Zeitschrift:	Commentarii Mathematici Helvetici
Herausgeber:	Schweizerische Mathematische Gesellschaft
Band:	49 (1974)
Artikel:	On a Problem Concerning Two Integer Sequences
Autor:	Choi, S.L.G.
DOI:	https://doi.org/10.5169/seals-38009

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 20.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On a Problem Concerning Two Integer Sequences

S. L. G. CHOI

§1. Introduction

Let \mathscr{A} and \mathscr{B} be sets of natural numbers. Then \mathscr{B} is said to be a k-set with respect to \mathscr{A} if \mathscr{B} contains k integers say b_1, \ldots, b_k such that $b_i + b_j$ $(1 \le j < l \le k)$ all lie outside \mathscr{A} . In this paper we shall prove the following

THEOREM. Let $\varepsilon > 0$ and k be a natural number ≥ 2 . Then there exists a positive integer $s^*(\varepsilon, k)$ with the following property.

Suppose $\mathscr{A} = \{a_1, ..., a_t\}$ and $\mathscr{B} = \{b_1, ..., b_s\}$ are sets of positive integers where $s \ge s^*(\varepsilon, k)$ and $t \le (1 - \varepsilon) s$. Then \mathscr{B} is a k-set with respect to \mathscr{A} .

We note that the above theorem is certainly best possible in the sense that it fails to hold if $\varepsilon > 0$ is replaced by the number 0; for by taking \mathscr{B} to be the integers 1, 2, ..., s and \mathscr{A} to be the even integers 2, 4, ..., 2s, it is clear that we cannot select from \mathscr{B} three integers with all their pairwise sums not appearing in \mathscr{A} .

§2. Some Lemmas

In this section we prove a number of lemmas necessary for the proof of the theorem.

LEMMA 1. Suppose $\alpha > 0$ and $\beta > 0$. Then there exists $n^*(h, \alpha, \beta)$ such that if $n \ge n^*$ and \mathscr{X} is a set of N natural numbers, where $N \ge \alpha n$, contained in a progression of length n, and \mathscr{Y} is a set of natural numbers with¹)

$$|(2\mathscr{X}) \cap \mathscr{Y}| \leq (1-\beta) N, \tag{1}$$

then \mathscr{X} is an h-set with respect to \mathscr{Y} .

Proof. In view of (1) there exist in \mathscr{X} integers $x_1, ..., x_{N^*}, N^* \ge \beta N$ so that $2x_1, ..., 2x_{N^*}$ are not in \mathscr{Y} . We then proceed to extract h integers from among $x_1, ..., x_{N^*}$ so that their pairwise sums all appear in $2x_1, ..., 2x_{N^*}$. Since $x_1, ..., x_{N^*}$ are N^* integers contained in a progression of length $n, N^* \ge \alpha \beta n$, and $n \ge n^*(h, \alpha, \beta)$, we have, by a theorem of Varnavides [1], that there exist a number $c = c(\alpha, \beta)$ and cN^2 triples of integers $x_{i_j}, x_{i_l}, x_{i_m}$ so that $x_{i_j} + x_{i_l} = 2x_{i_m}$. Thus there exists one x_{i_j} , which we shall denote by x_{i_1} , so that there are $\beta_1 N$, where $\beta_1 = \beta_1(\alpha, \beta)$, integers x_{i_l} such that $x_{i_1} + x_{i_l} = 2x_{i_m}$. We now repeat the argument with these $\beta_1 N$ integers x_{i_l} and so on.

¹⁾ Here $2\mathscr{X}$ simply denotes the set of integers 2x, where $x \in \mathscr{X}$

By choosing n^* sufficiently large in terms of h, α , β , the argument may be repeated h-1 times to yield the assertion of the lemma.

LEMMA 2. Let $\lambda \ge 2$ and $w \ge 2$ be a natural number. Then, provided $v \ge 2(8)^{2w-3}$ λ^{2w-2} , $n \ge (8\lambda)^{2w-1}$ and $n \ge v$, the following is true:

If \mathscr{X} is a set of n natural numbers and \mathscr{X}' is a subset consisting of v numbers such that $|\mathscr{X} + \mathscr{X}'| \leq \lambda |\mathscr{X}|$, then there exists a subset \mathscr{S} in \mathscr{X} of the form²) $\mathscr{S} = \{x_0\} + \{0, x_1\} + \dots + \{0, x_w\}$ consisting of 2^w distinct integers.

It will be shown presently that Lemma 2 is a simple consequence of the following

LEMMA 2'. Let $\eta \ge 1$ and \mathscr{T} , \mathscr{U} be sets of natural numbers so that

 $|\mathcal{U}| \ge 2\eta$

and

 $|\mathcal{T} + \mathcal{U}| \leq \eta |\mathcal{T}|.$

Then there exists a number $d \neq 0$ so that

$$t_i - t_j = d \tag{2}$$

has at least $(4\eta)^{-1} |\mathcal{T}|$ solutions in $t_i, t_j \in \mathcal{T}$.

Proof of Lemma 2'. We denote $|\mathcal{T}|$ by T, and $|\mathcal{U}|$ by U. Let $s_1, \ldots, s_p, p \leq \eta T$ be the elements of $\mathcal{T} + \mathcal{U}$ and suppose

$$t_1^{(l)} + u_1^{(l)} = t_2^{(l)} + u_2^{(l)} = \dots = t_{q_l}^{(l)} + u_{q_l}^{(l)} = s_l; \quad 1 \le l \le p,$$

where $t_i^{(l)} \in \mathcal{T}$ and $t_i^{(l)} \in \mathcal{U}$. From the above set of equations we see that there are, for a fixed $l, \frac{1}{2}q_l(q_l-1)$ pairs of equations of type $t_i^{(l)} + u_i^{(l)} = t_j^{(l)} + u_j^{(l)}$. We may rewrite each of these equations as $t_i^{(l)} - t_j^{(l)} = u_j^{(l)} - u_i^{(l)}$ or $t_j^{(l)} - t_i^{(l)} = u_i^{(l)} - u_j^{(l)}$. Thus altogether there are $\sum_{l=1}^p q_l(q_l-1)$ differences $t_i - t_j (i \neq j)$ obtained in this way. As there are at most U^2 differences $u_i - u_j (i \neq j)$, there exists one such difference say $d (d \neq 0)$ so that there are N distinct solutions for (2) in $t_i, t_j \ge$ where

$$N \ge U^{-2} \sum_{l=1}^{p} q_l (q_l - 1).$$

Clearly the above yields

$$N \ge U^{-2} \left(\frac{1}{2} \sum_{l=1}^{p} q_{l}^{2} - p \right).$$

²) For sets $\mathscr{X}_1, \mathscr{X}_2, ..., \mathscr{X}_r$ of integers, $\mathscr{X}_1 + \cdots + \mathscr{X}_r$ denotes the set of integers of the form $x_1 + \cdots + x_r$ where $x_1 \in \mathscr{X}_1, ..., x_r \in \mathscr{X}_r$.

Now $\sum_{l=1}^{p} q_l = TU$ so that an applications of Schwarz's inequality yields

$$(TU)^{2} = \left(\sum_{l=1}^{p} q_{l}\right)^{2} \leq \sum_{l=1}^{p} 1 \sum_{l=1}^{p} q_{l}^{2} \leq 2p \left(U^{2}N + p\right).$$

Since $p \leq \eta T$ and $U \geq 2\eta$, the above implies $2pU^2N \geq (TU)^2/2$ from which $N \geq T^2/4p \geq T/4\eta$ follows. This completes the proof of Lemma 2'.

Proof of Lemma 2. We apply Lemma 2' with $\mathscr{T} = \mathscr{X}$, $\mathscr{U} = \mathscr{X}'$ and $\eta = \lambda$ and assert the existence of a subset \mathscr{X}_1 of \mathscr{X} consisting of $\ge (8\lambda)^{-1} |\mathscr{X}|$ integers and a number d_0 so that $(d_0 + \mathscr{X}_1) \cap \mathscr{X}_1 = \emptyset$ and $d_0 + \mathscr{X}_1 \subset \mathscr{X}$. We now apply Lemma 2' again with $\mathscr{T} = \mathscr{X}_1$ and $\mathscr{U} = \mathscr{X}'$ and $\eta = 8\lambda^2$ and assert the existence of a subset \mathscr{X}_2 of \mathscr{X}_1 consisting of $\ge (8^2\lambda^2)^{-1} |\mathscr{X}_1| \ge (8\lambda)^{-3} |\mathscr{X}|$ integers and a number d_1 so that $(d_1 + \mathscr{X}_2) \cap \mathscr{X}_1 = \emptyset$ and $d_1 + \mathscr{X}_2 \subset \mathscr{X}_1$. Since $n \ge (8\lambda)^{2w-1}$ and $v \ge 2(8)^{2w-3} \lambda^{2w-2}$ we may repeat the argument w times to obtain a sequence of numbers d_0, d_1, \ldots, d_w so that $\{d_w\} + \{0, d_{w-1}\} +$ $+ \cdots + \{0, d_0\}$ consists of 2^w numbers all belonging to \mathscr{X} . This completes the proof of Lemma 2.

Before stating the next lemma we introduce the concept of a type c set. Henceforth we shall regard ε and k as being fixed.

Let $c \ge 2$ be any positive number. We define the numbers $n^*(c)$ and u(c) by

$$n^{*}(c) = n^{*}\left(k, \frac{\varepsilon}{8c}, \frac{\varepsilon}{4}\right), \tag{3}$$

where $n^*(h, \alpha, \beta)$ is the number appearing in Lemma 1; and

$$u(c) = [20\varepsilon^{-1}n^*(c) \ c \ \log c].$$
(4)

DEFINITION 1. A set \mathscr{X} consisting of at least 2^u natural numbers, where u=u(c) is defined by (4), is said to be a set of type c, or simply a type c set, if it contains a subset \mathscr{S} of the form $\{x_0\} + \cdots + \{0, x_u\}$, consisting of 2^u distinct integers such that $|\mathscr{X} + \mathscr{S}| \leq c|\mathscr{X}|$.

LEMMA 3. Let $c \ge 2$ and $n \ge 2^u$, where u = u(c) is defined by (4). Suppose \mathscr{X} is a type c set consisting of n positive integers. Then, with at most $4^{-1} \varepsilon |\mathscr{X}|$ exceptions, the integers in \mathscr{X} is contained in the union of disjoint arithmetic progressions each of length $\ge n^*(c)$, where $n^*(c)$ is defined by (3), and each such progression has at least a proportion $\varepsilon(8c)^{-1}$ of its integers appearing in \mathscr{X} .

Proof. Since \mathscr{X} is of type c, it has, by definition, a subset $\mathscr{S} = \{x_0\} + \dots + \{0, x_u\}$ so that

 $|\mathscr{X} + \mathscr{S}| \leq c |\mathscr{X}|.$

We define $\mathscr{X}^{(i)}$ (i=0, 1, ..., u) by

$$\mathscr{X}^{(i)} = \mathscr{X} + \mathscr{S}^{(i)}$$

where

 $\mathscr{S}^{(i)} = \{x_0\} + \dots + \{0, x_i\}.$

Clearly $\mathscr{X}^{(0)} \subset \mathscr{X}^{(1)} \subset \cdots \subset \mathscr{X}^{(u)}$. Since $|\mathscr{X}^{(u)}| = |\mathscr{X} + \mathscr{S}| \leq c |\mathscr{X}|$, there exists some j $(1 \leq j < u)$ so that

$$|\mathscr{X}^{(j+1)}| \leq (1 + u^{-1} 2 \log c) |\mathscr{X}^{(j)}|.$$
(5)

We partition the integers in $\mathscr{X}^{(j)}$ into maximal progressions mod x_{i+1} . In view of (5) the number of progressions is at most $u^{-1}(2 \log c) |\mathscr{X}^{(j)}| \leq u^{-1}(2 \log c) (cn)$. Thus the number of elements of $\mathscr{X}^{(0)}$ contained in all progressions each with $\langle n^*(c) \rangle$ elements is $\leq u^{-1} (2 \log c) (cn) n^*(c) \leq \varepsilon n/8$, in view of (4). Next we consider those progressions having each at most a proportion $(8c)^{-1} \varepsilon$ of its elements in $\mathscr{X}^{(0)}$. The total number of elements of $\mathscr{X}^{(0)}$ contained in progressions of this type is $\leq cn(8c)^{-1} \varepsilon = \varepsilon n/8$. Thus each of the remaining progressions is of length $\geq n^*(c)$ and has at least a proportion $(8c)^{-1} \varepsilon$ of its elements of $\mathscr{X}^{(0)}$ contained in $\mathscr{X}^{(0)}$. Therefore the total number of elements of $\mathscr{X}^{(0)}$ contained in $\mathscr{X}^{(0)}$. Therefore the total number of $(8c)^{-1} \varepsilon$ of its elements contained in $\mathscr{X}^{(0)}$. Therefore the total number of $(8c)^{-1} \varepsilon$ of its elements contained in $\mathscr{X}^{(0)}$. Therefore the total number of $(8c)^{-1} \varepsilon$ of its elements $(1-\varepsilon/8-\varepsilon/8) = (1-\varepsilon/4) n$. Since $\mathscr{X}^{(0)} = \mathscr{X} + \{x_0\}$, we have the assertion in the lemma.

Before stating Lemma 4 we introduce one further definition, that of an r-good set with respect to a given set.

DEFINITION 2. Let r be a natural number, and \mathscr{Z} be a set of natural numbers. Then a set \mathscr{X} of natural numbers is said to be an r-good set with respect to \mathscr{Z} if it contains r integers $x_1, ..., x_r$ so that on putting³)

$$\mathscr{X}_{j} = \mathscr{X} - \{x_{1}, ..., x_{j}\}, \quad j = 1, ..., r,$$

we have

 $(x_j + \mathscr{X}_j) \cap \mathscr{Z} = \emptyset, \quad j = 1, ..., r.$

LEMMA 4. Let $c \ge 2$ and u = u(c) be defined by (4). Let $v \ge 2(8)^{2u-3} c^{2u-2}$, $n \ge (8c)^{2u-1}$ and $n \ge v$. Suppose \mathscr{X} consists of n natural numbers and is not of type c. Then, for any given set \mathscr{X} of natural numbers such that $|\mathscr{X}| \le cn-n$, there exists a subset \mathscr{X}^* of \mathscr{X} which is 1-good with respect to \mathscr{X} and $|\mathscr{X}^*| \ge v^{-1}|\mathscr{X}|$.

Proof. We take a subset \mathscr{X}' of \mathscr{X} with $|\mathscr{X}'| = v$. First suppose $|\mathscr{X} + \mathscr{X}'| \leq c |\mathscr{X}|$. Then,

³⁾ Here \mathscr{X}_{j} is the complement of $\{x_{1}, ..., x_{j}\}$ in \mathscr{X} .

by Lemma 2, there exists a subset \mathscr{S} of \mathscr{X} of the form $\mathscr{S} = \{x_0\} + \dots + \{0, x_u\}$. Since \mathscr{X} is not of type $c, |\mathscr{X} + \mathscr{S}| > c|\mathscr{X}|$. Thus, on recalling that $|\mathscr{X}| \leq c|\mathscr{X}| - |\mathscr{X}|$, we can assert that there is an element $x \in \mathscr{S}$ and a subset \mathscr{X}'' of \mathscr{X} so that

$$|\mathscr{X}''| \ge (2^u)^{-1} |\mathscr{X}|$$

and

$$(\mathscr{X}''+x)\cap \mathscr{Z}=\emptyset.$$

We may take $\mathscr{X}^* = \mathscr{X}'' + \{x\}$. Since $2^u \leq v$, \mathscr{X}^* is a 1-good set as desired.

On the other hand, if $|\mathscr{X} + \mathscr{X}'| > c |\mathscr{X}|$, then again there exists $y \in \mathscr{X}'$ and a subset \mathscr{X}''' of \mathscr{X} so that

 $|\mathscr{X}'''| \ge v^{-1} |\mathscr{X}|$

and

$$(\mathscr{X}'''+y)\cap \mathscr{Z}=\emptyset.$$

We may now take $\mathscr{X}^* = \mathscr{X}''' + \{y\}$. This completes the proof of the lemma.

§3. Proof of the Theorem

As the proof of the theorem is rather involved we shall first deduce Lemma A as a consequence of the lemmas in $\S2$, and then deduce from it Lemma B. In the actual proof of the theorem, the only reference will be to Lemma B.

First we introduce the following definition.

DEFINITION 3. We define the numbers s_j , c_j , u_j , v_j , j=1,...,k-1, as follows.

$$s_{j} = \begin{cases} [(4k)^{-1} \varepsilon s] & j = 1 \\ [(4k)^{-1} \varepsilon [v_{j-1}^{-1} s_{j-1}]] & j = 2, ..., k-1 \end{cases}$$
(6)⁴)

$$c_{j} = \begin{cases} 2(4k\varepsilon^{-1}) + 1 & j = 1\\ 2(4k\varepsilon^{-1})^{j} v_{j-1} \dots v_{1} + 1, & j = 2, \dots, k-1 \end{cases}$$
(7)

$$u_j = [20\varepsilon^{-1}n_j^*c_j \log c_j], \tag{8}$$

where $n_j^* = n^*(c_j)$ is the function defined by (3),

$$v_j = 2(8)^{2u_j - 3} c_j^{2u_j - 2}.$$
(9)

⁴⁾ $[\alpha]$ denotes the smallest integer $\geq \alpha$.

We suppose \mathscr{A} and \mathscr{B} are sets satisfying the hypothesis of the theorem and we suppose s so large that the number s_{k-1} , defined in the definition 3, satisfies

$$s_{k-1} \ge (8c_{k-1})^{2u_{k-1}-1}.$$
(10)

We note a number of consequences of definition 3 and (10) for future references. We have

$$s_j \ge (8c_j)^{2u_j-1}, \quad j=1,...,k-1$$
 (11)

$$2\{(4k\varepsilon^{-1})v_1 + (4k\varepsilon^{-1})^2v_1v_2 + \dots + (4k\varepsilon^{-1})^{k-2}v_1\dots v_{k-2}\} \leq \frac{\varepsilon s}{2},$$
(12)

and

$$s_j c_j - s_j \ge s \ge |\mathscr{A}|. \tag{13}$$

We obtain (11) by observing that (6)-(9) clearly imply $c_1 < c_2 < \cdots < c_{k-1}$, $u_1 < \cdots < u_{k-1}$ and $s > s_1 > \cdots > s_{k-1}$, and then using (10).

To obtain (12) we observe that (6) implies $s \ge (\frac{1}{2}) (4k\varepsilon^{-1})^{k-1} v_1 \dots v_{k-1} s_{k-1}$ which in view of (10) gives $4(4k\varepsilon^{-1})^{k-1} v_1 \dots v_{k-1} \le \varepsilon s/2$; it is now clear that (12) follows from this inequality.

Finally (13) is a consequence of (6) and (7) and the fact that $|\mathcal{A}| \leq (1-\varepsilon) s$.

Henceforth, an r-good set (see Definition 2) will always be taken to mean one with respect to \mathscr{A} , and an r-set will also be taken to mean one with respect to \mathscr{A} .

LEMMA A. Let $1 \le j \le k-1$ and \mathcal{D}_j be a subset of \mathcal{B} consisting of s_j integers, where s_j is given by (6). Suppose \mathcal{D}_j is not a k-set. Then either \mathcal{D}_j is a set of type c_j and

$$|2\mathscr{D}_{j} \cap \mathscr{A}| \ge \left(1 - \frac{\varepsilon}{2}\right) |\mathscr{D}_{j}| \tag{14}$$

or \mathcal{D}_{i} contains a subset \mathcal{D}_{i}^{*} which is 1-good and

$$|\mathscr{D}_{j}^{*}| = \lceil v_{j}^{-1} | \mathscr{D}_{j} \rceil = \lceil v_{j}^{-1} s_{j} \rceil, \qquad (15)$$

where v_i is given by (9).

Proof. Suppose \mathscr{D}_j is of type c_j . Since $s_j \ge 2^{u_j}$ in view of (11), we may apply Lemma 3 with $c = c_j$, $n = s_j$ and $\mathscr{X} = \mathscr{D}_j$ to assert that, with at most $4^{-1}\varepsilon |\mathscr{D}_j|$ exceptions, the integers in \mathscr{D}_j are contained in the union of disjoint arithmetic progressions each of length $\ge n_j^*$ and each having at least a proportion $\varepsilon (8c_j)^{-1}$ of its integers in \mathscr{D}_j . We shall suppose (14) does not hold and deduce a contradiction.

Since $(1-\epsilon/2) \leq (1-\epsilon/4) (1-\epsilon/4)$, the assumption that (14) does not hold implies

539

that there exists an arithmetic progression \mathcal{P} so that

$$|\mathscr{P}| \ge n_j^* = n^* (k, (8c_j)^{-1} \varepsilon, \varepsilon/4)$$
$$|\mathscr{P} \cap \mathscr{D}_j| \ge \varepsilon (8c_j)^{-1} |\mathscr{P}|$$

and

$$|(2(\mathscr{P}\cap\mathscr{D}_j))\cap\mathscr{A}| \leq (1-\varepsilon/4) |\mathscr{D}_j\cap\mathscr{P}|.$$

Thus by Lemma 1, $\mathscr{P} \cap \mathscr{D}_j$ is a k-set, and this contradicts the hypothesis in the lemma concerning \mathscr{D}_j . Therefore in the case when \mathscr{D}_j is of type c_j we have (14).

Now suppose \mathscr{D}_j is not of type c_j . Since $|\mathscr{A}| \leq c_j s_j - s_j$ by (13), and $s_j \geq (8c_j)^{2u_j-1}$ by (11), we may apply Lemma 4 with $c = c_j$, $\mathscr{X} = \mathscr{D}_j$, $n = s_j$ and $\mathscr{Z} = \mathscr{A}$ to yield a 1-good subset \mathscr{D}_j^* of \mathscr{D}_j satisfying (15).

LEMMA B. Let $0 \le j \le k-2$ and $\mathscr{G}^{(j)}$ be a subset of \mathscr{B} so that

$$|\mathscr{G}^{(j)}| = \begin{cases} s & \text{if } s = 0\\ \lceil s_j v_j^{-1} \rceil - 1 & \text{if } j > 0 \end{cases}$$

$$(16)$$

where s_j , v_j are given by (6) and (9). Suppose $\mathscr{G}^{(j)}$ is not a k-set. Then we may partition the integers in $\mathscr{G}^{(j)}$, with at most s_{j+1} exceptions, into subsets which are either of type c_{j+1} each consisting of s_{j+1} elements or 1-good sets each consisting of $\lceil v_{j+1}^{-1} s_{j+1} \rceil$ elements. Furthermore, if \mathscr{Y} is a type c_{j+1} set in the partition then \mathscr{Y} satisfies

$$|2\mathscr{Y} \cap \mathscr{A}| \ge \left(1 - \frac{\varepsilon}{2}\right)|\mathscr{Y}|. \tag{17}$$

Proof. We take a subset \mathscr{D}_{j+1} of $\mathscr{G}^{(j)}$ consisting of s_{j+1} elements and apply Lemma A to assert that either \mathscr{D}_{j+1} is a set of type c_{j+1} so that (17) is satisfied with $\mathscr{Y} = \mathscr{D}_{j+1}$ or else \mathscr{D}_{j+1} contains a subset \mathscr{D}_{j+1}^* which is 1-good. Put

$$\mathcal{F} = \begin{cases} \mathscr{D}_{j+1} & \text{if } \mathscr{D}_{j+1} & \text{is of type } c_{j+1} \\ \mathscr{D}_{j+1}^* & \text{if } \mathscr{D}_{j+1} & \text{is not of type } c_{j+1}. \end{cases}$$

We apply the same argument to $\mathscr{G}^{(j)} - \mathscr{F}$ and so on. In this way we may partition $\mathscr{G}^{(j)}$, with at most s_{j+1} exceptions of its integers, into subsets having the properties asserted in the lemma.

We are now in a position to prove our theorem. For j=0, Lemma B yields a partition of \mathcal{B} into subsets

$$\mathscr{C}_{1}^{(1)}, \dots, \mathscr{C}_{l_{1}}^{(1)}$$
 (18)

$$\mathscr{E}_{1}^{(1)}, \dots, \mathscr{E}_{h}^{(1)}$$
 (19)

540

and

$$\mathscr{M}^{(1)}, \tag{20}$$

where

$$|2\mathscr{C}_{i}^{(1)} \cap \mathscr{A}| \ge \left(1 - \frac{\varepsilon}{2}\right) |\mathscr{C}_{i}^{(1)}|, \quad i = 1, \dots, l_{1}$$

$$(21)$$

 $\mathscr{E}_{i}^{(1)}$ $(i=1,...,h_{1})$ are 1-good sets satisfying

$$|\mathscr{E}_{i}^{(1)}| = \lceil v_{1}^{-1} s_{1} \rceil, \quad i = 1, \dots, h_{1},$$
(22)

and

$$|\mathscr{M}^{(1)}| \leqslant s_1 \leqslant (4k)^{-1} \varepsilon s.$$
⁽²³⁾

We note that since $|\mathscr{A}| \leq (1-\varepsilon) s$, inequalities (21) and (23) imply that there are indeed 1-good sets $\mathscr{E}_i^{(1)}$ in the partition.

For each of the 1-good sets $\mathscr{E}_i^{(1)}$, we let $\widetilde{\mathscr{E}}_i^{(1)}$ be the subset of $\mathscr{E}_i^{(1)}$ so that there exists an element b_i in $\mathscr{E}_i^{(1)}$ with

$$\widetilde{\mathscr{E}}_i^{(1)} = \mathscr{E}_i^{(1)} - \{b\}$$

and

$$\widetilde{\mathscr{E}}_{i}^{(1)} \cap \mathscr{A} = \emptyset.$$

We apply Lemma B with j=1 and $\mathscr{G}^{(1)} = \widetilde{\mathscr{E}}_i^{(1)}$ and obtain for each $\widetilde{\mathscr{E}}_i^{(1)}$ a partition of all its integers with at most $s_2 = [(4k)^{-1} \varepsilon |\mathscr{E}_i^{(1)}|]$ exceptions, into sets of type c_2 and 1-good sets. We further note that each such 1-good set may with the adjunction of an element from \mathscr{B} become a 2-good set. Thus, at this second stage, we have partitioned \mathscr{B} into subsets

$$\mathscr{C}_{1}^{(2)}, \dots, \mathscr{C}_{l_{2}}^{(2)}$$
 (24)

$$\mathscr{E}_{1}^{(2)}, \dots, \mathscr{E}_{h_{2}}^{(2)}$$
 (25)

and

$$\mathscr{M}^{(2)} \tag{26}$$

where

$$|2\mathscr{C}_{i}^{(2)} \cap \mathscr{A}| \ge \left(1 - \frac{\varepsilon}{2}\right) |\mathscr{C}_{i}^{(2)}|, \quad i = 1, \dots, l_{2},$$

$$(27)$$

 $\mathscr{E}_i^{(2)}$ are 1-good sets satisfying

$$|\mathscr{E}_{i}^{(2)}| = \lceil v_{2}^{-1} s_{2} \rceil, \quad i = 1, ..., h_{2}$$
 (28)

and

$$|\mathscr{M}^{(2)}| \leq 2(4k)^{-1} \varepsilon s + 2(4k\varepsilon^{-1}v_1) \leq \frac{\varepsilon}{2} s$$
⁽²⁹⁾

[For (29) see (12)]. Again the existence of sets $\mathscr{E}_i^{(2)}$ is a consequence of (27), (29) and $|\mathscr{A}| \leq (1-\varepsilon) s$.

It is clear that the argument employed above may be repeated. At the (k-1)-th stage we may assert the partitioning of \mathcal{B} into subsets

$$\mathscr{C}_{1}^{(k-1)}, \dots, \mathscr{C}_{l_{k-1}}^{(k-1)}$$
(30)

$$\mathscr{E}_{1}^{(k-1)}, \dots, \mathscr{E}_{h_{k-1}}^{(k-1)}$$
(31)

and

$$\mathcal{M}^{(k-1)}$$

where

$$|2\mathscr{C}_{i}^{(k-1)} \cap \mathscr{A}| \ge \left(1 - \frac{\varepsilon}{2}\right) |\mathscr{C}_{i}^{(k-1)}|, \quad i = 1, 2, \dots,$$
(32)

 $\mathscr{E}_{i}^{(k-1)}$ are 1-good sets satisfying

$$|\mathscr{E}_{i}^{(k-1)}| = \lceil v_{k-1}^{-1} s_{k-1} \rceil, \quad i = 1, 2, \dots$$
(33)

and

$$|\mathscr{M}^{(k-1)}| \leq (k-1) (4k)^{-1} \varepsilon s + 2 \{ (4k\varepsilon^{-1}) v_1 + \dots + (4k\varepsilon^{-1})^{k-2} v_1 \dots v_{k-2} \} \leq \frac{\varepsilon}{2} s (34)$$

[for (34) see (12)]. Again the existence of sets $\mathscr{C}_i^{(k-1)}$ is a consequence of (32), (34) and $|\mathscr{A}| \leq (1-\varepsilon) s$. These 1-good sets may with the adjunction with k-2 elements from \mathscr{B} , become (k-1)-good sets. Since a (k-1)-good set is already a k-set we have completed the proof of the theorem.

REFERENCE

[1] VARNAVIDES, P., On certain sets of positive density, J. London Math. Soc. 34 (1959), 358-360.

Department of Mathematics, University of British Columbia Vancouver, B.C. Canada.

Received March 11, 1974.

542