((S*"~ [N )

is an isomorphism when tensored with Z[4].

The Atiyah-Hirzebruch spectral sequence for stable homotopy theory yields a
spectral sequence map converging to the homomorphism under consideration. On
the E, level it takes the form

ty: Hy (HP"™ 1) S,) ® Z[3] » H, ((S*"'IN); S,) ® Z[4].

The homology groups of X* are isomorphic to unreduced cohomology groups of X
(where X=HP"™! or S*""!/N) by the Thom isomorphism and Poincaré duality.
Techniques of Boardman [6, §6] show that under these isomorphisms ¢, corresponds
to the cohomology map induced by the projection

p:S*" YN - HP*" 1.

Therefore it suffices to know that p* is an isomorphism in Z[4]-module coefficients.
This follows from the Serre spectral sequence; for p is an orientable fiber bundle
projection whose fiber is RP?, a Z[4]-acyclic space.

We shall need a slight generalization of a familiar result on the transfer in singular
cohomology.

(12.4) PROPOSITION. Suppose p:X— Y is a regular n-sheeted covering (Y is
a CW complex) and G is the full group of covering transformations. Let ¢ be a k-plane
bundle over Y whose pullback to X is trivial, and let p*: S*X* — Y* denote the induced
map of Thom spaces.

@) If t: Y > S*X* is the transfer, then p°t is an isomorphism in any homology
theory taking values in the category of Z[1/n]-modules.

(ii) Let hy be a homology theory taking values in the category of Z[1[n]-modules.
Then t, is injective and its image is the stationary set of hy (S*X*) under the action of G
induced by covering transformations.

The proof of the first part is an exercise in the techniques of [6, §6] and [23]. The
proof of the second part is an elementary algebraic exercise based on the canonical
isomorphism from &, (S*X *)/G to hy (Y*) induced by p°.

The following result and Proposition (12.3) imply Theorem (12.1).

(12.5) PROPOSITION. The transfer map from S, (BN*)®Z[4] to S« (S(CP* ™))
®Z[ 1] is injective and its image is the subgroup left fixed under S (k).
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Proof. If { is the line bundle over BN given by the adjoint representation, then
the pullback of { to CP* is trivial. On the other hand, CP* is a double covering of
BN, and an elementary argument shows that the covering involution of CP® is
homotopic to k. Thus the proposition follows from Proposition (12.4).

APPENDIX
13. The Transfer

Let p: M — N be a finite covering space where M and N are compact smooth
manifolds without boundary. In section 4, we described a well known method of
associating with a sectioned bundle « over N an S-map.

t:T(x) A S*— T(p*(x)) A S°.

For the purposes of this section we refer to ¢ as the ‘umkehr’ map. On the other hand,
there are general constructions of Roush [23] and of Kahn and Priddy [16] which
associate with a finite covering pair a wrong way map called the ‘transfer’. In partic-
ular, for the covering pair (E,+), M )— (E,, N) there is a transfer

:T(2) A S° - T(p* () A S°.

The object of this appendix is to give a direct proof that the umkehr map agrees with
the transfer. In this direction Roush has shown that their induced homomorphisms
agree for any (co) homology theory 4 for which N is h-orientable (taking o =0).

We begin by describing the transfer for finite coverings. Let € denote the sub-
category of the stable homotopy category of CW-spectra [6,31] having pointed CW-
complexes as objects. Let G be a finite group and H a subgroup. Let &; denote the
category whose objects are CW-pairs (X, 4) with a free and cellulair action of G on
X which leaves A invariant. The morphisms in #; are to be equivariant maps of
pairs. We will call (X, 4) a free G-pair. There is the forgetful functor Z:2; » Py
obtained by restricting the action of G to H. There is also the quotient functor
26:P;— % defined by sending (X, A) to X/A/G. As usual, we write X for X/®=
=Xu+} and, in general, + will denote the base point of a pointed space. If
fi(X, A)-> (X', A') is a G-map, we also let f denote the quotient map f:X/4/G -
- X'/4'|G.

There is a ‘suspension’ functor Z; — P defined by sending (X, A) to the pair
(X, A)x (S*, +) with G acting on the first factor. Note that the quotient of (X, 4) x
(S', +) is equal to X/4/GA S™.

Suppose that A:X/G— X/H is a cross section to the covering p:X/H- X/G.
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There is then a retraction q: X/4A/H — X/A/G by
, if y=4 .
() = {p(y) y=4(p(»)

+, otherwise.

(13.1) DEFINITION. 4n H—G transfer is a natural transformation ©: 25— 2y %
having the following properties:

@ (X, 4) x (S, +)=1t(X,4) A 1.
(b) If A: X/G — X[H is a cross section.

the composite
X/A|G 5 X|AJHS X[A|G

is the identity.
Although our formulation of the transfer is slightly different than Roush’s his
results are easily translated. Hence we have

(13.2) THEOREM. (Roush [23]). There exists a unique H— G transfer.

The construction of 7 that follows is equivalent to that of Roush and also of Kahn
and Priddy. If Y is a pointed space let P(Y') denote the space of functions ¢:G/H - ¥,
where G/H denotes the set of left cosets of H in G. Let G act on P(Y) by go(wH)=
=o(g"'wH), g, weG. We have an equivariant embedding

(G/H)* A Y — P(Y)

by wHAy— o, where 6 (WH )=y and (W' H)=+ if w' H#wH. Topologically, the
pair (P(Y), (G/H)* A Y) is simply the n-fold product of ¥ modulo the n-fold wedge,
where n is the index of H in G. Hence it is a (25— 1)-connected pair if Y is (s—1)-
connected.

Now we may write

P(Q(Y) = inj lim, @ (P (Y A S¥))
and
Q((G/H)* A Y) =inj lim, @* ((G/H)* A (¥ A S¥)).

Moreover, the embedding (13.3) is compatible with the injective limit maps and so
we obtain

i:Y((G/IH)* A Y) - P(Q(Y)). (13.49)

By the remarks of the preceding paragraph, the relative homotopy groups of the pair
(P(Q(Y)), Q((G/H)* A Y)) are trivial.
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Now let (X, 4) be a free G-pair and set Y=X/A4/H. Define
¢:(X,4) > (P(Y), +) (13.5)

by ¢ (x) (WH)=[w™'x]. Then ¢ is a G-map. We will also let ¢ denote the map
(X, A)— (P(Q(Y)), +) obtained by composing with the canonical inclusion P(Y)c
P(Q(Y)). Consider the diagram

(X, )3 (P(QO)), +)
@’ i
+ Q(4)
(QUG/H)™ A Y), +)—>Q(Y),
where A is the ‘folding map’ (G/H)™ A Y— Y defined by A(WHAy)=y. There are
no obstructions to equivariantly deforming ¢ relative to 4 into Q((G/H)* A Y). The
end of such a homotopy is denoted by ¢’ in the diagram. Upon taking quotients
0 (4) yields a map

7 X/4)G - Q(Y) = Q (X/4/H). (13.7)

Now the transfer 7 is the map in the stable homotopy category which is the adjoint
of 7'. It is easy to check that t is well defined and meets the requirements of definition
(13.1).

To obtain a transfer on the category of n-fold coverings let G=<,, the symmetric
group on n letters, and let H=%,_,. If p:(E, E')— (B, B’) is an n-fold covering
pair let X denote the total space of the associated principal G-bundle. Precisely, X
is the space of maps o: {1, ..., n} — E such that o is fiber preserving and one-one. Let 4
be the subspace of maps whose image lies in E’. If G acts on X by o » a1, Y €G,
we have a free G-pair (X, 4) and the assignment which sends the covering pair to
(X, A) is clearly functorial. Moreover p:(X/H, A/H)— (X/G, A/G) is naturally
equivalent to the original covering pair. The identifications X/H — E and X/G— B
are given by ¢ — o (n) and o — po (n) respectively. Hence the H— G transfer yields a
transfer for n-fold coverings.

Now let p: M — N be a finite covering of index n where M and N are smooth
manifolds. By the preceding remarks, we may write it in the form p:X/H - X/G
where G=%,, H=<,_,, and X is a smooth manifold. To define the umkehr map we
will construct a particular embedding

p:X/H - X/G x R* (13.8)

Let ¥ denote the G-module consisting of R” plus the action of G=, on R" through
permutations. There is an embedding X/H— X x V|G by [x]g =[x, e,]¢. Now for
the vector bundle n: X x ¥/G — X/G there is, for large, s, a map

0:X x V|G - R* (13.9)
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which is a monomorphism on each fiber. Let p be the composite embedding

(m, o)

X/H—->X xV|G——>X/|G x R®.

Explicitly, p([x])=([x], o ([*, e,])). The embedding p has trivial normal bundle
and for ¢ sufficiently small we have a tubular neighborhood map

5: X/H x R* > X|G x R® (13.10)
by p([x], v)=([x], e (x, v)), where
0:X x R® - R® (13.11)

is defined by ¢ (x, v)=0([x, e,,])+ ev/1+]v].
Let B be a sectioned bundle over X/G and «a its pullback over X. Then f=0a/G
and p* (f)=a/H. Using the above tubular neighborhood embedding, the umkehr map
t:T(@/G)A S* > T(a/H) A S® (13.12)

is given by
_Jlg7tad av', if v=0(g7'p,(a),?)
t([a] A v) = { +,  otherwise
On the other hand there is the transfer
T:T(2/G) A S° > T(afH) A S* (13.13)

associated with the free G-pair (E,, X).
We will show now that #=1. To this end let Y=T(a/H) and define

0:(E,, X)x (S5, +) = (G/H)* AYAS®
by
-1 ’ — -1 ’
0(a, v)={gH rle"a] A v, v =10(g" pa(a), v')
+, otherwise
Consider the following diagram

(E,, X) S (P(Y A §°), +)

\‘((G/H)j:\ YAS, +)5 (YA s, +)

Since the umkehr map ¢ is the quotient of 16, we will have ==t provided if is equiv-
ariantly homotopic to ¢. The required homotopy F, is given by

[[g—la] A,
if v=to(g 'p,(a),v)+(1—=1)0".

F,(a,v) (gH) = l
-, otherwise.
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