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Structural Theorems for Topological Actions of Z,-Tori on Real,
Complex and Quaternionic Projective Spaces

By Wu-Y1 HsianGg1)

§0. Introduction

In this paper, we apply the fundamental fixed point theorem of [2] in cohomology
theory of transformation groups to the special cases of Z,-tori actions on real,
complex, and quaternionic projective spaces. The main results of this paper are the
following structural theorems which enable us to organize the whole information of
cohomological aspect of orbit structure of such actions into a neat, simple, algebraic
invariant that we shall call it the system of Z,-weights. Throughout this paper, all
cohomology algebras are over the field Z, and will be suppressed from the notation.
For example, the notation X ~Y will mean that X and Y are of the same Z,-
cohomology type. Following [2], we shall consider H*(X;) as the equivariant
cohomology of the G-space X and denote it by Hg (X ), where Xj; is the total space of
the universal bundle X — X; — B; with X as typical fibre. Observe that the equivariant
cohomology of a G-space X, H¢(X), is an algebra over HE (pt)= H*(Bg) which shall
be simply denoted by R. Again, following [2], we shall call the connected component
of x in F (G,, X) the F-variety of x and denote it by F (x).

THEOREM 1. Let G be a Z,-torus and X ~ RP" with a given G-action. F (G, X )#0
(non-empty). Then, the equivariant cohomology of X, Hg(X), is isomorphic to
R[E)K F (&), deg(&)=1, as an R-algebra; where

FQQ=(E+w) - (C+w)*

is a splitting polynomial of degree (n+1) with w;e H'(Bg) as distinct roots. And
correspondingly, the fixed point set F consists of s connected components {F’, 1 <j <s}
(s<2"™9) such that

(i) F/~RP™™Y and 1}:Hg(X) - HE(q,), q;€F?, maps & to w;,

(ii) the system of local weights at F', Q;, is given by

Q;={(w;+w;), with multi. k; (i# j); 0 with multi. (k;— 1)}

(iii) for a given point xe X, let F'*, ..., F’' be those components of F (G, X ) contained
in the F-variety of x, F (x), then G, is given by

Wy=Wy==wy, and F(x)~RP"  m=(kj, o +k;,—1).

1
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THEOREM 2. Let G be a Z,-torus and X ~ CP" with a given G-action, F (G, X ) #0
(non-empty). Then, the equivariant cohomology of X, H(X), is isomorphic to
R[n)/Kf(n)>, deg(n)=2, as an R-algebra where

F)=m+o) (n+o)e, (ki+-+k)=(n+1)

is a splitting polynomial with o ;€ H? (Bg) as distinct roots, and  is a suitable lifting of
the generator o of H*(X) such that Sq'n=pn.

Moreover, there are the following two cases according to =0 or f#0:

(@) In case p=0. Then all connected components of F(G, X) are of CP-type, i.e.,
Fi~nCP® ™Y and all roots a; are perfect squares, namely, o;= wJZ- . And furthermore,
the system of local weights at F’, Q j» IS given by

Q= {(wi+w,), with multi. 2k (i#]); O with multi. 2 (k;— 1)}

and, for a given point xeX with F(x)nF(G, X)=F''+---+F", the isotropy group
G, is given by w; =---=w;,, F(x)~CP", m=(k;, +---+k;,—1).
(b) In case B#0. Then all connected components of F(G, X) are of RP-type, i.e.,
. - 2
FI~RP%™Y gpq th_e roots o; are of the form Bw;+wj. And furthermore, the system
of local weights at F’, Q;, is given by

Q;={(w;+w;), (w;+w;+B), with multi. k;; p, 0 with multi. (k;—1)}

and F(x) is of CP-type if and only if B | G,=0.

THEOREM 3. Let G be a Z,-torus and X ~QP" with a given G-action, F (G, X )#0
(non-empty). Then the equivariant cohomology of X, Hg(X), is isomorphic to
R[CYKf (), deg({)=4, as an R-algebra where

FO=C+a)*(C+a)s (ky+-+k)=(n+1)

is a splitting polynomial with o ;e H*(Bg) as distinct roots, and { is a suitable lifting of
the generator of {, of H* (X) such that Sq*({)=7¢.

Moreover, there are the following two cases:

(a) Case 1. Sq*({)=y{=0; then all connected components of F(G, X) are of QP-
type, i.e., FI~QP® ™Y and the roots oc_,-=wj?. And furthermore, the system of local
weights at F7, Q,, is given by

Q;={(w;+w;); with multi. 4k, (i#j); 0, with multi. 4(k;—1)}

and, for a given point xe X with F(x) N F(G, X)=F’'+ .-+ F’", the isotropy group G,
is given by w; =---=w;, F(x)~QP", m=(k; +---+k;—1).
(b) Case 2. Sq*({)=y(+#0; then all connected components of F(G, X) are of CP-
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type, i.e., FI~CP%“ ™" and the roots a; are of the form a;=v*w}+w?}, where y=v?
and w;, ve H' (Bg). And furthermore, the system of local weights at F, Q;, is given by

and F(x) is of CP-type (resp. QP type) if v | G.#0 (resp. v | G,=0).

In section 1, we shall recall some basic facts in cohomology theory of transforma-
tion groups that are needed in the proofs of the above structural theorems. In fact, the
above structural theorems can be regarded as some of the simplest applications of the
fixed point theorem of [2] and the splitting theorem of [3] to the simple interesting
concrete spaces such as real, complex and quaternionic projective spaces. The proofs
of theorem 1 and 2 are given in §2 and the proof of theorem 3 are given in §3. In
section 4, examples of linear models are analyzed.

Finally, it is interesting to note that a comparison of the results of this paper and
the corresponding results of [3] for the cases of odd primes and characteristic zero
case will show that the Z,-case do have some interesting special features.

§1. Some Basic Facts

In this section, we shall recall some basic concepts and fundamental results of
[2, 3] that are essential for the proofs of the above structural theorems. Since we shall
only need the Z,-version of such results, it is notation-wise simpler to state them
directly in the Z,-setting rather than the general setting.

(A) A Fundamental Fixed Point Theorem

Let G be a Z,-torus and X be a given G-space with finite dimensional cohomology.
Let HE (X )=H*(X;) be the equivariant cohomology algebra of X which is clearly
an R-algebra, R=H*(B;). The following theorem of [2] correlates the torsion-free
part of Hg(X) (as an R-module) and the cohomology structure of the fixed point
set F=F(G, X).

THEOREM A (Z,-version) [2]: Let G be a Z,-torus, R, be the quotient field of
R=H*(Bg)=1Z,[t,-, t;], I=1k(G). Suppose that Hg(X)®gR, is given by the
following presentation ¢ (as an Ry-algebra) in terms of generators and relations:
Namely, ¢ is an epimorphism of the polynomial algebra R,[x,,:-, X,] onto
HZ(X)®g Ry with I=Ker () as the ideal of defining relations. Then

(i) The radical of 1, \/I, decomposes into the intersection of s maximal ideals
M ;= M (a;) whose varieties are respectively the “‘rational” points o;=(0;1,+, &;m)€RG,
ie., JI=Min--nM, V(I)={ay, -, &} S RG.
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(ii) There is a natural bijection between the connected components of the fixed
point set, {F’}, and the above points in Ry, {a;}, such that the restriction homo-
morphism of an arbitrary point q;e F/ =X maps the generator x,c H¢(X)®rR, to
;€ HG(4;)®rRo=R,.

(iii) H*(F)®z,Ro=A/I; where I;=Iy, N A, I, is the localization of I at M,
and moreover I=1,---NnI,=1,-1,:--1,.

Remark. Obviously, it is always possible to choose {x;} so that they already lie
in HE (X). Then, their 1estrictions a;; lie in Hg(g;)=R. Namely, {«,} < R"<Rj.

As one of the simplest direct consequence of the above theorem, let us mention the
following generalization of a result of Bredon [1]. Namely

COROLLARY. Suppose Hg(X)®rR, is generated (as an R,-algebra) by
{x;e H¢(X), 1<i<m}. Then the number of connected components of the fixed point
set F (G, X) is bounded by the number of elements in the following Z ,-vector space

H™(Bg)x H"™(Bg) x -+ x H™ (Bg).

Proof. Since F/ are indexed by different elements o ; in the above Z,-vector space.
(The special case m=1 and G=Z, (resp. Z,) is included in statement of Th. (4.1)

of [1]).

(B) A Special Case

As one of the simplest application of the above fixed point theorem let us consider
the case that X ~RP" (resp. CP", QP") as follows:

Since H*(X)=Z,[£,]/KE0T"D, deg(&o)=1 (resp. 2, 4), it is easy to see that the
E,-term of the Z,-Serre spectral sequence of the fibration X —» X; — B is equal to
H*(B;)®z,H*(X), and the generator ¢, is clearly transgressive. On the other hand,
it follows trivially from the existence of fixed points that H*(Bg)— H*(Xg) is
injective. Therefore, the transgression of £, must be zero and hence E,=E_,
H*(X5)~R®z,H*(X) as an R-module; H*(X;)— H*(X) is surjective. Let ¢ be an
arbitrary lifting of &, into Hg(X). Then, ¢ clearly generates the R-algebra Hg(X),
namely

Hg(X)=R[CJCf(£)>  (asan R-algebra)

where f (§)=(&"* ! +¢;"++++ + ¢,41)€ R[] is the defining relation. It is then a direct
consequence of theorem A that f (&) splits into product of linear factors, say

F@=(&—a)*(¢~a)"

where ;e H' (Bg) (resp. H?(B;), H * (Bg)) are the distinct roots. And correspondingly,
the fixed point set F consists of s connected components, {F/, 1 <j<s}, indexed by
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{a;} respectively and H*(F/)=Z,[n]/<n"), deg(n)<deg(&). Hence, the beginning
parts of the structural theorems 1, 2 and 3 are simply direct consequences of the fixed
point theorem of [2]. In fact, it is exactly the above setting of neat correlation
between the algebraic structure of Hg (X ) and the geometric structure of F that makes
possible both the formulation and the proof of such structural theorems.

(C) Structure of F-Varieties and System of Local Weights

Geometrically, G-spaces are quite analogous to algebraic varieties in the sense that
both consist of points of various degree of singularity. An analogy to the concept of
Zariski closure of points in an algebraic variety, the following definition F-variety was
introduced in [2] and plays a rather useful basic réle in recent development of
cohomology theory of transformation groups.

DEFINITION. The F-variety of x (or rather, spanned by x), denoted by F (x), is
the connected component of x in F (G,, X).

Clearly, for a given G-space X, the isotropy subgroups {G,; xeX} are those
distinguished subgroups and the F-varieties {F (x); xeX} are those distinguished
sub-G-spaces. Suppose Y=F (x). Then x is called a generic point of Y and G, is called
the generic isotropy subgroup of Y, which is obviously the smallest isotropy subgroup
among {G,; y€ Y} and shall be denoted by Gy. The rank (resp. corank) of an F-variety
Y is defined to be the rank (resp. corank) of its generic isotropy subgroup Gy, i.e.
rk (Y)=rk(Gy).

In case X is a differentiable G-manifold and x, is a fixed point. Then the local
structure of F-varieties passing x, is given by the “linear model’’ whose G-action is
that of the local representation of G on the tangent space of x,. Group theoretically,
such a representation ¢, of a Z -torus G is a homomorphism of G into 0(x), which

always factors through a maximal Z,-torus of 0(n), i.e., G230 (1)"=0(n). Geometric-
ally, the vector space R” splits into the direct sum of one-dimensional invariant linear
subspaces. Hence, it is easy to see the following relationship between the weight
system of ¢,,, 2., and the local structure of F-varieties at x,: Namely,

0?

multi. of zero weight=dim of F at x,
multi. of a non-zero weight w=codim of F in F(w',X) at x,.

In the more general case that X is a Z,-cohomology G-manifold, then all F-varieties
are again Z,-cohomology manifolds and, as a consequence of Borel formula, the same
dimensional relation still holds. Namely,

dimX—dimF°=) (dim Y—dimF°)

where F° is the connected component of x, in F and Y runs through all corank one
F-varieties passing through x,.
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DEFINITION. Let G be a Z,-torus, X be a Z,-cohomology G-manifold and
xo€X be a fixed point. Then the system of local weights at x,, again denoted by Q
consists of the following Z,-weights with multiplicities:

X0?

Q.,={w,m,;0, m}

where mo=dimF (x,), {w'} are the generic isotropy subgroups of those corank one
F-varieties {Y,} passing through x, and m,,=(dimY,,—dimF (x,)).

We refer to [4] for detail discussion of system of local weights and its many
applications.

(D) A Splitting Theorem
We shall need the following Z,-version of a splitting theorem of [3].

THEOREM B (Z,-version). Let G be a Z,-torus and X be a connected Z,-
cohomology G-manifold. Suppose that

E2=E00=H*(BG)®22H*(X)

in the Z,-Serre spectral sequence of the fibration X — X5 — B;. Then
(i) For each element fe H* (F), the following ideal I;( f):

Ix(f)={aeR; a®felm(Hs(X) > H;(F)=R® H*(F))}
is a principal ideal with its generator a( f') splits into product of linear factors, i.e.,
a(f)=wi-wj’, (I=0 if I(f)=R), w,eH"(Bg).

(ii) Correspondingly, {H;=wj} are exactly those maximal Z,-subtori satisfying
the condition Iy (f)#R; Y=F (H, X); and moreover, Iy (f)=(w}) for Y;=F (H;, X).

(iii) In particular, if f; is the fundamental cohomology class of F’, then Ix(f;) is
generated by the product of non-zero local weights (with multiplicities) at F’, i.e.,
a(f;)=wi---wi where {w,, ky;---; wy, k,} is the system of non-zero local weights at F’.

We refer to [3] for a proof of above theorem, and to [S] for a rather far-reaching
generalization of the above theorem by T. Chang and T. Skjelbred.

§2. Proof of Theorem 1 and 2

(A) Proof of Theorem 1

Since the beginning part of Theorem 1 has already been proved in (B) of §1, we
need only to prove the assertions (ii) and (iii) as follows:

Let £;€ H'(F/) be the generator of H*(FY), i.e., H*(F/)xZ,[£;]/<&Y). Then
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* (€)=(:1 + Wy, €2+ Wi, oy €s+ws)EHé(F), and
f;=0(0,...,0, &7 0,...,0)

is the fundamental cohomology class of F’/. Suppose a is an arbitrary element of
I (f;)- Then, by definition, there exists an element of Hg(X), say g (&), such that
1*(g(&))=a- f;. Hence

1*(g(&é)-(£—w)))=(0,..., 0, aég-k’_”, 0,...,0) (%:+o%, &, %,..., %)=0.

Therefore, it follows from the injectivity of 1* that g(&)- (& —w;) is divisible by f (&),
or equivalently, g (&) is divisible by f(&)/(£ —w;). Then, it is easy to see that

((éffi’))

where a( f;)=]]i»; (wi+w,)* is the generator of Iy ( f;). Hence, (ii) follows from the
above computation and (iii) of theorem B.

Let Y=F (x) be the F-variety of x and Y n F=F’'+ + F/* and £ be the restriction
of £ to H§(Y). Then, it is clear that Y ~RP™, m=(k;, +---+k;—1) and Hg(Y)=
R[E)KF(E)y, where f(&)=(E—w;y)""...(E~w;)*". On the other hand, it follows
from (ii) that the generic isotropy subgroup of X, Gy=Ker(X) is given by putting all
local weights in 2, equal to zero, i.e.

)=a(f,->-f,-

Wit Wy =W +wy=-=w +w;=0,
or equivalently,
w1=W2="'=Ws.

Finally, applying the above result to Y instead of X, we see that Gy is given by
Wiy =wp=-=wy. q.e.d
(B) Proof of Theorem 2

We choose the lifting # of the generator y, of Hg (X)into H (X) so that «; = the
restriction of # to Hg(q,)=0. Then, it is easy to see that Sq'(#)=pn, and we shall
divide the proof into two cases according to f=0 or f#0:

(1) The case B=0, (i.e., Sq' (n)=0). We claim that there are no components of
RP-type. Suppose the contrary, say F' is of RP-type. Let & be the generator of
H*(F'), deg(&,)=1. Then Sg* (n)=0 implies that

Sq' (’:ﬂ)qul (*+B:&s +°‘1)=ﬂ1f§+ﬂ%f1 +Sq o =0.
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Hence B, =0, which implies that H*(F') is generated by ¢3, a contradiction. On the
other hand, Sq' ()=0 implies Sq'(«;)=0, (notice that «; is the restriction of 5 to
Hg(g;))- Hence «; must be a perfect square, i.e., a;=w?, w,e H' (Bg). Therefore

1*(11)—-:(111 +w2, n,+wi, .., n,+w,2)eH(7';(F)

and the same computation as in the proof of Theorem 1 will show that
Ix (f:i)=iI;I (Wiz"‘wlg)h:'#nj (Wit wy)™.
J i

The rest of the proof for this case is the same as that of Theorem 1.

(2) The case B+0. In this case, we claim that there are no components of CP-type
Suppose the contrary that F* ~CP* ™Y, (k,—1)>0, and 5, be the generator of
H*(F"). Then 1} ()=n,+«, and

Bny+Pay =11 (B-n)=11Sq'n=Sq"1{n=Sq" (n, +a,)=Sq o,

which is clearly a contradiction. Hence, all components are of RP-type. Let z}‘ (n)
=)’j§§+ﬁj<§j+a,, deg;=1. Then

B-(v,&7+B,E;+0)=1](Sq' (n))=Sq" (v;F +Bi;+a;)=B;EF + B¢+ Sq'w;

implies that f=4;, ;=1 and Sq'a ;=Ba;. Observe that degf=1 and hence can be
considered as a variable in R=Z,[¢]. Write a;=p-w;+a;. Then Sqg*' (B-w;+a})=
=pB*w;+ pw} + Sq'a}=p*w;+ o} implies that a;=w7, thatis, ;= B-w;+w;. Therefore

1 (n)=(E+ BE, +Bwy +wi, ..., E2+ BE+ Bw,+w2)eHE (F)

and the rest of the proof of this case follows readily from the same type of computation
as that of Theorem 1. q.e.d.

§3. Proof of Theorem 3

(A) We choose the lifting { of the degree 4 generator {, of H*(X) into Hg (X) so
that o, =the restriction of { to Hg(g,)=0. Then, it is easy to see that Sq' ({)=pB-¢{
and Sq*=1y-{; Be H' (Bg), ye H*(Bg).

LEMMA 1. Sq¢'({)=8-{=0.

Proof. Suppose the contrary that Sq' ({)=p-{#0, i.e. B#£0eH" (B;). Then there
exists a rank one subtorus K< G such that l K#0. Let ¢ be the generator of H*(By)
and { be the image of { in Hg (X ). By the naturality of Sq*, we have Sg' ({)=¢-{+#0
We claim that F(K, X) must be connected. For otherwise, Hg (X)~Z,[1] [L1/<f()>
and the defining equation f ({)=0 must have more than one distinct roots &;e H* (By).
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However, H*(By) consists of only two elements, namely, 0 and ¢*. Hence &, =0 and
oA,y = t4, and

0=Sq"(a,)=5q¢" ({ | Hx(42))=Sq" ({) | Hx (§:)=1L | H(§,)=1°

which is clearly a contradiction. Hence F (K, X) is connected and we may assume that
@, =0. Then there are the following three possibilities, namely, F (K, X)~QP", or
CP", or RP". In case F(K,X)~QP" or CP" it is easy to show that 1*Sg'({)
=Sq" (1*())=0 and hence, by the injectivity of 1*: Hg (X)— Hg (F(K, X)), Sq' ({)=0
which contradicts to the assumption. In case F (K, X')~RP", we have

* (=23 + a0l a5l +alt
where {, is the generator of H* (F(K, X)). Then

n* () =140, +1a,& + tas&3 + 1a, bt
Sq* (1*(0))=1*¢, + (3 + Sq'a,)} + -

and the fact Sq’(a,)=0 (a,=0, or ¢?) imply that a,=¢2. Notice that Sg*({)=0 or
t2{, which implies that Sg*(:* ({))=0 or S¢*(1*({))=¢%(1*({)). However

Sq? (1*(D))=Sq? (3¢, +t2E1 +...)
=13¢, +08% + -

which is neither 0 nor #2(1* ({)), hence, a contradiction. All the above contradictions
prove that the assumption Sq* ({)=B-{#0 is impossible. Hence Sg' ({)=0. q.e.d.

Now, we shall divide the proof of Theorem 3 into two cases according to Sg* ({)=
y-{ is zero or non-zero.

(B) The case Sq*(¢)=7y-{=0

We claim that there are no components of either RP-type or CP-type. In fact, it is
easy to show that the existence of a component of RP-type implies Sq' ({)#0 and the
existence of a component of CP-type implies Sq?({)#0. Moreover Sq'({)=0,
Sq*(£)=0 imply that

Sq'(¢;)=0 and Sg*(a;)=0 forall 1<j<s,

and it is not difficult to show that such degree 4 elements must be of the form a;=w7,
w;e H' (Bg). Therefore

* (O=(Cy+wh, G +ws, ., LW e HE (F),
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and the same computation as in the proof of Theorem 1 will show that
Iy (f)=I1 (Wi +wi) =TT (wi+wy)*.
i*j i#j
The rest of the proof of this case is again the same as that of Theorem 1.

(C) The case Sq*({)=y-{+#0

In this case, it is easy to show that all connected components are of CP-type. Let #;
be the generator of H* (F), 1} be the restriction homomorphism of Hg (X) to Hg (F7),
and 17 ({)=(an;+bm,;+;). Then

Sq*({)=v-¢ implies a;=1,b;=y and Sq’a;=y-«;
Sq'(()=0  implies Sq'(b;)=Sq"(y)=0.

Hence y=1v? is a perfect square. Now, let us choose basis in H' (Bg) so that v is the
first base, and express o; as polynomial in v with coefficients in terms of the other
“variables”. Then it is not difficult to show that Sq* (o;)=0 and Sq? (a;)=v*-«; imply
that a;=v?-w? +wj for a suitable w;e H* (Bg). Therefore

* (=3 +vn +vPwi+wt, .., 02 +vin+ w2 +wi)e HE (F)

and the rest of the proof of this case follows easily from similar computation as that
of Theorem 1.2. q.e.d.

§4. Examples and Concluding Remarks
(A) Examples of Linear Models

EXAMPLE 1. Let G be a Z,-torus acting on R"*1) via a linear representation
¢:G —0(n+1). Suppose the system of Z,-weights of ¢, Q(¢)={w;, k;; 1<j<s}and
X =RP" with the induced G-action of the above linear action on R"*1), Then, it is
not difficult to see that

(i) H3(X)=R[E]/{f (&) where f(&)=(E+w;)*...(E+w,)* and ¢ is the trans-
gression of the fibration Z, —» Sg — RPg,

(ii) F (G, X)=RP* "V 4...4 RP*~D where RP* ™" is the projective space of
F (W}‘, Rn+1)=Rkj,

(iii) the weight system of local representation of G at F/=RP%™" s given by
Q;={(wi+w)), k; (i#5); 0, (k;—1)}.

EXAMPLE 2a. Let G be a Z,-torus acting on C"*1) via a complex linear
representation ¢:G — U (n+1). Suppose the system of Z,-weights of ¢ (considered as
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areal representation G — U (n+1)=0(2n+2)),Q(¢)={w;, 2k;; 1< j<s}and X =CP"
with the induced G-action of the above linear action on C"*1), Then it is not difficult
to see that
(i) He(X)=R[n}/{f ()> where f(n)=(n+wi)“...(n+wl)*, and 7 is the

transgression of the fibration S' -»&"*1 - CPE,

(ii) F(G, X)=cP% V4...4 cP%~D where CP*~1 is the complex projective
space of F (w;, C"*D)=CY,

(iii) the weight system of local representation of G at F/=CP% ™1 is given by
Q;={(wi+w), 2k; (i#7); 0, 2(k;—1)}.

EXAMPLE 2b. Let G=Z, x G’ be a Z,-torus acting on C"*V=C®R™*1 via a
real linear representation ¢ =f®¢’, where f§ is the conjugation of C and ¢’ is a real
linear representation of G' - 0(n+1) with Q(¢')={w;, k;; 1<j <s}. Then, there is
an induced G-action on X=CP", and it is not difficult to see that

(i) HE(X)=R[A)S(n)> where f(n)=(n+Bwy+wd)k...(n+Bw,+w?) and

Sq*(n)=P-n, n is the transgression of S' - §&"*! - CP},
(i) F (G, X)=RP"~ Vg ..+ RP®~D),
(iii) the weight system of local representation of G at F/=RP® 1 is given by

Q= {(wi+w;), (B+wi+w)), k; (i#J); B, 0, (k;—1)}.

EXAMPLE 3a. Let G be a Z,-torus acting on Q**1) via a quaternionic represen-
tation ¢:G — Sp(n+1). Suppose the system of Z,-weights of ¢ (considered as a real
representation G— Sp(n+1)<=0(4n+4)), Q(¢)={w,;, 4k;; 1<j<s} and X=QP"
with the induced G-action of the above linear action on Q"*1), Then, again, it is not
difficult to see that

() He(X)=R[LJKf (L)) where £ ({)=(+wi)"...((+ws)* and { is the trans-
gression of the fibration S3 - Sg"*3 - QP%.
(ii) F(G, X)=QP¥* D4...4+ QP* ™V where QP*™" is the projective space
of F(Wj', Q(n+1))_____ij’
iii) the weight system of local representation of G at F/= % is given by
(iii) the weight sy f local rep ion of G at F/=Qp%~1 b
Qy={(wi+w;), 4k; (i#]); 0, 4(k;—1)}.

EXAMPLE 3b. Let G=Z, x G’ be a Z,-torus acting on Q"*V=Q@R™"*Vviaa
real linear representation ¢ =v®¢’, where v is the Z,-automorphism of Q which
changes the sign of j and k; and ¢’ is a real representation of G’ —0(n+1) with
Q(¢")={w;, k;; 1<j<s}. Then, there is an induced G-action on X=QP" and it is
not difficult to see that

(i) Hs(X)= RSO FO=C+vwi+w) .. (C+VPwi+w), Sg*l=
v2¢, and { is the transgression of the fibration S3 - S¢"*3 - QPg,

(ii) F (G, X)=CP* Vq...4cp%~D,
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(iii) the weight system of local representation of G at F/=QP® ™1 is given by
Q;={(wi+w;), (v+w;+w)), 2k; (i#)); v, 0, 2(k;—1)}.

The above “linear models’’ not only demonstrate that all the possibilities in the
statements of the structural Theorem 1, 2, 3 are respectively geometrically realizable
but also show the cohomological aspect of orbit structures of general G-actions on cohomo-
logy projective spaces are actually identical to that of their respective linear models.

(B) Concluding Remarks

(i) Suppose G is a given compact Lie group and X is a cohomology projective
space. Then the family of maximal Z,-tori of G consists of finite many conjugacy
classes, say {(H,), 1 <i<h}, and {H,, 1 <i<h} is a complete representative. Applying
the structure theorem to the restricted H;-action on X, we obtain a system of Z,-
weights Q(X | H,) for each H,. The totality of the h weight systems {Q(X | H,),
1 i< h} is called the Z,-weight system of the G-space X. Geometrically, it is interesting
to investigate the relationship the orbit structure of the G-action on X and the orbit
structures of the respective restricted H;-action on X, which can be read off from their
respective weight system Q(X | H,) as far as the cohomological aspect is concerned.
We shall investigate this direction of applications of the structural theorem in a later
paper.

(ii) Suppose a maximal Z,-torus, H, of G happens to be a normal subgroup of G,
and H is a maximal Z,-torus of the quotient group G =G/H. Then, for a given G-space
X of cohomology type of projective spaces, F (H, X) is a sum of cohomology pro-
jective spaces with an induced G-action. Hence, we can again apply the structural
theorems to the restricted H-action on F (H, X) to obtain some weight systems. Such
weight systems is called the secondary Z,-weight system of the G-space X with respect
to the pair (H, H), or rather the 2-primary group K with Hc K< G and K/H=H.
For example, G=2}, H=7),, H=G/H=17,,.

Of course, one may similarly define higher order 2-weight systems to deal with
higher order 2-primary elements of G.

(iii) Similar computation can also be applied to analyze actions of Z,-tori on
spaces of the Z,-cohomology type of Cayley projective plane.

(iv) In view of the interesting role of Steenrod square operations in the above
structural theorems, it is interesting to see whether there are similar role of higher
order cohomology operations in detecting more delicate geometric behavior of
topological actions of primary groups.
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