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Amalgamated Free Products of Groups and Homological Duality

R. Bier1 and B. ECKMANN

1. Introduction

1.1. Among the contexts where amalgamated free products of groups occur are
presentations of groups and fundamental groups of spaces: A group freely presented
by generators and relations can often be considered as an amalgamated free product
G =G, *3G, of subgroups G, G, and S which are better known than G. The funda-
mental group 7, (X) of a union X=X, U, X, of spaces X;, X, with identified subspace
Y (all path-connected), where =, (Y)— =, (X) is injective, is an amalgamated free
product 7, (X)) * ., vy 71 (X>).

In both these instances simple examples are available where amalgamation of
duality groups (i.e., groups with homological duality generalizing Poincaré duality,
cf. [1]) again yields duality groups; or where a group known to be a duality group —
for example because it admits a closed manifold as an Eilenberg-Mac Lane space — can
be decomposed into an amalgamated free product. A simple illustration of this is
given by the closed orientable surface of genus 2 considered as a union of two tori
with a disc removed; a similar decomposition is available for closed ‘“sufficiently
large” 3-manifolds (cf. [7]). Section 4 contains a list and detailed description of
examples of these and other types.

1.2. The purpose of this paper is to show that under suitable conditions amalgama-
tion of duality groups leads to duality groups. These conditions are essentially on the
dimensions of the groups G,, G, and S. We first prove that for G=G, *3G,, with S# G,
and G,, to be a duality group of dimension n the following condition on the respective
cohomology dimensions cd is necessary:

n—1<cdS<cdG;<n, j=1,2. (1.1)

In particular, if G is a duality group of dimension > 1 then cd $>0. The above result
thus contains, and explains in a more precise way, the known fact ([1], Corollary 1.5)
that a duality group of dimension > 1 cannot be a non-trivial free product. The lower
bound for the cohomology dimension of S is also useful in applications, e.g. to
torsion-free arithmetic groups (known, by the work of Borel-Serre [9], to be duality
groups).

Conversely, if G;, G, and S are duality groups of dimensions fulfilling the in-
equalities (1.1), then G is a duality group in the case cdG,=cdG,=n, cdS=n—1,
and then cd G=n; and also in the case cd G; =cd G, =cd S=cd G=n—1. In the other
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remaining dimension cases (cdG;=cdS=n-1, cdG,=n; and cdG,=cdG,=
=cdS=n—1, but cdG=n) additional conditions on certain restriction homo-
morphisms must be fulfilled. For the precise statements see Theorems 3.2, 3.3 and
3.5. The additional conditions always hold if S has finite index in G, or in G, and
G,, respectively.

The proofs of these statements are based on the Mayer-Vietoris sequence for
amalgamated free products. We recall that sequence briefly in Section 2, with a short
sketch of a proof. Moreover, general properties of duality groups established in other
papers ([1], [2], [3], [4]) are heavily used. All proofs become simpler if the groups
involved are assumed to admit finite projective resolutions!); or equivalently, for
finitely presented groups, to admit Eilenberg-Mac Lane complexes dominated by
finite complexes (this remark is useful for applications, but our procedure is entirely
algebraic). This view-point is adopted in Section 3.

1.3. In Section 5 we prove the same statements without finiteness assumptions.
The main tool here, aside from the Mayer-Vietoris sequence, is a property of groups,
fulfilled by all duality groups, which is examined in a broader context in [4]: namely,
to have finite cohomology dimension and to admit an “‘elementary duality’’ property
in the top dimension. We call such groups “‘of type (FD,)”’. Groups admitting finite
projective resolutions belong to that class; and so do, more generally, groups of finite
cohomology dimension admitting a projective resolution which is finitely generated
in the top dimension!). The arguments used in Section 5 deal essentially with amalga;
mated free products of groups of type (FD,). For these a few further dimension
relations can be obtained.

2. The Mayer-Vietoris Sequence

2.1. Given two monomorphisms of groups i,:S— G, 1,:S— G, one denotes by
G, *5G, the generalized free product of G, and G, with amalgamated subgroups
1,(S) and 1, (S), in short the “amalgamated free product”’. G=G; *5G, is defined as
factor group (G;*G,)/N, where N is the normal subgroup of G, *G, generated by all
1,(s) 15(s)™", seS. The natural maps k;:G;— G, j=1, 2, are monomorphisms; one
often identifies G; with «;(G;) and S with k1, (S)=x,1,(S), and one then has
G,nG,=S. The diagram

S 5 G,

lzI Ikz
Gz:‘;’G

is a push-out diagram in the category of groups.

1) See ‘‘Note added in proof” at the end of this paper.
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One writes Z(G/S) for the (right) G-module freely generated, as an Abelian group,
by the cosets Sx of G modulo S with G-action by (right) translations; and similarly
for Z(G/G;),j=1, 2.

PROPOSITION 2.1. (Swan [6]). With G=G,*sG, there is associated a short
exact sequence of (right) G-modules

Z.(G/S)SZ(G|G,)®ZL(G/G,) > Z (2.1)
where a(Sx)=(Gx, —G,x) and f(Gx, 0)=B(0, G,x)=1, xeG.

2.2. For an amalgamated free product G=G;*5G, there are Mayer-Vietoris
sequences relating the (co) homology groups of G to those of G;, G, and S. Although
these sequences are well-known (cf. [6], [7], [8]), we will give a simple proof showing
how to deduce them almost immediately from (2.1); moreover we get a description
of the connecting homomorphisms which we will use in our applications.

PROPOSITION 2.2. For an amalgamated free product G=G,*5G,, a left G-
module A and a right G-module B one has long exact sequences (keZ)

(res*, res*)

= HY(G; 4) H*(Gy; A)®H* (G; A)——"2,
k(Q. S L k+1 /.
and H*(S; A)—»H"""(G; 4)~ (2:2)
voe Hk(S; B) (COI'v ‘_Col'.) Hk(Gl; B)@Hk(Gz; B)M

4,(G; B)SH,_,(G; B)»-  (23)

The maps res* and cor, are induced by the respective subgroup inclusions.
Proof. Since (2.1)is a sequence of free Abelian groups, we have exact sequences of
left (right) G-modules by diagonal action
Hom(Z, A)~Hom (Z(G/G,), A)®@Hom (Z(G/G,), A)~»Hom(Z(G/S), A)
and
BQZ(G|S)—(BR®Z(G/G,))®(BR®Z(G/G,))-»BRL.

Now, for any subgroup H <G, the maps

¢:Hom(Z(G/H), A)—Homy(ZG, A)
n:B®Z(G/H)~ By ZG
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given by &(f) (x)=xf(Hx) and n(b@®Hx)=bx"'®x, xeG, feHom(Z(G/H), A),
beB, are G-module isomorphisms. We thus get exact sequences of left (right)
G-modules

A—Homg, (ZG, A) ®@Homg,(ZG, A)-»Homg(ZG, A) (2.4)
and
B®ZG (B®g,2ZG)®(B®¢,ZG)—» B. (2.5)

Since, for any subgroup H<G, one has H*(G; Homy(ZG, A))=H*(H; A) and
H,(G; By ZG)~H,(H; B), the long coefficient sequences corresponding to (2.4)
and (2.5) respectively are precisely the desired Mayer-Vietoris sequences. The homo-
morphisms § and 0 can easily be described as connecting homomorphisms in the
coefficient sequences.

2.3. As an application we discuss conditions for an amalgamated free product to
be of type (FP), or (FP). A group G is said to be of type (FP), if the trivial G-module
Z admits a finite projective resolution over ZG; of type (FP) if it admits a finitely
generated free resolution. (FP) together with finite cohomology dimension cdG is
equivalent to (FP). The results of this section could be obtained by explicit use of
resolutions, but we prefer here a procedure based on the homology Mayer-Vietoris
sequence and on the criteria for (FP) and (FP) given in [2], Proposition 3.2.

THEOREM 2.3. Let G=G,*5G, be an amalgamated free product.

(i) If G, and G, are of type (FP), then G is of type (FP) if and only if S is.

(ii) If G and S are of type (FP), then so are G, and G,.

Moreover, the same statements hold for type (FP).

Proof. Let G, and G, be of type (FP). We consider the sequence (2.3) with
B=]] ZG, an arbitrary direct product of copies of ZG. By [2], Proposition 3.2,
since ZG is G;-free, we have H,(G;; B)=0 for k>1, j=1, 2. Thus (2.3) yields

H(G;[]1Z2G)=H,-(S;[]2G), k=2.
Moreover, by Proposition 2.1, we have a commutative diagram with exact rows

0-H,(G;[[2G) -~ ([]ZG)®sZ - (]| ZG)®6, ZO(J | ZG)®s, Z» (] | ZG) @6 Z
X ny vy
0 - [Iz(618) - T1Z(6/G)®[IZ(G/G;) —» [z

The maps 4, u and v are epimorphisms. G; and G,, being of type (FP), are finitely
generated, and so is G=G,*3G,; hence u and v are isomorphisms.
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Now let S be of type (FP). Then H,(S; [| ZG)=] [ Hi(S; ZG) for all keZ. For
k=0, this tells that A is an isomorphism, and thus H, (G; [[ ZG)=0. For k>1, we
have H,.,(G;[] ZG)=H\(S; [] ZG)=]] H,(S; ZG)=0, since ZG is S-free. Thus
H,(G; ] ZG)=0 for all k>1 and all direct products [[; by Proposition 3.2 of [2]
this implies that G is of type (FP).

Conversely, assume that G is of type (FP). It then follows that H,(S; [[ ZG)=0
for k>1. We may assume that the index |G: S| is co (since for |G:S|< o0 any finitely
generated resolution over ZG is also finitely generated over ZS). Then one has a
short exact sequence of S-modules ZS>—ZG—» ZG, and hence a short exact sequence
[1ZS—~]] ZG—~]] ZG. The corresponding coefficient sequence in homology yields
H,(S;[] ZS)=0 for all k>1. Moreover, the commutative diagram with exact rows

0-([]ZS)®sZ - (] ZG)®sZ -~ (]| ZG)®sZ -0
Ol 2 Y Y
0- [Tz = ZtG/S) - 11 ZtG/S) -0

shows that g is an isomorphism; hence Z is finitely presented over ZS, or equivalently,
S is finitely generated. By the (FP )-criterion, Prop. 3.2 of [2], it follows that S is of
type (FP). We thus have proved (i).

To prove (ii), one considers as before the sequence (2.3) with B=]| ZG. Assuming
G and S to be of type (FP), the criterion yields H,(G;; [ ZG)=0 for j=1, 2 and
k>1. By arguments analogous to those above one then easily checks that the condi-
tions of the criterion are fulfilled, i.e., G; and G, are of type (FP).

As to the statements (i) and (ii) for type (FP), all that remains is to check that the
respective groups have finite cohomology dimension. In the case (ii), cdG< oo of
course implies cdG;< 0, j=1,2. In the case (i) one assumes cdG;< 0, j=1, 2;
if cd S < o0, the sequence (2.2) yields cd G < co, while the converse implication is again
obvious.

3. Amalgamated free Products of Duality Groups: Type (FP)

3.1. We recall (cf. [1]) that G is a duality group of dimension  if there is a dualiz-
ing right G-module C and a fundamental class ee H,(G; C) such that the cap-product
en — induces isomorphisms

H*(G; A)S H,_,(G; C®A)

for every left G-module 4 and all keZ (C®A4 is a right G-module by diagonal action).
If C=1Z as an Abelian group, G is called Poincaré duality group. In the present section
we discuss conditions for an amalgamated free product G=G, *3G, to be a duality
group. We restrict ourselves to groups of type (FP). As we will show in section 5,
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all results are in fact valid without that restriction. However, the proofs and
the technique used for groups of type (FP) is simpler so that a separate treat-
ment may be justified!). The main tool here are the Theorems 4.4 and 4.5 of [1]
which give criteria for duality without explicitly involving the cap-product: A group
G of type (FP) is a duality group of dimension # if and only if H*(G; ZG)=0 for
k#n and torsion-free for k=n (and then C=H"(G;ZG)); or if and only if
H*(G; A)=0 for k#n and all induced G-modules 4=L®ZG.

3.2. We thus assume G, G, and S, and hence also G, to be of type (FP).If G is a
duality group of dimension n, lower bounds for c¢d.S (and hence for cd G, and cdG,)
can be obtained as follows.

We suppose that cd S<n—1. Then (2.2) with 4=2ZG yields

C=H"(G; ZG)= H"(G,; ZG)® H"(G,; ZG).

Since G; is of type (FP), j=1, 2, the cohomology functors H"(G;; —) commute with
direct sums. Since C= @ /¢, H"(Gy; ZG,)D H"(G,; ZG), where the sum Pygq, is
over the cosets of G modulo G, as right G,-modules, we have

H,(Gy; C)= @ H,(Gy; H'(Gy; 2G,))®H, (Gy; H"(G,; ZG))

G/Gy
& G% Homg, (H"(Gy; ZG,), H"(G,; ZG,))®H, (G, ; H"(G,; ZG))

by [4], Theorem 2.4 (see also [3]). Therefore H,(G,; C)=0 implies H"(G,; ZG,)=0,
and similarly for G,. But at least one of the groups H"(G,; ZG,), H"(G,; ZG,) must
be #0; thus, e.g., H,(G,; C)#0. On the other hand H,(G; C)=H,(G; C®¢,ZG)=
H,(G; C®Z(G/G,)) is isomorphic, by duality, to H°(G; Z(G/G,))=(Z(G/G,))°.
Under the action of G, Z(G/G,) has no fixed element unless the index |G:G,| is
finite. But in G=G,;*3G, the index |G:G,]| is finite only if G=G;, S=G,. We thus
have proved

THEOREM 3.1. Let G=G*5G, be a non-trivial amalgamated free product (i.e.,
S#G;,j=1,2) andlet G|, G, and S be of type (FP). If G is a duality group of dimension
n, then

n—1<cdS<cdG;<n, j=1,2. (3.1)

3.3. We now give sufficient conditions for G=G, *5G,, all groups of type (FP),
to be a duality group of dimension n. We will see in particular that all combinations
of cd S, cd G, cd G, which comply with the necessary conditions (3.1) actually occur.
Explicit examples will be given in a separate section (§4).
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THEOREM 3.2. Let G=G,*5G,, Gy, G, and S of type (FP). If G, and G, are
duality groups of dimension n and S is a duality group of dimension n—1, then G is a
duality group of dimension n.

Proof. The Mayer-Vietoris sequence (2.2) with 4=ZG immediately yields
H* (G; ZG)=0 for k+#n, and a short exact sequence

0 H""'(S; ZG) - H"(G; ZG) - H"(Gy; ZG)®H™(G,; ZG) - 0. (3.2)

By duality we have H" '(S;ZG)~H""'(S;ZS)®sZG and H"(G;; ZG)=
H" (Gj; ZGj)®G jZG, j=1, 2. These groups are torsion-free over Z. It follows that
H"(G; ZG) is torsion-free. By [1], Theorem 4.5, G is a duality group of dimension ».

THEOREM 3.3. Let G=G,*5G,, G, G, and S of type (FP). If G, is a duality
group of dimension n, and G, and S are duality groups of dimension n— 1 such that the
restriction rtes*: H" '(Gy; A)—> H""'(S; A) is a monomorphism for all induced
G,-modules A, then G is a duality group of dimension n.

Remark 3.4. The (necessary) assumption that res*: H* ' (G,; A)—> H""(S; A)
be a monomorphism for all induced G,-modules A is fulfilled, in particular, if S has
finite index in G,. We will show this when discussing examples (§4); cases where S has
infinite index and where the condition holds will also be exhibited.

Proof of Theorem 3.3. Let A be an induced G-module (and hence an induced
G-, G,- and S-module). By [1], Prop. 1.4, H*(G,; A)=H*(S; A)=0 for k#n—1,
and H*(G,; 4)=0 for k #n. The sequence (2.2) then yields H*(G; 4)=0 for k#n—1,
n and an exact sequence

0 H"*(G; A)— H" ' (G,; A)SH""'(S; A)—» H"(G; A)— H"(G,; A)—0.

By assumption res* is a monomorphism, hence H*!(G; 4)=0. By [1], Theorem 4.4
it follows that G is a duality group, of dimension n.

THEOREM 3.5. Let G=G,*5G,, G,, G, and S of type (FP), and let G, G, and
S be duality groups of dimension n— 1.

(1) If cdG<n—1, then G is a duality group of dimension n—1.

(ii) Iffor all induced G-modules A the restrictions res*: H" ™' (G;; A)— H" ' (S; A)
are monomorphisms, j=1, 2, and res* H" "' (G,; A)nres* H" ' (G,; A)=0, then G is
a duality group of dimension n.

Remark 3.6. The assumption (ii) — which is necessary for G to be a duality group of
dimension »n — is again fulfilled if S has finite index in G; and G,, but also in other
cases (see examples, §4).

Proof of Theorem 3.5. The sequence (2.2) for induced G-modules, together with
[2], Theorem 4.4, yields the result. The assumption (ii) simply tells that the map
(res*, —res*): H" " (G,; A)®H" 1 (G,; A)— H"1(S; A) is a monomorphism.
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4. Examples. Topological Aspects

4.1. In this section we give examples, of algebraic and of topological nature,
illustrating the various dimension cases which occur in Section 3.

The algebraic examples are explicit applications of Theorems 3.2, 3.3 and 3.5, to
groups known to be (low-dimensional) duality groups. They partly concern cases of
finite index subgroups S; these cases require some additional algebraic ad hoc
arguments (Lemma 4.1 and 4.2 below). It should be mentioned that these actually
belong to a more general, rather subtle, context dealt with in detail elsewhere (see [4]).
They do not use full duality but only finite cohomology dimension.

The topological examples combine topological and algebraic arguments, and
partly apply the theorems of Section 3, partly illustrate them. They are based on some
remarks on Eilenberg-Mac Lane complexes of duality groups, and on their unions with
identified subcomplexes, and of course on the van Kampen theorem.

4.2. Algebraic Preliminaries: Subgroups of Finite Index

LEMMA 4.1. Let G be a group of type (FP), with cdG=n, and S<G a subgroup
of finite index. Then the restriction res*: H"(G; A) - H"(S; A) is a monomorphism for
every induced G-module A=LQ®ZLG.

Proof. Since |G:S| is finite, we can identify C=H"(G; ZG) with H"(S; ZS),
cf. [1], §3. By Theorem 4.2 of [1] we have isomorphisms H"(G; A)=C®sA4 and
H"(S; A)=C®gA. Under these isomorphisms, as shown in [4], the restriction map
res* corresponds to the transfer res: C®zA— C®g A, given for arbitrary G-modules
Abyres(c®a)=Y; cr; ' ®r.a, ceC, ae A, {Sr;} being the right cosets of G modulo S.

For A=L®ZG one has an isomorphism x: C®s(L®ZG)=(Co®L)RZ(G/S);
it is given by

k(c®udx)=cxPudSx, ceC,uel,xeqC.

C, denotes the Abelian group underlying C. In particular, C®s;(L®ZG)=Cy QL.
As a map C,®L — (Co®L)RZ(G/S) the transfer is given by

kresk” ' (c®u)=x res (cQu®e)
=K (Z cry '®u ®r,-)
=) cQu@Sr;
i
This is obviously a monomorphism.

LEMMA 4.2. Let G=G,*sG,, where G,, G, are of type (FP), cdG,<n and
cd G, <n, and where S has finite index in both Gy and G,. Then the restriction images
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in H"(S; A), for any induced G-module A, have intersection 0:
res* H"(G,; A)nres* H"(G,; A)=0.

Proof. As before we identify H"(G;; ZG,)=H"(G,; ZG,)=H"(S; ZS) and de-
note this module by C. The restrictions can be replaced by the transfers
res: C®GJA - C®gA, j=1,2. For A=L®ZG the transfer

res: (Co®L)®Z(G/G;)— (Co®L)RZ(G/S)
is given by

res (cQuU®G;x)= Y, cQu®Srx
rely

ceCy, ueL, xeG; I'; denotes a set of representatives (including e) of G; modulo S,
Jj=1.2

We first consider the transfer map res:Z(G/G;)— Z(G/S) given by res(G;x)=
Yrer ,Srx. We recall that the words of the form w=g,g1g5¢7... with letters
g8 8;.--€l;, j=1,2, all#e, and with initial letter from I',, represent the right
cosets #G, of G modulo G;. Since cancellation is not possible, the length A(w) of
such a word is defined in an obvious way. An element #,€Z (G/G,) is a finite sum

t,=) mG;g,818581 ... with integral coefficients. Its image res(z,)eZ(G/S) is of
the form

res (t;)=) mSg,gigh-+ Y D mSgi8,g...

g1¥e

g1€ly
We have divided the sum into two parts according to whether the first letter to the
right of mSis in I'; or in I',. Let 1(¢,) be the maximum length of words occurring in
t;, and let g,w be a term in ¢, with A(w)=A1(¢,). Then there is a term Sg,w in the
second part of res(¢,), with A(g,w)=1(z,)+1.

If we now assume res(#;)=res(¢,) for some ¢,€Z(G/G,), the term Sg,w must
occur in the “first part™ of res (¢,), i.e., g;w must occur in ¢,, and thus 1(¢,) > 1(#;) + 1.
But the situation is entirely symmetric in #; and ¢,, so that 1(¢;)>1(¢;)+2. Hence if
res (¢,)=res(t,), there are no words of maximum length in ¢,, i.e., t; =0=¢,. Thus we
have proved that

resZ(G/G,) nresZ(G/G,)=0.

Since the restriction maps themselves are monomorphisms, we have a short exact
sequence of the form

(res, —res)

Z(G/G,)DZ(G/G,) Z(G/S)»K (4.1)
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The cokernel K is torsion-free: Tensoring over Z with Z,=Z/(p), for a prime p,
gives rise to the exact sequence

(res, —res)

0— Tor(Z,, K) > Z,(G/G,)®Z,(G/G,) Z,(G/S)-»Z,8K-0.

But the above arguments on Z(G/G;) and Z(G/S) are valid for Z,-group rings as
well (the crucial point was that there is no cancellation of terms in res(z,) etc.).
Therefore (res, —res) is again a monomorphism, and Tor(Z,, K) is 0 for all primes
p, i.e., K is torsion-free. If we tensor (2.2) over Z with C,®L, we conclude that
(res, —res): (Co®L)RZ(G/G,)D(Co®L)RZ(G/G,) — (Co®L)RZ(G/S)is a mono-
morphism, whence

res (Co®L)RZ(G/Gy ) nres(Co®L)RZ(G/G,)=0.

This proves Lemma 4.2.
4.3. Topological Preliminaries. Eilenberg-MacLane Spaces

If X is a CW-complex, with subcomplexes X; = X and X, = X suchthat X; nX,=Y
is not empty, we will write X=X, uyX,. Equivalently, we consider two CW-
complexes X, X, containing non-empty subcomplexes Y, <X;, Y, X, which are
isomorphic. Then, by identifying ¥; with ¥, through a given isomorphism and
writing Y=Y, =Y,, we obtain a complex X=X, UyJX,.

We will assume X, and X, and whence X to be connected; Y need in general not be
connected. We only consider examples where the fundamental group n, (¥ ) maps
monomorphically into 7, (X;) and =, (X,), for each component Y™ of Y. - If Y is
connected, the van Kampen theorem tells that 7, (X) is the amalgamated free product
3 (X1) % r, 1y 71 (X2)- N

In the situation described above, let p: X — X be the universal cover of X, and write
pl(X)=X,,j=1,2,p" (YV)=F™. Then X, is a certain number of copies of the
universal cover X;, j=1, 2, and ¥ is a certain number of copies of ¥, for all
components Y of Y. From X=X,uUyX, and the topological Mayer-Vietoris
sequence with integral coefficients

woo Hy(X) - H (X)) ® H (X2) - Hy (X)) Hi— 1 (T) > -

we deduce immediately:

(i) If X,, X, and ¥ have trivial homology, then the same holds for X.

(ii) If X and ¥ have trivial homology, then the same holds for X, and X,.
By “trivial homology’> we mean H, =0 for k>1 (no statement about H,). Note that
obviously H, (X)=H,(X,)=H,(X,)=H,(¥)=0).
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For a connected complex X, the universal cover X having trivial homology is
equivalent to X being aspherical; i.e., to X being an Eilenberg-Mac Lane complex
K(G, 1) for its fundamental group G=mn,(X). Thus for X=X, U, X, as before, but
with Y connected, (i) tells that if X;, X, and Y are Eilenberg-Mac Lane complexes,
so is X; namely X=K(G, 1) where G=G,*5G,, G;=mn,(X;) for j=1, 2, S=n,(Y).
And conversely, by (ii), if X=K(G,1), Y=K(S, 1) then X,, X, are Eilenberg-
Mac Lane complexes. The results of Section 3 then have topological interpretations:
one replaces (Poincaré) duality groups by (Poincaré) duality Eilenberg-Mac Lane
complexes, cf. [4], Section 6, and amalgamated free products by unions of spaces
with identified subspaces.

We recall here two topological criteria for duality: (a) If X=K(G, 1) is a closed
manifold (i.e., compact without boundary) then G is a Pcincaré duality group. (b) if
X=K(G, 1) is an m-dimensional compact orientable manifold-with-boundary such
that H, (86X )=0 for all k+q (H, being reduced) and H,(6X) torsion-free, then G is
a duality group of dimension n=m—g—1 with C=H,(6X).

4.4. Topological Preliminaries: 3-Dimensional Manifolds

We recall some facts concerning “‘sufficiently large’’ 3-manifolds (cf. Waldhausen
[7] for terminology and results). Let M denote, throughout this and the following
sections, a triangulable compact connected orientable 3-manifold, and let G=n, (M ).

PROPOSITION 4.3. If M is irreducible and 0M incompressible in M, then M is
an Eilenberg-Mac Lane complex K (G, 1) and G is a duality group of dimension 2.

Proof. M is aspherical, see e.g. [7], Lemma 1.1.5. The boundary 0M consists of
orientable surfaces of genus >0, and for each component the fundamental group
imbeds monomorphically into 7, (M ). Thus M consists of universal covers of the
surfaces occurring in dM, i.e., of copies of R%. The above conditions for duality are
therefore fulfilled, with ¢g=0, n=m—q—1=2. The dualizing module C=H,(d/)
is Z-free.

Examples of manifolds M which satisfy the assumptions of Proposition 4.3 are the
closed complements of non-trivial knots in the 3-sphere. Then M is a torus, and
incompressible in M.

Let now M be irreducible and closed (0M =0), and assume that M contains an
incompressible separating surface Y. Then M =M, Uy M,, where M, M, are compact
3-manifolds with oM, =0M,=Y fulfilling the assumptions of Proposition 4.3. We
have n, (M)=G=G,*3G, with n; (M;)=G}, j=1,2, n,(Y)=S. The groups G, G,
are duality groups of dimension 2, S is a Poincaré duality group of dimension 2, and
G is a Poincaré duality group of dimension 3. We thus have an example illustrating
(not using) Theorem 3.5. Such examples can be obtained by taking for M, and M,
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3-manifolds-with-boundary as in Proposition 4.3, with M, and 0M, being surfaces
of the same genus, and by identifying M, with dM, through a homeomorphism
(e.g., M, and M, are knot-complements, dM,; and dM, tori).

In these examples, the necessary condition (ii) of Theorem 3.5 must be fulfilled;
in particular, res*:H?(G,; A)—»H?*(S; A) is. a monomorphism for all induced
G,-modules A. This remark yields the following result:

COROLLARY 4.4. If M is irreducible and OM incompressible in M, with
n,(M)=G, n,(0M)=S, then the restriction res*: H*(G; A)—» H*(S; A) is a mono-
morphism for all induced G-modules A.

Remark 4.5. A similar situation arises if we take two tori X, X, with an open disc
removed, and identify the two boundary circles 0X; =0X,=Y. Then X=X, U, X, is
the closed surface of genus 2. Since X and Y are Eilenberg-Mac Lane spaces K(G, 1),
K(S, 1), so are X;=K(G;, 1), j=1,2; G, is free on two generators a, b, G, on
¢, d, and S is cyclic generated by [a, b]=][c, d]. The group G is presented by
{a, b, c,d l [a, 5] [d, c]=¢).

G,, G, are duality groups of dimension 1, § is a Poincaré duality group of dimen-
sion 1, and G is a Poincaré duality group of dimension 2. We thus have an example
illustrating (not using) Theorem 3.5, case (ii). As before we get a side-result:

COROLLARY 4.5. Let G be free on two generators a, b, and S cyclic generated by
La, b]. Then the restriction res*: H'(G; A)—~ H'(S; A) is a monomorphism for all
induced G-modules A.

4.5. Examples

We will apply Theorems 3.2, 3.3 and 3.5 to explicitly given amalgamated free
products of groups G=G, *5G,. We write n;=cdG;, m=cdS and n=cdG, and use
the symbol [n,, n,, m; n] to indicate the dimensions occurring in an example. We recall
that Theorem 3.2 refers to the case [n, n,n—1; n], Theorem 3.3 to [n—1,n,n—1; n],
Theorem 3.5, case (i) to [n—1,n—1,n—1;n—1] and case (ii)to [n—1,n—1,n—1;n].

EXAMPLE 1 [2,2,1;2]. Let G be presented by <a, b, c| [a, b]=[a, c]=e).
This group can be obtained as G=G,*5G, with G;=(a,b|[a,b]=e), G,=
={c, d| [c, d]=e), S infinite cyclic generated by ae G, or de G, respectively. G, and
G, are Poincaré duality groups of dimension 2, S of dimension 1. By Theorem 3.2 G
is a duality group of dimension 2.

Corresponding to the decomposition G=G, *5G, one may take for K(G, 1) the
space obtained from two tori X;, X, by identifying circles which are generators of
n, (X,) and 7, (X,) respectively (e.g., one takes two tori in R* having the same vertical
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axes of rotation and puts one on top of the other). It follows that this space is a
duality complex of formal dimension 2.

EXAMPLE 2 [1,2,1;2]. Let G be presented by <a, b | [a% b]=e). We may
write G=Gy *5G,, G;=<a), G,=<b, ¢ | [b, c]=e), S=(a®)=(c). Then G,, G,, S are
Poincaré duality groups of dimension 1, 2, 1 respectively. Since S has finite index in
G,, the restriction condition of Theorem 3.3 is fulfilled (Proposition 4.1). It follows
that G is a duality group of dimension 2.

An alternative proof of this fact is obtained as an application of [1], Theorem 5.2.

EXAMPLE 3 [1,2,1;2]. We take G;=<a,b), G,=<ec, d] [c,d]=e) and
S=([a, b])=(c). Then G=G,*5G,=<a,b,c,d|[a, b]=c, [c,d]=e). Since all
finitely generated free groups are duality groups of dimension 1 so is G, ; G, and S are
Poincaré duality groups of dimensions 2 and 1. The restriction condition for
res*: H'(G,; A)— H'(S; A) is fulfilled by Corollary 4.5 (though here the index
|G,:S] is not finite). By Theorem 3.3, G is a duality group of dimension 2.

A topological description similar to that of Example 1 is easily obtained.

EXAMPLE 4 [2, 3, 2; 3]. Let G, be the fundamental group =, (X;) of the com-
plement of a non-trivial knot in the 3-sphere, S=m, (0X;) the fundamental group of
the boundary torus, and G, ==, (X,) the fundamental group of the 3-torus X,. We
identify S with the fundamental group of a 2-torus Y= X,. Then G=G,*3G,=n, (X),
where X is the union of X; and X, with 0X, identified with Y (of course, algebraic
descriptions of G are available).

G, is a duality group of dimension 2, G, a Poincaré duality group of dimension 3,
S of dimension 2; the restriction condition of Theorem 3.3 is fulfilled by Corollary 4.4.
Thus G is a duality group of dimension 3, i.e., X is a duality complex.

EXAMPLE S [1, 1, 1; 1]. We take for G, and G, free groups on two generators,
G,=<s, b), G,={c, ), and S=(b)=(d). Then G=G,*5G, is free on 2 generators,
and we have a trivial illustration of Theorem 3.5, case (i). — A less trivial example,
where the theorem is applied, is the following.

EXAMPLE 6 [2,2,2;2]. We take G, to be the group called G in Example 1, X,
the space called X there, G, ==, (X;). Let G,==n,(X,) be a second copy of the same
group, X, of the same space. Let S=m,(Y), where Y is one of the tori in X; or X,
respectively. Then G=G*3G,=m,(X) with X=X, UuyX,; this space simply con-
sists of three tori, with common vertical axis, one on top of the other. Algebraically,
G={a,b,c,d | [a,d]=[b,d]=[c,d]=e). It is clear geometrically, that cdG=2; it
can also easily be seen from the fact that G is an extension of a cyclic group by a free
group. Thus by Theorem 3.5, case (i), G is a duality group of dimension 2.
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EXAMPLE7 [1,1,1;2]. Let G,=<a), G,=<b>, S=(a*)=(b*), all Poincaré
duality groups of dimension 1. Since S has finite index in both G, and G,, condition
(ii) of Theorem 3.5 is fulfilled (Proposition 4.2). Hence G=G,*5G,={a, b |a®*=b%)
is a duality group of dimension 2. (Cf. again [1], Theorem 5.2).

We note here that in Section 4.3 examples are given for the dimension cases
[2,2,2;3] and [1, 1, 1; 2] where duality of G occurs for topological reasons. They
illustrate (but do not use) Theorem 3.5, case (ii), with |G{:S|=|G,:S|=00.

5. Amalgamated free Products of Duality Groups: Type (FD,,)

5.1. In this section we show that the results of Section 3 remain valid without the
assumption that the groups involved are of type (FP). This requires some modification
of the proofs; we first explain the difference in approach.

We recall that for a duality group G of dimension # one has

H*(G; A)=0 for k#n and allinduced G-modules 4. (5.1)

For groups of type (FP) condition (5.1) is also sufficient for duality. This was
essential in Section 3: we proved that (5.1) is carried over, in the appropriate dimen-
sions, from the given duality groups to the amalgamated free product. This part of the
arguments, based upon the Mayer-Vietoris sequence, remains valid in the general
case.

Now one can show (see [4]) that there is another class of groups, called groups of
type (FD,), for which (5.1) is sufficient for duality; the definition is given below.
While we do not know!) whether duality groups must be of type (FP), they are neces-
sarily of type (FD,.), as shown in [4], Theorem 2.4. Therefore, to prove the theorems of
Section 3 for arbitrary groups, we can start from the fact that those groups which are
duality groups by assumption are of type (FD,); all that remains then to be proved is
that this property is carried over to the amalgamated free product. Hereby we rely on
the detailed analysis of type (FD,) made in [4].

5.2. For the definition of type (FD, ) we need a natural “duality’”” homomorphism
@4 closely related to the cap-product (e n — ). We recall that one has for left G-modules
M, A the natural homomorphism

Q:M*®;A—Homg (M, A)
given by

o (f®a) (m)=f(m) a, feM*=Homg(M, ZG), acd, meM.
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For a G-projective resolution #Z—»Z we thus have a homomorphism of complexes
9:P*R®cA—Homg (2, A). (5.2)

Now assume G to be of finite cohomology dimension cd G=n. Then £ is split-exact
over ZG in dimensions >n, and thus ¢ induces

0 H'(G; ZG)®cA— H"(G; A).

If we wish to emphasize the coefficient module 4, we write ¢4 for @,.

DEFINITION 5.1. A group G is said of type (FD,) if it has finite cohomology
dimension » and if ¢4 is an isomorphism for all G-modules A.

Remarks 5.2. Let cdG=n. It is shown in [4], Theorem 2.4, that if ¢f is an
epimorphism for all free G-modules F, then ¢4 is an isomorphism for all G-modules A.
Moreover, ¢4 is an isomorphism for all G-modules A if and only if there is an element
eeH,(G; C), C=H"(G; ZG), such that (en —): H"(G; A)—» C ®;A4 is an isomor-
phism for all G-modules A4, inverse of ¢Z. In particular, if G is a duality group then it is
of type (FD,). — Let G be a group of finite cohomology dimension, and assume that G
admits a G-projective resolution #-»Z with P, finitely generated2). Then ¢%4 is an
isomorphism (cf. [1], Theorem 4.2), i.e., G is of type (FD,,). In particular, all groups
of type (FP) are of type (FD,). Note that the converse is not true: There are groups
G with cd G=nr and P, finitely generated, but not of type (FP), see [4], Section 2.5.

We first show that the dimension restriction of Theorem 3.1 holds for type (FD,,).

THEOREM 5.3. Let G=G,*5G, be a non-trivial amalgamated free product. If
G is a duality group of dimension n, and if G, G, are of type (FD,), then

n—1<cdS<cdG;<cdG=n, j=1,2.

Proof. Since G, is of type (FD,), we have H"(G,; ZG,)®¢, ZG=H"(Gy; ZG);
in other words, H"(G,;ZG) is isomorphic to H"(G,;ZG,)®Z(G/G,)=
@H"(G,; ZG,), the sum being over the cosets of G modulo G;. Thus the proof of
Theorem 3.1 applies without change.

5.3. Before giving the analogue of Theorems 3.2, 3.3 and 3.5 we show that ¢,
occurring in the definition is compatible with the Mayer-Vietoris sequence.

- We first have to relate ¢, to subgroups ScG. Let Z-»Z be a G-projective
resolution. There is a map ¢ (S) generalizing ¢ of (5.2), for a G-module 4,

¢ (S):Homg (2, ZG)®sA - Homg(Z, A)

2) Type (FD,) is, in fact, equivalent to that property, cf. ‘‘Note added in proof” at the end of
the paper.
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given by ¢ (S) (f®a) (p)=f(p) a, feHomg(#, ZG), ac A, pe P. If cd S<n, we have
again an induced homomorphism

@(S):H"(S; ZG)®cA—>H"(S; A).
Of course, if S=G then ¢ (S),=@,. One has a commutative diagram

H"(S; ZS)®s A S L H"(S; A)

N\ //‘
2,2604\ ?(5)4,

H"(S; ZG)® A

(note that H"(S; ZS)®@sA=[H"(S; ZS)R®sZG]®;A). If for the group S the map
¢%¢ is an isomorphism (e.g., if S is of type (FD,)), we may therefore identify the
map @4 for S with ¢ (S)s: H"(S; ZG)®cA— H"(S; A).

In the Mayer-Vietoris sequence for G=G,*3G, we have compatibility of ¢,
(for the various groups) with all restriction homomorphisms, by [4], Section 3.
Compatibility with the connecting homomorphisms is described in the following
lemma.

LEMMA 54. Let G=G,*3G, be an amalgamated free product withcd S<cdG<n,
and A a left G-module. Then the following diagram is commutative

®c A4

H" ' (S; ZG)®; A—— H"(G; ZG)®c A
o(5)4, o4,
H'(8;4) —— H'(G;A4)

where § is the connecting homomorphism in the Mayer-Vietoris sequence (2.2).
Proof. The short exact sequence (2.1) yields an exact sequence of left G-modules

A—Homg (ZG, A)®Homg, (ZG, A)-»Homg(ZG, A4).

Let Z—»Z be a G-projective resolution. For any subgroup H<G one has natural
isomorphisms Homg (2, Homy (ZG, 4))~Homg (%, A). As ¢(S) commutes with
restrictions we obtain a commutative diagram

Homg (Z, ZG)®¢ A > Homg, (2, ZG)®; A®Homg, (2, ZG)®¢ A-» Homg (?, ZG) ®¢ A
4 ¢(G1)®¢(G2) o(S)
Homg (#,4) — Homg, (#, A)®Homg, (Z, A) -»Homg (2, A).

If A is G-free then A is an monomorphism. Passing to cohomology one thus gets the
assertion of the lemma for free A. For arbitrary G-modules 4, take a free module F
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with an epimorphism F-» 4; one then has a commutative diagram

0®¢g F

H" ' (S; ZG)®cF
\
®c A

H" 1(S;Z2G)®; A—5 H"(G; ZG)®s A

¢(S)sF o(S)s4 oxA osF

H"'(S;4) —— H"(G;A)

é

» H"(G; ZG)®¢ F

J

H"'(S; F) H"(G; F)

o

The homomorphisms ¢ and d ® ;- commute with coefficient maps, and so do ¢, and
@ (S)«. We have already proved that the outer square is commutative. Since y is an
epimorphism, it follows that the inner square is also commutative.

5.4. We now establish the analogue of Theorems 3.2, 3.3 and 3.5 without finiteness
restrictions.

THEOREM 5.5 (cf. Theorem 3.2). Let G=G,*3G, where G, and G, are duality
groups of dimension n and S is a duality group of dimension n—1. Then G is a duality
group of dimension n.

Proof. According to the preliminary remarks in 5.1 we only have to prove that G
is of type (FD,). It is clear that cd G=n, and that G,, G, and S are of type (FD,).

In the commutative diagram with exact rows, for a free G-module A4,

H" 1(S;Z6)®; A H"(G; ZG)R®cA—» H"(G,; ZG)®; A®H" (G,; ZG)®g A
@(S), ?, 0(G1),De(G2),

H"'(S;4) » H'"(G;A) —» H"(Gy; A)@H"(G,; A)

©(S)x ©(Gy)« and ¢ (G,), are isomorphisms, and so is ¢, by the 5-lemma. Hence G
is of type (FD,), and thus a duality group of dimension #.

THEOREM 5.6 (cf. Theorem 3.3). Let G=G,*sG,, where G, is a duality group
of dimension n and G, and S are duality groups of dimension n—1. If the restriction
res: H" 1 (G,; A)—» H" ' (S; A) is a monomorphism for all induced G,-modules A then
G is a duality group of dimension n.

Proof. Again cdG=n. Let 4 be a free G-module. Then one has a commutative
diagram with exact rows
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H" '(G; ZG)®c A H" 1 (S; ZG)®c A —» H"(G; ZG)®c A—» H" (G,; ZG)Rg A
o(Gy), o(S), l Py @(G2),

H" '(G;A) » H''(S;4) - H'(G;A) —» H"(Gy;A)

Since ¢ (G}), j=1,2 and ¢(S), are isomorphisms, so is ¢,. Hence G is of type
(FDy), and therefore a duality group of dimension n.

THEOREM 5.7 (cf. Theorem 3.5). Let G=G,*5G,, where G,, G, and S are
duality groups of dimension n— 1.

(i) If cdG<n—1, then G is a duality group of dimension n—1.

(ii) Iffor all induced G-modules A the restrictions res* : H" ™1 (G;; A)—» H""'(S; 4)
are monomorphisms, j=1,2, and res* H" ' (G,; A)nres* H" ' (G,; A)=0, then G
is a duality group of dimension n.

Proof. Again cdG<oo, namely =n—1 in case (i), =n in case (ii). For a free
G-module 4 one has commutative diagrams, in case (i)

H '(G; ZG)®cA—H" ' (G,; ZG)®c A®H" ' (G,; ZG)®gA-»H"" ' (S; ZG)®c A
P, 9(G1)*»®e(G2), o(8),

H" 1(G;4A) » H" '(Gy; A)@H" ' (G,; A) -» H""1(S; A);
and in case (ii)

H" ' (G;ZG)R@c A®H" 1 (G,; ZG)R®c A H" ' (S; ZG)R@¢ A» H" (G; ZG)®¢ A
(G1),©9(G2), o(S), P,

H" '(G,; A)@H" ' (G,; A) — H"'(S;4) —» H'(G;A4),

with exact rows in both cases. The 5-lemma again shows that ¢, is an isomorphism;
i.e., G is of type (FD,), and hence a duality group of dimension n—1 or n respectively.

5.5. It is clear that the method of this section applies more generally to amalga-
mated free products of groups which are not assumed to be duality groups, but just
groups of type (FD,). One then obtains relations for the various dimensions involved,
as follows.

PROPOSITION 5.8. Let G=G,*5G,, wherecdG,<n—1,cdS<n—-2,cdG,=n,
and where G, is of type (FD,). Then cdG=n and G is of type (FD,).

PROPOSITION 5.9. Let G=G,*5G,, where cdG;=n—1,cdS=n—1,cdG,=n,
and where S and G, are of type (FD,). Then cdG=n and G is of type (FD,).
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PROPOSITION 5.10. LetG=G,*5G,,wherecdG,=cdG,=cdS=n,cdG=n+1,
and where S is of type (FD,). Then G is of type (FD,).

The proofs are similar to those above and can be left to the reader. Note that these
results provide a method for constructing examples of groups which are of type (FD,)
but not of type (FP): For those groups which are assumed to be of type (FD,) one
may take type (FP) with the respective cohomology dimensions; for the others,
groups which are not of type (FP), e.g., which are not finitely generated but have the
appropriate finite cohomology dimensions.
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