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Commutators of Diffeomorphisms?)

by JoHN N. MATHER

In this paper, we will show that certain groups of diffeomorphisms are perfect,
i.e., equal to their own commutator subgroups. Epstein has shown [2] that for quite
general groups of homeomorphisms, the commutator subgroup is simple. In particular,
his result shows that for the groups of diffeomorphisms which we consider, the
commutator subgroup is simple. Combining his results with our result, we see that
the groups we consider are simple. In § 7, we obtain a result concerning the connectivity
of Haefliger’s classifying space for foliations as a corollary of our proof and a result
of Thurston [4].

We say an isotopy H, of a space M has compact support if there is a compact set
K in M such that H,(x)=x for all xe M —K and all «.

Let M be a smooth manifold. We define Diff (M, r) to be the group of C" dif-
feomorphisms of M which are isotopic to the identity through compactly supported
C" isotopies. Thus, any element of Diff (M, r) has compact support. Our main result
is the following.

THEOREM 1. If o>r>n+2, then Diff (M, r) is perfect, where n=dim M.

This is slighly different from a result announced in [3]. We will also prove the
result announced there.

The case r=o00 of this theorem has previously been proved. For M=T", it is an
easy consequence of a theorem due to J. Moser. The generalization to arbitrary
manifolds is due to Thurston [4].

As mentioned above, Theorem 1, and Epstein’s result imply:

COROLLARY. If o>r>=n+2, then Diff (M, r) is simple.
Actually, Theorem 1 is an immediate consequence of the special case when
M =R". For, any member 4 of Diff (M, r) can be decomposed as a product:

h=g;... g4,

where for each g; there is an open subset U; of M, diffeomorphic to R", such that g;
is the identity outside U;, and g; | U, is in Diff (U, r). Then the special case of the
theorem implies each g, is a product of commutators, and it follows that 4 is a product
of commutators.

Theorem 1 is a consequence of Theorem 2, stated in §2.

1) This research was partially supported by NSF grant GP 31359X-1.
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The question of simplicity of groups of homeomorphisms has generated a fair
amount of interest and number of papers. See Epstein [2] for older references. See
Thurston [4] for more recent references on simplicity of groups of homeomorphisms.
See also Thurston [5] for an interesting result concerning volume preserving dif-
feomorphisms.

§1. Moduli of Continuity

The results which we will actually prove are refinements of the results stated in
the previous section. In fact, we will need to prove these refinements to prove the
results stated there. To state the refinements we need the notion of a modulus of
continuity.

DEFINITION. A modulus of continuity is a continuous strictly increasing real-
valued function « defined on an interval [0, ¢], where >0, such that «(0)=0, and
a(tx)<ta(x) for any xe€[0, ¢] and #>1, such that txe [0, ¢].

DEFINITION. A mapping f:X— Y of metric spaces is a-continuous if there
exists C, ¢’ with C>0, e>¢'>0 such that for any x, ye X satisfying dist. (x, y)<¢’,
we have

dist. (f (%), f (»)) < Cu(dist. (x, y)).

We say f is locally a-continuous if each point xe X has a neighborhood U such that
f | U is a-continuous.

For example, if o(x)=2x, then f is a-continuous if and only if it is Lipschitz. If
a(x)=xP, where 0< <1, then f is a-continuous if and only if it is H6lder continuous
with Holder constant f.

SUMS. Let X be a metric space and Y a normed vector space. If f, g: X — Y are
a-continuous, then so is their sum.

COMPOSITION. Consider mappings of metric spaces X — Y — Z. If f is a-con-
tinuous and g is Lipschitz, or f is Lipschitz and g is a-continuous, then gof is a-con-
tinuous. However, in general the composition of a-continuous mappings is not a-
continuous.

PRODUCTS. Consider a bilinear mapping B:YxZ— W of normed vector
spaces. If f: X — Y and g: X — Z are mappings, we define their ‘‘product’ fg: X - W
by fg(x)=B(f (x), g(x)). If f and g are a-continuous, and their images are bounded,
then fg is a-continuous. This is because if Y, and Z, are bounded sets in Y and Z,
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respectively, then B l Yo %X Z, is Lipschitz, so we can apply our remarks about com-
position to fg=B-(f, g).

§2. Mappings of Class C™*

We will say a mapping from an open set in R” to R? is of class C™ * if it is of class
C" and its rth derivative is locally a-continuous. When r=o00, C™* will mean C*.
We can extend this notion to mappings between smooth manifolds in the usual way.
The class C™* has a number of properties which will be useful in what follows.

SUMS and PRODUCTS. If we form sums and products of mappings as in the
previous section, we find that sums and products of C™* mappings are C™“.

COMPOSITION. If r>1, any composition of C™* mappings is C" *. The proof
is slightly different in the cases r=1 and r>1.
In the case r=1, we use the formula D(f-g) (x)=Df (g(x))- Dg(x), or

D(f-g)=(Df-g) Dg. (1)

Then Df-g is the composition of a locally a-continuous mapping and a C' mapping,
and is therefore locally a-continuous. Therefore D ( fog) is the ‘‘product’ of locally
a-continuous mappings, so it is itself locally a-continuous.

In the case r>1, we use the formula for the rth derivative of a composition:

D" (fog)=(D"fog) (Dg)" +(Dfog)-D'g+ other terms, 2)
where each of the other terms has the form
C(D'fog): (Digx -+~ x D''g) 3)

with C an integer, 1 <i<r, 1<jj, and j, +--- +j;=r.
The sum of the ‘‘other terms’ is C?. It follows that D" ( fog) is the sum of locally
a-continuous mappings, and is therefore itself locally a-continuous.

INVERSES. If r>1, any C! inverse of a C™* mapping is C™* If E and F are
Banach spaces, we let Iso (E, F) denote the space of isomorphisms of E into F. We let

Inv: Iso (E, F)—Iso(F, E)

be defined by Inv(¢)=¢!. Then Inv is C*® and for a C! invertible mapping f, we
have D(f 1) (x)=(Df (f ~*(x))* or

D(f ~Y)=InveDfof 71, 3)
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It is well known that if fis C" and has a C' inverse, then its inverse is C". (In fact,
this is an easy consequence of the above formula, and induction on r.) Now if f is
C"* and has a C" inverse we know that f ~! is C", that Df is C"~*% and that Inv
is C*®, so we get from the above formula that D(f ') is C"~1'* Hence f " is C"°.

DEFINITION. If M is a smooth manifold, we let Diff(M, r, a) be the group of
C"* diffeomorphisms of M which are isotopic to the identity through compactly
supported C™ # isotopies.

The following is our refinement of Theorem 1.

THEOREM 2. If o>r>=n+2, and a is a modulus of continuity, or r=n+1 and
a(x)=x? for some 0<B<1, then Diff (M, r, &) is perfect, where n=dim M.
Note that Theorem 1 is an immediate consequence, since

Diff (M, r)=J Diff (M, r, a),

where the union is taken over all moduli of continuity.
The case a(x)=ux of this theorem is theorem of our announcement [3].
From Epstein’s theorem [2], we get:

COROLLARY. If co>r>=n+2, and o is a modulus of continuity, or r=n+1, and
a(x)=x* for some 0<B<1, then Diff (M, r, &) is simple.

Of course, just as it is enough to prove Theorem 1 for the case M =R", it is enough
to prove Theorem 2 for the case M =R", to obtain the general result. We reduce the
proof in § 3 to the construction of certain mappings ¥'; ,. The mappings are construct-
ed in subsequent sections.

§3. Strategy of the Proof

In this section, we discuss the strategy of the proof of Theorem 2 in the case
M=R" and r<oo. The idea is to construct lots of conjugate elements. Roughly
speaking, if we can find enough pairs of conjugate elements in a group, then it is
perfect. If u is an element in a group, we will denote its image in the commutator
quotient group by [u]. If u and v are conjugate, then [u]=[v].

Let A>1. Let

D, ,={xeR":-2<x;<2,1<j<i and —-24<x;<24,i<j<n}.

Thus each D, , is a rectilinear parallelpiped and D, ,=D,_;, 4<:--<=D,, 4. The
rectilinear parallelpipeds D;_, , and D, , have the same width in all coordinates
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but the ith coordinate. We note D, , is independent of 4. We will write D,=D, ,.

The main technical step in the proof is the construction of certain mappings ¥; ,
of function spaces, and the proof of a number of properties of the ¥; ,. If X is a
subset of topological space, we let int X denote the interior of X. The domain of
¥, 4 is a C! neighborhood of the identity in the space of C' diffeomorphisms of R”
with support in int D;_; ,. The range of ¥, , is the set of C' diffeomorphisms of R"
with support in intD; ,. Here, we list the properties we will show ¥; , to have.

3.1. Properties of ¥; 4

1) ¥; 4(id)=id, where id denotes the identity mapping of R".

2) If uis C"% thenso is ¥; ,(u). (Hence, if u is C”, then so is ¥; ,(u).)

3) The restriction of ¥; 4 to the set of C” diffeomorphisms in its domain is con-
tinuous with respect to the C" topologies on its domain and range.

4) If uis in the domain of ¥; , then u is isotopic to the identity through an isotopy
with support in intD;_, , and ¥; ,(u) is isotopic to the identity through an isotopy
with support in intD; ,.

Notice that if we have constructed a mapping ¥, , satisfying (1)-(3), then by
replacing the domain of ¥; , by a possibly smaller neighborhood of id, we can
arrange for (4) to hold. Notice also that (2) and (4) imply that if « is in the domain of
¥, 4and uis C"°% then u, ¥; ,(u)eDiff(R", r, a).

5) If u is in the domain of ¥; , and u is C"*, then

[ul=[¥:,4(w)]

in the commutator quotient group of Diff(R”, r, a).

The last property of ¥; , that we need is expressed in terms of pseudo-norms on
the space of C™* mappings. If » is a C™* mapping from an open set U in R" into
R?, and the domain of « is [0, ¢], we let

ID"u (x)—D"u(y)l
a(lx—xl)
Note that if a’ is the restriction of a to a possibly smaller interval, then || ||, ,>

I ., a4l i, for some >0, provided U is convex.
If u is a C™* diffeomorphism of R" with compact support, we set

”u”r,a=sup{ - X, yGU and ”x'—y“<8}

”r,a(u)= "u—'id“r,a'

Thus u, ,(u)=|ul, . if r>1.
6) There exists 6>0, C>0 such that

ﬂr,a ('Pi, A (u)) < CAAur,a (u) ’
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if u is of class C™*, lies in the domain of ¥, ,, and satisfies u, ,(#)<d. Moreover,
C is independent of A.

However, 6 depends on r, «, n, and 4, and C depends on r, «, and n.

In the rest of this section, we finish the proof of Theorem 2, assuming the existence
of ¥; 4 satisfying (1)—(6). Consider feDiff(R", r, ) with support in intD, ,. We
wish to show f is in the commutator subgroup if it is sufficiently close to id.

We let A:R"—>R" denote the mapping defined by A4(x)=A4-x. For any
ueDiff (R, r, ) with support in int D,, we try to define

u():Aqu—l
U = q’l,A(uO)
U= q’z,A(ul)

U, = 'Pn,A (un—1)°

If u and f are sufficiently close to the identity in the C* topology, these will actually be
defined, by properties (1)-(3) of ¥, ,.

It is easily seen that u, is conjugate to fu in Diff (R", r, «). For, we can choose
AeDiff (R", r, «) such that 4 | D,= A, and then we have

uo =quz_ 1 .
Thus, [ug]=[ fu] in the commutator quotient group of Diff (R", r, «). Thus

[ful=[u,]. (*)

LEMMA. Suppose n+2<r<o, or r=n+1 and a(x)=x" for some 0<B<]I.
There exists Ay such that if A=Ay, then for ¢>0 sufficiently small, u, ,(u)<e and
oo )< imply i, () <.

We will prove this lemma below. Assuming it, we can give a very quick proof
of Theorem 2.

Proof of Theorem 2. Let B, denote the set of ueDiff(R”", r, «) with support in
int D, such that y, , () <e. If & is sufficiently small, the mapping u— u —id is a bijection
of B, onto the set B; of C" * mappings v:R"” — R"with support inint D, and 4, ,(v)<e.
Moreover the mapping u+—u—id is a homeomorphism with respect to the C" topol-
ogies. The set B, is compact with respect to the C" topology, by Ascoli’s theorem,
and is convex. Therefore by the Schauder-Tychonoff theorem [1, V. 10.5], it has the
fixed point property, for mappings which are continuous with respect to the C”
topology.

Since B, is homeomorphic to B,, it also has the fixed point property for mappings
which are continuous with respect to the C" topology.
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Now choose A sufficiently large and ¢ sufficiently small so that the lemma holds.
Let feB,, and for any ueB,, let u,,..., u, be defined as above. We will write 6 ;(u)
for u,. This defines a mapping 6, of B, into itself by the lemma. By property (3) of
¥, 4> the mapping 6, is continuous, with respect to the C" topology. Therefore 6,
has a fixed point.

Let u be a fixed point of 6. Then, by (), we have

[fu]=[u]

or
[f1=1.

In other words, f is in the commutator subgroup of Diff (R", r, a).

Since f is an arbitrary element of B,, we have shown that every element of B,
is in the commutator subgroup. But, Diff(R", r, «) is generated by conjugates of
elements of B,, so we obtain the desired result. Q.E.D.

Proof of the Lemma. We start by proving an estimate which we will use later.
Let K be a compact subset of R”. Let r>1 and let « be a modulus of continuity. Then
there exist >0 (small) and C>0 (large) such that the following holds. Let f, g be
C"* diffeomorphisms of R" whose rth derivatives vanish outside K, and suppose

tr.o(f)s 1y,2(8)<8. Then
:ur,a(gf)gtur,a(g)"'”r,a(f)+Cﬂr,a(g) .ur,az(f). (1)

In the case r=1, this estimate is an easy consequence of formula (1) in §2. In the
case r> 1, it is an easy consequence of formula (2) in §2.

From this estimate, we have that if ¢>0 is sufficiently small, and the hypotheses
U« (¥)<e and p, ,(f)<e of the lemma are satisfied, then

He, o (fu)<3e.
From the definition of u,, we have

Pr,a (10) <A ™1ty o (fu)
and

tr,a(to)=A""""Pp, (fu) if a(x)=x".
Thus

Aul',az(uo)s 34 e
Hr, o (o) <34 " P if a(x)=xF.
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From condition (6) on the mappings ¥, ,, and the definition of uy,..., u,, it
follows that if >0 is sufficiently small, then

ur’a(un)<3an1~r+ns’
P, o (Un)S3C" AT P 7B Mg i a(x)=xP,

where C is the number appearing in (6). Under the hypothesis of the lemma, the
exponent of A is negative, so by taking A sufficiently large, we can arrange that

3CnA1-r+n<1
(in the case r>n+2) or
3an1—r—B+n<1

(in the case r=n+1 and «(x)=x’). In either case, we have p, ,(u,)<e. Q.E.D.
§4. A Criterion of Conjugacy

By the previous section, in order to prove Theorem 2, it is enough to construct
the mappings ¥; , having properties (1)—(6). Here we want to focus on property (5).
The diffeomorphisms in the domain of ¥; , have support in intD,_; , and the
diffeomorphisms in the range of ¥, , have support in intD, ,. Thus, to construct
¥; 4» we need at least to solve the following problem: given u with support in
intD;_, ,, find v with support in intD; , such that [u]=[v].

Our method is to construct an auxiliary diffeomorphism 7,, and then for given u
with support in intD;_; 4 to construct v with support in intD, , such that 7u is
conjugate to 7,v. In this section, we consider a preliminary question: given # and v
satisfying suitable hypotheses, find sufficient conditions for 7, and t,v to be conjugate
in the group Diff (R", r, a).

CONSTRUCTION of 7;. If X is a vector field which generates a one-parameter
group {@,}, we let exp X=¢,. We call exp X the exponential of X.

Let ¢, be a C® non-negative function on R whose support is a finite interval.
Suppose ¢, =1 on [ —24, 24]. Let g(x)=0¢,(x,)-*-¢, (x,) for any x=(x,,..., x,)eR".
We let

7,=exp (00;),

where 0; denotes the unit vector field on R" in the direction of the ith coordinate.
We will also need another auxiliary mapping ;.

CONSTRUCTION of ¢,. We let ¢, bethe mapping which is uniquely characterized
by the following three conditions.
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a) domg;={xeR":|x;|<24 for i#j}.

b) ¢:(0:)=00;

c) @ I Dy, 4=1d.
Note that b and ¢ are compatible, since g=1 on D, _,.

Clearly ¢; maps each line parallel to the x; axis into itself. Moreover img; is a
bounded subset of R”, open in dom ;. In Figure 1 we have indicated schematically
the domain and image of ¢, in R?, as well as D, .

Q ’<1=2.A
< dom c[i 2
T —
c— Lo
| X,=-2A
| |
| I
|
I
|
l a
l r
%,:-2A %22
Fig. 1.

DEFINITION of T;. Let T; denote the unit translation in the ith coordinate:
Ti(Xgsees Xp)=(x15... X;+1,..., x,).

Since T;=exp(d,), t;=exp(ed;) it follows from the definition of ¢; that
T =¢.T;.

DEFINITION of %;. Let €, denote the set of (xi,..., 0;,..., x,), where each x;
is a real number and 6, is a real number mod. 1. Let #:R” —» %, denote the projection.

DEFINITION of I'!. Let u be a diffeomorphism of R”, close to the identity,
with support in D,. We define I'!=T",:4;—€; as follows. Let 0%, and let xeR”
be such that n(x)=0, and x;<—2A4. If for some j#i, we have |x;|>24, we let
I, (0)=0. Otherwise, we choose a positive integer N so large that (Tu)" (x);>24,
and let

r,@0)=n(Tu)" (x).
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It is possible to choose such an N if u is sufficiently close to the identity. Then I', is a
C" * diffeomorphism of €, if u is of class C™ 7 and sufficiently close to id.

DEFINITION of 4. Let ¥=%"* denote the group of C™* diffeomorphisms 4
of €, such that

h(xl,..., Oi""’ x”)j=hj(x1,.‘., xi,_l, xi+1,..., x,,), j#i
h(xl,..., 9;‘,..., x,,)i=9,-+9(x1,..., x,-_l, x,-+1,..., x,,),

where h;:R""' >R and 6:R""' > R/Z.

LEMMA. Suppose u,v are C"* diffeomorphisms of R" which have support in
intDy 4. If u and v are C* close to the identity and I ,I €%, then tu and tv are
conjugate elements of the group Diff (R", r, «).

Proof. The assumptions that  is C* close to id and has support in int D, , imply
that for any xeR", there exists a positive integer N such that (T;u)~" (x),< —24.
For any xeR", we choose N so that this inequality holds, and let

A@x)=(To)" (Ta)™ (x).

Clearly, since v also has support in intD, ,, this is independent of N. Moreover,
A is a C™* diffeomorphism of R”. Its inverse is given by

A7 () =(Tw)" (T)™" (x)

for large N.
It is easily verified that

ATuA '=Tw. 1)
Clearly A (x)=x if |x;|>2A4 for some j#i or x;< —2A. Furthermore,
r,r,'n(x)=nA(x)

if x;>24.
From this and the hypothesis that I',I', '€ %, we get:
a) If j#i, then there exists a mapping 4;:R"~! - R such that

Aj(xl,.--, )ei’---’ xn)::A(x).i

if x,>24.
b) There exists a mapping :R"~' — R such that

ﬂ(xl, vy fi,..., x,,)=A(x),-—x,-

if x;>2A4.
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We let

A (x)=(A1 (%), o0 Aoy () Apsg (X7), o0, 4,(x7)

if x’eR""1, Clearly A’ is of class C"* and equal to the identity outside of the set
{Ix;]>24, j#i}. It is easily seen that if u and v are close to the identity, then A’ is
close to the identity, and there is a C™ * isotopy {4;} of A’ to the identity, with support
in the set {|x;| <24, j#i}. Thus A;=A" and A} =id. We may (and do) assume that
if we extend A, by setting A,=A" for t<0 and A,=id for ¢>1, then the mapping

(x,2)> A;(x):R*""'xR->R""!

is of class C"“.
Let B>0 be such that ¢=0 for x;>B—1, where ¢ is the function which appears
in the construction of 7;. We define a mapping A of R” into itself, as follows.

A(x)=@Ap; ' (x), xeimg,
=(A'(x"), exp(eBd;) (x);), 24A<x;<B
=(4;(x"), x;), x;=B+1,0<t<1
=x otherwise.

Here, x'=(xy,..., £;..., x,). In the second equation above f(x) is defined to be
B (x’). In the second and third equations above, we have abused notation by writing
the ith coordinate last.

We will show that A is the conjugating diffecomorphism. First, we have to verify
that A is well-defined and of class C" % Before we begin the verifications, we recall
that

Dycim@;cdomg;.

In Fig. 1, we have indicated the relation between these sets schematically, in the case
n=2,i=1. Recall ¢;=id on D,.

The only x for which we have given two different definitions of A(x) are those x
for which xeim¢; and 24 < x;<B. But

A(x)=(A"(x"), x;+B(x"))
=(A"(x"), exp(B0;) (x);), x;=24,
and

@i+0;=@0;,

by the definition of ¢, and t;. Furthermore ¢; maps each line parallel to the x;-axis
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into itself, and f is independent of x;. The equation

@ido; " (x)=(A"(x"), exp(eBo;) (x);)

follows immediately.

It is clear that A is C"** on im¢,. On the other hand, A(x)=x if x;< —24, and it
is clear from our definition that A(x) is C”* on {x;>24} ndome;, so A is C"* on
domg;. Since A(x)=x outside domg; it is C™* on the complement of dom¢;. But
A(x)=x also in a neighborhood of any boundary point of domg;, so it is C" * there
also.

It is clear A has compact support. In fact

suppicdome;n {—A4A<x;<B+1}.

It is also clear from the defining formulas for A that it is an immersion. Moreover,
by taking u and v close enough to the identity (with respect to the C! topology) we
can arrange for A to be arbitrarily close to the identity. But, if 1 is sufficiently near the
identity, then AeDiff (R", r, a).

All that remains to show is that A conjugates 7,4 and 7,v. We assert

Itud t=1. 2

To begin with, im¢; is invariant under A, 7;, and u. It is invariant under A because
of the definition of A, under 7; because of the definition of ¢;, and under u because
suppuc< Dycim@;. Moreover,

¢:Ti0; '=1;
by the definition of ¢;, and

pup; ' =u

because suppucD,. Hence, conjugating equation (1) by ¢;, we get that (2) holds
on img;.

From our assumption that {¢>0} is convex, it follows that 7,=id on dom¢;—
ime;. We have t,u=1,0v=1; outside im¢,;, and it is clear that A commutes with 7,
there, since A=id outside dome; and 7;,=id on dom¢;—ime,; This proves (2).

Q.E.D.
§5. Construction of the Mappings ¥, ,

We consider again the problem: given # with support in intD,_, 4, find v with
support in intD, , such that t,u and ;v are conjugate. In the previous section, we
found sufficient conditions for t,u and 7,v to be conjugate. In this section, we construct,
for u sufficiently close to the identity, a v="Y,; ,(u) satisfying these conditions.



524 JOHN N.MATHER

We will assume in this section that u is a C* diffeomorphism of R*, suppucintD;_,,
and u is C?! close to the identity.

DEFINITION of h. We let & be the unique diffeomorphism of %; onto itself
which is the identity on the subset {8;=0} of %, and satisfies #(I'}) e %. It is easily
seen that if u is sufficiently close to the identity there is one and only one such dif-
feomorphism A.

DEFINITION of kg, ;. Since €,=R"/Z, the manifold €, has the structure of an
abelian Lie group, induced by the group structure on R"”. We use ‘‘+”’ for the group
operation. We add mappings into €; pointwise.

If h is sufficiently close to the identity, we can lift #—id to a mapping 7:¥;— R”,
such that ny=h—id, and |y(9)| <1 for all fe¥;. Here n:R" > ¥, denotes the pro-
jection, as in the previous section.

We let { be a C* bump function on the circle R/Z. We require that { be equal
to 1 on a neighborhood of 0 mod.1, equal to 0 in a neighborhood of 1/2 mod. 1
and that 0<{<1 everywhere.

We let

C'Y(xl,..., 0i”"’ xn)=C(61) 'y(xl,..., Oi""’ xn)
ho=m°({y)+id
hy=hhy

If A is close to the identity, then so are h, and A, so they are diffeomorphisms of €.
Clearly

h=h1h0,

ho is the identity in a neighborhood of the set of (x,..., 0,,..., x,) such that ;=
=1/2 mod.1 and A, is the identity in a neighborhood of the set of (xy,..., 0,,..., x,)
such that 8;=0 mod. 1.

CONSTRUCTION of v. Let E_ be the set of (xy,...,x,) in R" such that
—3/2<x;< —1/2, and let E, be the set of (x,,..., x,) in R” such that 0<x;<1. We
letv | R"—E_—E, =id. Welet v | E_ be the unique diffeomorphism of E_ into itself
such that nv | E_=hen | E_. We let v | E, be the unique diffeomorphism of E., into
itself such that nv | E, =hyz | E,.

We set ¥; ,(u)=v.

Of the properties (1)-(6) of ¥, 4 listed in §3, properties (1)—(3) are easy to see.
The verification of these properties will be omitted. As noted there, we can arrange
for property (4) to hold by replacing the domain of ¥; , with a possibly smaller
neighborhood of the identity.
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To prove property (5), it is enough to notice that if « is of class C"* then t,u and
7,0 are conjugate in Diff (R”, r, a). But it is easily seen that I';=4. Hence I'}(I'})) '€ ¥,
and it follows from the lemma in the previous section that 7,u and 7,v are conjugate.

§6. Property (6)

In this section, we complete the verification that the mappings ¥; , have the
properties listed in §3. The only property we have not verified is (6).

Before we begin the verification of (6), we introduce some more notation.

The projection mapping n:R" — %, gives us a preferred system of coordinates in
a neighborhood of any point of %,. The transition mappings between different co-
ordinate systems which we obtain in this way are all translations. It follows that the
rth derivative of any C" mapping of € into itself is defined independently of the choice
of preferred coordinate system. The rth derivative of such a mapping v is a mapping
D'v:%;— SL"(R", R") of €, into the space of symmetric r-linear mappings of R" into
itself. If v vanishes outside of a compact subset of €;, we define |v|, , by the same
formula as we used to define |u|, , in §3, but with U replaced by #; and u replaced
by v. If v is the identity outside a compact subset of €;, we define y, ,(v)=|v—id|, ,.

There are three steps in the proof of (6) in §3. In step 1, we show if u is C™* and
sufficiently near the identity, then

e, (L) <84p, ,(u). (1)

In step 2, we show that if u is C™* and sufficiently near the identity, then

#r,a(h)<3ur,a(ru)’ (2)

where 4 is the diffeomorphism of #; constructed in the previous section.
In step 3, we show that there exists a constant C; >0, independent of A4, such that
if u is sufficiently near the identity, then

Nr,a(wi,A(“))<C1ﬂr,a(h)- (3)

Then (6) of §3 follows, with C=24C,;.
Step 1. From the estimate (!) in §3, it follows that if N is a positive integer, then
there exists 5> 0, such that if  has support in intD;_; and p, ,(#)<9, then

e, (Ta))S(N+1) g, 4 (1)

Hence

tr,a(T)S(N+1) pp, o (1),
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where N is large enough so that for any 0%, there exists xeR" such that 7 (x)=6,
x;< —24, and (Tu)Y (x);>24.

We can take N to be any integer >44+2, if u is close enough to the identity. In
particular, we can suppose N+ 1<44+4. Hence

I‘r,a:(l-‘u)g (4A+4) Mr,a(u)‘

Since 4 >1, the inequality (1) follows.

Step 2. We recall that 4 is the unique diffeomorphism such that 4 is the identity on
{0,=0} and hI', 'e¥%. Let g=hI', '. Then g™! is the unique element of ¢ which
equals I', on {6,=0}. It follows easily that

o (8711, (T)-

(We are assuming R" is provided with the norm ||(xy,..., x,)||=|x;|+--- +|x,[.) On
the other hand, for any 41> 1, we have

o (8) <Ak, .(871),

if g is in a sufficiently small C™ * neighborhood of the identity, depending on 4. Since
h=grl',, the inequality (2) follows immediately, for » in a sufficiently small C™*
neighborhood of the identity.

Step 3. From the definition of v=¥;(x) in the previous section, it is clear that

l‘r,a (U) = Sup {l‘lr, a (ho)’ ”r,a(hl)} *

Moreover, if A>1, and u (and therefore also #) is in a sufficiently small C™ * neighbor-
hood of the identity, then

Hr a (hl) <A‘ (I'tr,a (h) +”r, a (hO)) ’

since h; =hhg '. Thus, it is enough to estimate g, ,(ho) in terms of p,, , ().

In view of the definition of 4, and Leibniz’s formula for the derivative of a product,
it is enough to prove the following assertion. There exists C>0 such that

ts,«(B)SCp,p o(h), O<s<r

if A is a C™* mapping of €, into itself which is the identity outside a compact set,
and is also the identity on {0;=0}. However, this is an easy consequence of de-
creasing induction on s, the mean value theorem, and the fact that every point of €;
is of distance <1/2 to the set {6,=0}.

This concludes the verification of the properties of ¥; , which were listed in §3.
Thus, we have completed the proof of Theorem 2.
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§7. Application to Haefliger’s Classifying Space

Let FI', denote Haefliger’s classifying space for C" foliations of codimension n
with framed normal bundle. What we have done and known results show that FT, is
(n+1)-connected for oo >r>n+2. This was already known by Thurston’s work for
r=o00. We also get that FI';’* is (n+ 1 )-connected, under the hypotheses of Theorem 2.

There are two known results that we need. One is Haefliger’s theorem that FT'}, is
n-connected.

The other is a theorem of Thurston that was announced in [4]. To state this
theorem, we need to introduce some more definitions. If G is a topological group,
we let G; denote G with the discrete topology. We let G denote the homotopy theoretic
fiber of the identity mapping G; — G. In the usual realization, this is the space of paths
emanating from the origin, topologized with the topology generated by the compact-
open topology and the discrete topology on end-points. It is a topological group.

We think of Diff(R", r) as the direct limit of its subgroups consisting of dif-
feomorphisms having support in open balls, and topologize it with the direct limit
topology. According to Thurston [4], there is a mapping

B Diff (R”, r) »>Q"FI",

which induces isomorphism in integer homology. It follows that FIy is (n+1)-
connected if and only if

H, (B Diff(R", r))=0. (1)

We assert that what we have done in this paper shows that this homology group
vanishes.
In the notation of §3, let u be a fixed point of 6,. We have shown,

uo=quZ_l

-1 .
Ty =4 Tk, 1<i<n,

where A, is a suitable element of Diff (R", r). Moreover, since u is a fixed point of 8,
we have u,=u. Here 4 and 1, are fixed elements of Diff (R", r), given in advance. By
restricting f to lie in a sufficiently small neighborhood of the identity, we can arrange
for the u; and A, to lie in an arbitrarily small neighborhood of the identity. From these
facts, it follows easily that (1) holds.
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