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A Geometrical Isoperimetric Inequality and Applications to
Problems of Mathematical Physics

CATHERINE BANDLE

0. Introduction

The classical isoperimetric inequality states that among all closed curves of given
circumference the circle encloses the largest area. This inequality has been consid-
erably generalized by A. D. Alexandrow. He derived [1] inequalities for the case
where the curve lies on an abstract surface, and obtained lower bounds for the length
of the curve in terms of the area of the domain and an expression involving the
curvature of the surface. In this paper we consider a curve I’y on an abstract surface
whose endpoints lie on a curve I';. With the help of Alexandrow’s inequality we
construct lower bounds for the length of I'y. These bounds depend on the area of the
domain between I'y and I'y, the curvature of the surface and the geodesic curvature
of I';. By use of the geometrical inequalities we derive a monotony property of the
Green’s function. The geometrical inequalities lead also to an estimate for the funda-
mental frequency of an inhomogeneous membrane with partially free boundary. The
result extends the Rayleigh-Faber-Krahn inequality [12] and its generalizations
obtained by Nehari [11] and the author [2, 3, 6]. At the end we indicate how to
generalize the concept of Schwarz symmetrization [12] for functions which do not
vanish at the whole boundary. This symmetrization combines in a certain way the
ones defined in [2] and [3]. The principal results of this paper have already been
announced in [4].

1. Geometrical Inequality

1.1. Let D be a simply connected domain in the complex z-plane (z=x+iy) with a
piecewise analytic boundary éD. 0D is divided into two connected arcs I'y=1I", and
I’y such that I'y nI'y=0 and 0D=TI'guTI,. The boundary 0D is given by the para-
metric representation z(s), where s is the arc-length. The function z(s) is analytic
except at the corners. Let z; =z (s,), z,=2(s,), ..., z,=2(s,) be the corners belonging
to I';. We suppose that the boundary is orientated such that —i(dz/ds)= —i 2(s)
gives the outer normal of D.

Furthermore we assume that Z(s;+0) and Z(s;—0) are well-defined for all i=
=1, 2,..., n. We denote by p,e[ —=, =] the angle arg {2 (s;+0)} —arg {Z(s;—0)}, and
by « (s) the curvature of 0D. k (s) is analytic on I'; except at the corners where it has
to be interpreted as a Dirac measure. We shall write [$*3 x (s) ds=B,.
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Let u(x, y) be a real function of class C?(D). Let {z,;}7Z7,; be a set of points in
D—Ty, none of which should coincide with a corner z(s;). We introduce the function

1 n+m
U (x, y)“";t ZH(DJ log|z—z;l,
Jj=n

where w;eR for j=n+1,..., n+m. For each Borel set y=I'; we define

k()= j[ Ogme|as [ 3o

y—{z}i=n+1

Let us write

ut=sup {u(y)}

YET
and

= Y max(w,0)+ Y max(—w—j,0>.
z;€D zjerl 2

jzZn+1 jzn+1

Let g (x, y)=e* PV Throughout this paper we will assume that g (x, ) satisfies
the differential inequality

Alogo(x, y)+2Ceo(x,»)=0 in D—{z;}}L7, (1.1)

C being an arbitrary real number. We shall use the following notations A4(B)=

=[po(x,y)dxdy where BD is an arbitrary subdomain; and L(I')={ ./ ds,
where I is an arc in D. Consider a domain D’ in the complex z'-plane (z’' =x'+iy’)
and a positive function ¢’ (x’, ') in D’. I'y is a connected arc lying on oD’.

DEFINITION: The triple (D, Iy, ¢) is conformally equivalent to (D', I'y, @"), if
there exists a conformal mapping f: D’ — D such that D=f (D’), I',=f (I'p) and

2
0 (x9 y)lx=x(x’, y) (12)

y=y(x', y’)

le, I=
o' (x,y) Idz'

We shall write S'(«, R) for the circular sector {0<60<a, r< R} (r, 6 polar coordinates),
I, for its boundary arc {r=R}, and §(r)=(1+Cr?/4)~2. In this case we have m=0
and therefore U(x, y)=0. It is easily checked that § satisfies (1.1) with the equality
sign.

The purpose of this section is to establish the following result.

THEOREM 1.1. Let D and g be defined as before. Suppose that 0<u* + v =n—«
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where a>0. Then the inequality
L*(T4)> (2a— CA(D)) A(D) (1.3)

holds. Equality is achieved if and only if (D, I'y, @) is conformally equivalent to
(S(a’ R)’ PO, é)

Before we give the proof we indicate a geometrical interpretation of the result.
Following [1, 9, 10] we introduce an abstract surface I in the isothermic representa-
tion; i.e. in the domain D of the z-plane a Riemann metric is given by the line element
do* =g (x, y) ds*. With respect to this metric 4 (D) represents the area of D and
L(I,) the length of I'y. The function [k (s)+(1/2) d/dn logg]/\/ o is the geodesic
curvature of 0D and K= — (4 logg/2¢) is the Gaussian curvature of M. The surface
(S(a, R), §) can be interpreted as a sector on a surface of constant Gaussian curvature
C. If we identify the segments §=a and =0 then (S (e, R), 8) is isometric to a reg-
ular cone in a space of constant curvature C [1; p. 17, 450, 513]. (1.3) yields an
isoperimetric inequality for abstract surfaces.

Proof of Theorem 1.1. The proof uses an idea developed by Nehari [11]. Let
f (w) (w=E+in) be the analytic function which maps the semicircle Se= {w; |w|<]1,
Im {w} >0} conformally onto the region D and transforms the segment —1<w<1
into the boundary arc I';.

In this proof we shall often write for short #(x, y)=h(z) for a real function in the
z-plane, and A (¢, n)=h(w) for a real function in the w-plane. For a given function
o(x, y)=0(z) we define in Se the function p(&, n)=p(w)=e(f (W) |f’' (w)|?. Let
wi=f "1(z(s;)), i=1,2,...,n,and let w;=f "1 (z;), j=n+1,..., n+m.

Since I'; is piecewise analytic, | f'(w)|® exists and is continuous on f ~'(I';)—
— {w,;}}- . Furthermore, | f'(w)|* has at w; for i=1, 2, ..., n the development

| f (W)|2 = IW"Wil_zM” H;(lw— Wilzﬁ‘/")

where H, is a regular function with H;(0)#0 [7, p. 364]. In Se— {w;}}-, the function
log| f' (w)|? is harmonic. There, we have 4,, logp (w)=4,, loge (f (w)) where 4,, de-
notes the Laplace operator in the w-plane. In view of (1.1) we get in Se— {w,} ;> the
inequality

4, logp(w)+2Cp(w)=0. (1.4)
Let

(w) in Se
P(w)={§(w) in {w:|w]<1, Im{w}<0}.

Let S={|w|<1} be the unit circle in the w-plane and let S~ =S—{-1<w<1}—
—{w}i = (W)= In order to simplify the notations we set y~={—1<w<1}—



A Geometrical Isoperimetric Inequality 499

—{w,}I<'". By the previous observations P(w) satisfies inequality (1.4) in S~. Let
g (w, w*) be the Green’s function of the unit circle which vanishes on the boundary.
With the help of this function we can write

log P ()= — J ¢ (w, w*) 4 log P (&%, n*) de*dn®

og (w, w*)

— § log P (w*) 5
A«

Iw*|=1

—ZJg(W, W)

y=

+4 3 gnw) fir2 T {g(nw)+gnm}o,

wi# Wy
iznt1

+2 Y g(w, wy) ;. (1.5)

wy =W
iZn+1

|aw*,

0 log p (&%, 1)
on*

|dw*|

n,, stands for the outer normal of S.
We observe that

og (w, w*
h(w)= log P (w*) _g__(aK“W*_) |dw*|
[ (o

|wH=1

is harmonic in S. Because of (1.5), logP admits a representation of the form
log P (w)=2 f g (W, w*) doo (eys) — h (). (L.6)
s

w (e) is the mass distribution associated with P(w), and e is a Borel set. The integral
(1.6) has to be interpreted in the sense of Lebesgue-Radon. Consider on S the
Riemann metric d6*> =P (w) |dw|?. By a result of Reshetnjak [1, 9] @ (e) corresponds
to Alexandrow’s curvature for the surface M= (S, P(w)).

A= j P (w) d¢ dn

lwi<1

denotes the area of I, and

L(0T)= § JP (W) ldw|
|w

=1
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is the length of 63R. We have

A(MM)=24(D) (1.7)
and
L(6M)=2L(T,). (1.8)

As in [1, p. 513] we define wc(e)=w(e)—C [, P(w)d¢ dn. By means of Riesz’s
decomposition theorem it follows that

oc(S)=oc (S)—oc (S), where (S)=sup{+a)c (e)}-

Alexandrow [1; p. 514] proved, under our assumptions regarding the function P (w),
the

LEMMA 1.1. If =w{ (S)<2n, then L(0M) and A (W) satisfy the inequality
L*(0MM)= (4n—256— CA(M)) A (M). (1.9)

Equality holds if and only if (S, P(w)) is conformally equivalent to

2 -2
(5.5 wir Bw)="22 g |""’"<1+i w2 5),,,) '

b stands for an arbitrary positive number.

For the proof we refer to [1]. It should be noticed that the surface (S, P(w)) is
isometric to a regular cone in a space of constant curvature C.

The next step is to evaluate 5. Because of (1.4) and (1.5) we have w¢ (¢)=0 for
each ecS ™. If <y~ we obtain

o

wc(f)=— 5% (logp (&, n)) ldw| =

.
o 5% (loge (f (w))) ldw| _2_[5% (log|f']) Idw] . (1.10)
; 8

Since f (w) is a conformal mapping, it follows that

I (loge (f(w))) ldw|=— f 5, (oge(2)) Idz|. (1.11)

5



A Geometrical Isoperimetric Inequality 501

Furthermore, we have

P , o (fe , ~
J‘%(loglf ) IdWl—Re{ %(logf)ldWI}-

;
—Im{[ff |dw|}=—— d(argf)=— f K ds. (1.12)
; Y ®
On the set {w;};>1 U {W;};>, we have
(2B i i=1,2,..n
R L S (1.13)
The only contribution to § comes from the set y~ U {w,}i270 {w,}{Z
(1.10), (1.11), (1.12) and (1.13) lead to
+ 0
w¢ (S)= sup — (loge (2)) ds+2 | x(s)ds
esf-) (J On
+2 ) max(B,0)+2 ) max(w;0)+ ) max(w,0). (1.14)
i=1 z;eD ziely
izn+1 izZn+1

Hence, it follows that wd (S)=2u" +2v™. Inserting this expression into (1.9) and
observing (1.7) and (1.8) we obtain

I? (r0)>(n— pr—vt— CAz(D)) 24 (D)

which yields (1.3). For the triple (S(«, R), Iy, 8) with 0<a<n we have u(x, y)=
=log(1+(Cr2/4))"%, U(x, y)=0, p* =n—a, v =0. A straightforward calculation
gives
aR? «*R?
and I’ (FO)-:—__C_I?Z—E .
1 e
()

In this case (1.3) holds with the equality sign. This completes the proof of Theorem 1.1.

A R)= s

1.2. The following results are consequences of Theorem 1.1.

COROLLARY 1.1. Let D satisfy the assumptions of Sec. 1.1. Suppose that
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n—supger, {Jp k ds}=a>0. Then

ds 2>2a dx dy. | (1.15)
]

Io

Equality holds if and only if D=S(a, R) and I'y=T1,,.

This result follows immediately from Theorem 1.1 by setting ¢o=1, u=U=0, C=0.
The same theorem was obtained in [3] by more elementary methods, and applied
to estimate the logarithmic capacity and the fundamental frequency of a membrane.

COROLLARY 1.2. Let D satisfy the assumptions of Sec. 1.1. Suppose that
Alogo=0in D. If

) 0logo _
n——ﬂsgg {J [k(s)+ 20 ]ds}...a>0,
B

then

U Je ds}2>2afgdx dy. (1.16)

Io

Equality holds if and only if (D, I'y, @) is conformally equivalent to (S(a, R), [y, 1).

1.3. Here we extend the results of Sec. 1.1. to a slightly more general situation. Let
D and 0D satisfy the same assumptions as in Sec. 1.1. Consider in D a collection
{D;}¥_, of domains, and let the boundary dD;, i=1,..., k, be divided into two not
necessarily connected sets I'ty and I'; where I', =I';. We assume ¢ (x, y) and « to be
defined as in 1.1. We write L;=L(I'}), A;=A(D,), L=Y"%_, L; and A=Y}_, 4,.

e a———————— f;

/

#
""""" - 7

’

L  holched domains
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COROLLARY 1.3. Let D, I'y, ¢ satisfy the same assumptions as in Theorem 1.1.
Then the following inequality holds provided 20> CA

L*>(20—CA) A. (1.17)

Equality holds if and only if D;=D and (D, Ty, ) is conformally equivalent to
(S(x, R), Iy, 8).

Proof. By the same type of reasoning as in the proof of Theorem 1.1. we show
that for i=1, 2,..., k

L}>(2a—CA;) A;. (1.18)

From this inequality (1.18) it follows that

(i Li)2>(i J(@a—C4,) Ai>2=2cx(A1+A2)—C(A‘I‘+A§)
+2[(2a—CA,) A,]'? [(2a—CA,) 4,]*2. (1.19)

An elementary argument shows that the right-hand side of (1.19) is, whatever the
sign of C is, larger than 2a(4; +A4,)— C (4, +A4,)*. By induction we conclude that

k 2 k k
(z L,.) >(2a-c 5 A,-) T 4,
i=1 i=1 i=1
which completes the proof of Corollary 1.3.

2. Applications

2.1. Let D, I'y,, I'; and ¢ satisfy the conditions of Section 1.1. Consider in D the
following Green’s function

4,G(z, z2%)=—0,(2) for zeD
G(z, z*)=0 for zerl, (2.1)
oG (z, z*
——-—(af—f—)+aG (z, 2*)=0 for zel,
nz

where ¢ (z)>0 is a continuous function on I'y. It should be mentioned that in view
of the hypothesis concerning I'y, I'y cannot be empty. With the help of the Green’s
function, the solution of the boundary value problem d¢p=—F in D, ¢=0 on
Iy, 0p/én+op=0 on I'; can be represented in the form

0 (2)= f G (z, 2*) F (*) dx* dy*.
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Let us write

D(t)={zeD; G(z, z*)>1}
and

I'(t)={zeD; G(z, z*)=t}.

If I' (¢) is not a closed curve, then its extremities lie on I';. It follows from the maximum
principle for subharmonic functions that G (z, z*)>0 in D.
Let

A(ueﬁ=J‘dedy-

D(r)

THEOREM 2.1. Let D, I'y, I’y and g satisfy the same assumptions as for Theorem
1.1. Then

m 0= (50 5) 2

is a non-decreasing function of t.
Proof 1). By the divergence theorem we have

0G (z, z*¥)

ds=1
on s

@)

if I’ (¢) is a closed contour line, or

J

@

0G(z, z*)
n

ds<1

if I'(z) is not a closed level line. If dn is the length of the piece of normal to I'(¢)
between I" (¢) and I' (¢ +dt), then

A(t;0)—A(t+dt; )= f o dnds+o(dt).
(@)
By letting dt tend to zero, we get
dA o ds | eds
—A=——= Z | — 0G/on| ds . 23
flaGlanl.[l fonk ds &=

dt 16G (z, z*)Jon|”
r() ra) ()

1) This version of the proof makes use of a simplification suggested by J. Hersch.
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By the Schwarz inequality

|aG/a I J 19G/on| ds>”\/ 0 ds} =L (I (1)) (2.4)

re) () re

By Corollary 1.3, L*(I' (¢))= (2a— CA(t; 0)) A(¢; 0).
Observing (2.4) and inserting the inequality for L? into (2.3), we get

—A'>204—CA2. (2.5)

Multiplying (2.5) by e~ 2*, we obtain

Oé%[e'z‘"(; 2(;)] (2.6)

which proves the assertion.

Consider the sector S(«, R) and g (r)=(1+4(Cr?/4))~2. Let G(z, 0) be the Green’s
function, AG= —§, in S(, R), G(z,0)=0 on [, and 8G/on=0 on I,.

G(z,0) can be calculated explicitly; i.e. G(z, 0)=(1/«) log (R/r). In this case the
following relation holds

1 C\T
0=|:e—2at<:1_é_):| forall ¢>0. (2.7)
o

If 0=0, then G (z, z*) is a conformal invariant in the following sense. If f (w): D’ — D
is a conformal mapping with f (I'y)=T,, then the corresponding Green’s function is
Gp (w, w*)=Gp(f (w), f (w*)). (2.7) holds if and only if G(z, z*) and (D, I'y, @) are
conformally equivalent to G(z, 0) and (S(«, R), Iy, 8).

The next corollary is a consequence of Theorem 2.1 in the special case ¢ =const.
(and corresponds to Corollary 1.1).

COROLLARY 2.1. Let

T — sup {f K ds}=oc>0,
BET 5

A(t)=f dxdy and A=fdxdy.

D(¢) D

<Lfion as)

Equality is achieved only for G(z, 0).
This result was already obtained in [3].

Then
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Suppose now that I'; consists of two concave arcs with a corner at z=0. The
angle B defined in Sec. 1.1 is equal to = —«, where a>0. Near the origin the Green’s
function corresponding to ¢ =0 has the development

1
G(z, 0)=;1og‘;+h(z)

where a>0 and A(z) is a regular harmonic function in a sufficiently small neighbor-
hood of the origin with /#(0)=0.

COROLLARY 2.2. If d/onloge<O0on I'y, and if 0O<a<m then

2 1 C

aazg(O)ZA (0, Q)-El;. (29)

Proof. For t sufficiently large, we have

1
t=—logc—1+o(1)
a r

and
r? )
At Q)=ocg(0)-3+o(r ).
Hence
—2m_24(1;0) 1
2at= R A
0 (0) a2+0( )

which leads together with Theorem 2.1 to the inequality (2.9).
For applications concerning upper bounds for the solutions of Poisson problems

we refer to [5, 4].

2.2. Estimates for Eigenvalues
Let D, I'y, I'; and g satisfy the assumptions of Theorem 1.1. Consider the mem-

brane eigenvalue problem

49 (x, y)+4e(x, ) ¢ (x,»)=0 in D
¢=0 on T, (2.10)
0
—(B=0 on I.
on

By the classical theory there exist infinitely many positive eigenvalues 0 <4, <4,<....
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The lowest eigenvalue A; =41 is defined as the minimum of the Rayleigh quotient
f (U2+U2) dx dy

R[U]=2 , (2.11)
f oU? dx dy

D

if U(x, y) ranges over the class of functions which vanish on I'y and which are
piecewise continuously differentiable in D. Besides (2.10) consider the problem

A®+4(r) =0 in S(x R)
=0 on I,

P
‘—=0 on Fl'
on

(2.12)

For the definition of S(a, R), [y, ['; and § see Sec. 1.1. We shall denote by A the
lowest eigenvalue. The radius R of the domain is chosen such that

R «a
ff@(r)rd@ dr=fg(x, y)dxdy=M. (2.13)
0 0 D
Hence, an elementary calculation yields
MC\™'/?
R=\/M(g-— T) . (2.14)

From (2.14) it follows that R is defined only if 2a> MC.
The next result generalizes the inequality of Rayleigh-Faber-Krahn [12].

THEOREM 2.2. If MC<2a, then
Az A. (2.15)

Equality holds if and only if (D, Iy, @) is conformally equivalent to (S(x, R), [y, 6).
Proof. Let ¢(x, y) be the eigenfunction corresponding to the first eigenvalue A.
It does not change sign and can therefore be taken to be positive. Let D (¢)= {(x, y)e D;
o (x,y)>t} and I'(t)={(x, y)eD; ¢ (x, y)=t}. ['(t) consists of closed lines or of
arcs whose endpoints lie on I';. A classical transformation of the Dirichlet integral
yields
2
dnds+o(dt). (2.16)

dt
Jgrad%p dx dy— J grad? ¢ dx dy=f .

D(p) D@ +d) ra)
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s denotes the arc-length of the level line I' (¢), and dn=dn (s) is the length of the normal
between I' (t) and I' (¢ +dt). By the Schwarz inequality we have

dt|? dt - \? 1
— - “lds> _ 2.17
J o dnds=dt I In ds dt(Jv \/Q ds) 0 ds ( )
@) r@ @) m
r(@)
If we write

A(t)=f edxdy,
D(t)
then

_dA()=A ()= A (t+dt)= f o dn ds+o(dt)

Ir@)
and

A(t)—A(t+dt
4 (1) = lim A AUFAD_
dt—0 dt

J olgrad |~ ds.

()

Because of our assumptions, Corollary 1.3 can be applied to estimate L—(,) \/ é ds.
We have therefore

{f Jo ds}2>(2a—CA (1)) A(2).

rae)

This inequality together with (2.17) and the expression for — A’ (¢) yields

max @(x, y)
(2a—CA (1)) A(2)
d?¢ dx dy> dt. 2.18
fgra ¢ dx dy J myue (2.18)
D t=0

The Rayleigh quotient R[¢] is estimated from below by

i (2a—CA(1) A(2)
dt
—A' (1)
R[¢]> 2 max ¢ * (2‘19)
- J 24’ (1) dt

0o
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We now introduce the new variable

- (-S4

The right-hand side of (2.19) is then transformed into

R

di\*
J‘(“) rdr
dr
0
R

2 rdr
(1+Cr?j4)?

0

(2.20)

In view of the minimum property of A, the expression (2.20) is greater than or equal
to A. Since the eigenfunction @ corresponding to A is radially symmetric, the minimum
of (2.20) is achieved for #(r)=®(r). Observing that R[¢]=4, we have therefore
proved the assertion (2.15). The second statement follows immediately if we remember
that inequality (1.17) has been used to evaluate [, \/ ¢ ds for all ¢. This theorem
extends results obtained in [2, 3].

THEOREM 2.3. Let the hypothesis of Theorem 2.1 be satisfied and suppose that
C>0 and C [, ¢ dx dy<a. Then we have

A>2C. (2.21)

Proof. From Theorem 2.2 it follows that 1> A where A is the first eigenvalue of
(2.12) with R= \/ M(x/2—MCJ4)~/ 2<2/\/ C. Because of the minimum property of
A, A is a decreasing function of R. Hence A=A where A is the first eigenvalue of
(2.12) with R= 2/\/ C. The corresponding eigenfunction is & (r)=(4—Cr?)/(4+Cr?).
Inserting this expression into (2.12), we get A=2C which establishes the theorem. —
When I'; is empty, we have a=n. Inequality (2.21) then holds if C [, ¢ dx dy<m.
In [6] we proved that for this particular case the inequality (2.21) remains valid even
if C[podxdy<2n.

By Theorem 2.2 we have [cf. 3].

COROLLARY 2.3. Let ¢=1 and

7 — sup {f K ds}=oz>0.
BEI .
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.2
Jo'&
>70 = -
1 (A fdxdy)
D

where jo=2.4048 ... is the first zero of the Bessel function J, (r).
If k(s)<0 on I'y, Corollary 2.3 corresponds to Theorem III of Nehari [11].

2.3. A Generalization of the Schwarz Symmetrization

In this section we extend the concept of Schwarz symmetrization of a domain and
a function [12].

Let D, I’y and ¢ be defined as in Sec. 1.1. Consider in D a positive function
f(x,y) of class C® (D) vanishing at I',.

We define
D*=S(a, R) (2.22)
with
MC\~2
R=,/M(§——T) and M=f odxdy.
D
Let

D(t)={(x, y)eD; f(x, y)=t} and A(t)=f gdxdy.

10
A(¢) is a decreasing function of ¢. Its inverse ¢ (A4) exists. On D* we define the function

ar?

2(1+57) |
4

f*(r) has been constructed in such a way that

()=t (2.23)

@
rdrdd=A(t)
0 {r; /*(rz1

where §(r) is defined in Sec. 1.1.
As in [12, see also 2, 3] we prove for all continuous functions g(x)

f glf (x, »)]ea(x, y)dx dy=f glr*(M]e(r)dxdy. (2.24)

D D
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Under the hypothesis of Theorem 2.2 we have

f grad? f dx dyzf grad® f* dx dy. (2.25)

D D*

The proof of this inequality uses the same type of arguments as in Theorem 2.2.
With the help of this symmetrization estimates for the modulus of a domain can be
derived. The methods and results resemble those of [2, 3]. Since the generalization is
immediate by means of (2.24) and (2.25), it will be omitted.

REFERENCES

[1] ALEXANDROW, A. D., Die innere Geometrie der konvexen Flichen, Berlin 1955.
[2] BANDLE, C., Konstruktion isoperimetrischer Ungleichungen der mathematischen Physik aus solchen
der Geometrie, Comment. Math. Helv. 46 (1971), 182-213.
, Extremaleigenschaften von Kreissektoren und Halbkugeln, Comment. Math. Helv. 46
(1971), 356-380.
, Extension d’une inégalité géométrique d’Alexandrow et applications & un probléme aux
valeurs propres et a un probléme de Poisson, C.R. Acad. Sci. Paris. 277 (1973), 987-989.
[S]1 ——, Bounds for the Solutions of Poisson Problems and Applications to Nonlinear Eigenvalue
Problems (to appear in SIAM J. Math. Anal.).
, Isoperimetrische Ungleichungen fiir den Grundton einer inhomogenen Membran und An-
wendungen auf ein nichtlineares Dirichletproblem (to appear in ISNM 23).
{7] BeunkE, H. and SoMMER, F., Theorie der analytischen Funktionen einer komplexen Verdnder-
lichen, Berlin 1955.
[8] Courant, R. and HILBERT, D., Methods of Mathematical Physics, Vol. 1, New York 1965.
[9] HuBER, A., On Subharmonic Functions and Differential Geometry in the Large, Comment. Math
Helv. 32 (1957), 13-72.
[10] ——, Zum potentialtheoretischen Aspekt der Alexandrowschen Flichentheorie, Comment. Math.
Helv. 34 (1960), 99-126.
[11] NEHARIL, Z., On the Principal Frequency of a Membrane, Pac. J. Math. 8 (1958), 285-293.
[12] P6LYA, G. and SzEGO, G., Isoperimetric Inequalities in Mathematical Physics, Princeton (1951).

[3]
[4]

(6]

Department of Mathematics
Eidgenossische Technische Hochschule
CH-8006 Ziirich

Received February 14, 1974



	A Geometrical Isoperimetric Inequality and Applications to Problems of Mathematical Physics

