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Un Théorème de Finitude pour les Morphismes ^-Convexes

par Pierre Siegfried

0. Introduction

Un théorème classique de Cartan-Serre (1953) affirme que si X est un espace
analytique compact et IF un faisceau cohérent sur X, alors les cohomologies Hn (X, &)
sont de dimension finie (sur C) pour tout n^O.

En 1960, Grauert a démontré [4] une forme relative de ce théorème qui s'énonce
de la manière suivante :

Si n:X-+S est un morphisme propre d'espaces analytiques et SF un faisceau

cohérent sur X, alors les faisceaux images-directes Rnn^ sont des faisceaux cohérents

sur S. (Le théorème de Cartan-Serre n'est autre que le cas particulier où S est réduit
à un point).

Andreotti-Grauert ont obtenu en 1962 [2] des théorèmes de finitude pour une
classe d'espaces non-compacts, les espaces ^-convexes. Plus précisément, si & est un
faisceau cohérent sur un espace ^-convexe X9 alors les cohomologies Hn(X, &) sont
de dimension finie pour n^q + 1.

Pour généraliser ces théorèmes au cas relatif, nous reprenons la définition des

morphismes ^-convexes n:X-+S d'espaces analytiques introduite par Knorr [7].
Cette définition implique la ^-convexité des fibres de n et une propriété de continuité
de ces fibres. Pour les morphismes ^-convexes, nous démontrons l'analogue du
théorème de Grauert. Plus précisément:

Si n:X-*S est un morphisme ^-convexe et & un faisceau cohérent sur X, alors
les faisceaux images-directes B^n^SF sont cohérents pour n^q + 1.

Nous démontrerons également que pour les ouverts de Stein S'czS et n^q + l9

les Hn(n~1(Sf),^r) sont des espaces séparés (donc Fréchet) et que les sections de

Rnn*#r au-dessus de S' sont précisément les éléments de cet espace de cohomologie.
Ces résultats sont annoncés dans [12].

Des cas particuliers de ce théorème ont été démontrés par Knorr [7], Knorr-
Schneider [8] et Siu [13], [14].

La démonstration de Grauert de son théorème central est longue et difficile. Des

démonstrations plus simples ont été trouvées par Forster-Knorr [3], Kiehl-Verdier

[6] et Houzel. (Elles sont toutes basées sur des idées de Malgrange et Grothendieck).
Tandis que les démonstrations du théorème de l'image directe pour les morphismes

^-convexes déjà connues sont calquées sur celle de Grauert, la nôtre utilise les

méthodes de Forster-Knorr. L'adaptation de cette démonstration au cas ^-convexe fait
intervenir plusieurs difficultés techniques, mais la différence essentielle consiste à
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obtenir un théorème d'approximation de cocycles (du type de Runge) intéressant en
soi. Remarquons en passant que ce résultat n'a pas d'analogue dans le cas propre.

J'ai le grand plaisir de remercier ici Otto Forster de son aide précieuse, ses conseils

constants et son amitié. Je remercie également Knut Knorr de nombreuses conversations.

I. MORPHISMES ^-CONVEXES

Dans ce chapitre, nous généralisons les théorèmes d'épuisement pour les espaces

^-convexes d'Andreotti-Grauert (cf. [2]) au cas des espaces relatifs. Un premier
résultat est démontré dans (1.13). Afin d'obtenir un théorème plus précis (théorème
(1.20)), nous devons imposer l'hypothèse (voir (1.16)) que certains groupes de coho-

mologie sont des espaces séparés (donc Fréchet). Nous démontrons également (voir
(1.17)) un théorème d'approximation du type théorème de Runge. A l'aide des

techniques développées dans les chapitres suivants, nous montrerons dans (IV.6) que
cette hypothèse de séparation découle du théorème (1.13).

1. Recouvrement standards

Soit (X, (9X) un espace analytique complexe dénombrable à l'infini (non
nécessairement réduit).

(1.1) DÉFINITION. Une famille (^=(Ui)ieI est un recouvrement standard de X
si les Ut sont des ouverts de Stein de X qui forment une base dénombrable de la

topologie de X.
Pour un ^-module cohérent «^", les espaces vectoriels Cn(^, &) (resp. Zn(%, &))

des cochaines (resp. cocycles) alternés sont munis naturellement d'une structure
d'espace de Fréchet. En vertu du théorème de Leray sur les recouvrements acycliques,

on a un isomorphisme canonique

et la topologie induite sur Hn (X, &) (qui n'est pas séparée en général) ne dépend

pas du choix de % (cf. [9]). Pour un sous espace ouvert YcX, <%Y= {Ue% \ Uc Y}
est un recouvrement standard de F.

(1.2) Remarques. 1) Pour £eC"(^y, &) on définit %eCn(<%, &\ l'extension par
zéro de £, de la manière suivante:

i_ si (ïo,...*
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la restriction l\ Y=l\%Y est alors Ç.

2) Soit <T9:K'-+D un morphisme de complexes. Si pour un w, a""1 et

<r*:Hn(K')-+Hn(L') sont surjectifs, alors an | Zn(K-)-*Zn(L<) est surjectif. En
particulier, si % et ^* sont deux recouvrement standards de X9 ^cty, la restriction
Z*(^, Jr)->Zn(^*, #") est surjectif.

3) Soit YcX un ouvert; alors la restriction H*(X, #r)-*Hn(Y, J5") est d'image
dense si et seulement si Zn(%, &) -* Zn {°à Y, IF) est d'image dense pour un recouvrement

standard °U de X (et par conséquent pour tout recouvrement standard de X).
La démonstration de la proposition suivante, qui est de nature topologique, est

facile.

(1.3) PROPOSITION. Soit °U un recouvrement standard de X\ F, WczX des

ouverts, X=Vkj W. Alors il existe un recouvrement standard %*a% de X tel que:

Nerf^* Nerf<%$ u Nerf^
2. Morphismes <j-convexes; théorèmes d'épuisements en degré >q + l

(1.4) DÉFINITION. Soit QczCN un ouvert et zl5..., zN les coordonnées canoniques

de C^. Une fonction q> : CN ~> R de classe ^?0° est strictement ^-convexe si pour
tout aeQ, la forme de Levi

3l au moins N—# valeurs propres positives.

(1.5) DÉFINITION. Soit X un espace analytique. Une fonction cp:X-+R est

strictement ^-convexe si pour tout aeX9 il existe une carte (£/, </% O) (où UcXest un
voisinage ouvert de a, QaCN un ouvert et \j/:U-^Q un plongement fermé) et une
fonction <P:Q-+R strictement ^-convexe telle que ç | U=^o\j/.

On montre que cette définition est indépendente du choix de la carte [1]. Les

fonctions q>:X-+R de classe fé700 sont définies de manière analogue.

(1.6) DÉFINITION. Soit n:X-+ S un morphisme d'espaces analytiques, n est un
morphisme ^-convexe (resp. ^-complet) s'il existe une fonction q>:X-+Retun yeR
tels que:

1) q>\ {xeX\ç(x)>y} soit strictement ^-convexe (resp. q> soit strictement q-
convexe)

2) pour tout ceR, n | {jteX| (p(x)^c} soit propre.
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La fonction cp est appelée fonction d'épuisement, y la constante exceptionelle.
(1.7) Remarques. 1) Si S est un point et n\X-+S ^-convexe (resp. ^-complet)

alors X est strictement (# + l)-convexe (resp. (# + l)-complet) au sens d'Andreotti-
Grauert [2]. Nous appellerons ces espaces ^-convexes (resp. ^-complets).

2) Les fibres d'un morphisme ^-convexe (resp. g-complet) sont des espaces

^-convexes (resp. ^-complets). La réciproque est visiblement fausse (la projection
C2 — {0} -* C n'est pas 0-convexe).

A partir de maintenant, nous supposerons toujours que S est dénombrable à

l'infini (lorsque S est Stein par exemple). Dans ce cas, l'espace Zest aussi dénombrable
à l'infini.

(1.8) Notations. Soit tt:X-» S un morphisme ^-convexe, cp une fonction d'épuisement

et °tt un recouvrement standard de X. Posons, pour S'a S et ceR:

nc=n | {cp<c}-+S

(1.9) LEMME. Soit X un espace de Stein, (p:X->R+ une fonction strictement

q-convexe à valeurs positives, & un Ox-module cohérent et % un recouvrement standard
deX.

Soit ceR; alors

i) Xc est q-complet, en particulier

Hn(Xc9^)=0 n^q + l

ii) limage par la restriction

est dense.

Démonstration. Soit ç>:Z->R une fonction d'épuisement strictement 0-convexe

(une telle fonction existe vu qu'un espace de Stein est 0-complet, cf. [10]), et on peut

supposer q> à valeurs positives. La fonction \j/ (p + (c—(p)~i est alors une fonction
d'épuisement strictement ^-convexe de Xc= {cp<c} d'où i) (cf. [2]).

Lorsque cp est propre, donc une fonction d'épuisement de X, l'affirmation ii) n'est

autre que le théorème 12 p. 248 de [2], Pour démontrer le cas général, il suffit (cf.

(1.2.3)) de montrer que l'image par la restriction Z«(^, ^")->Z3(^*, J*") est dense,

où ^r* est le recouvrement de Xc défini par W*= {Ue<% \ U€XC}.
Pour cela, soit Kclcun compact; pour n>0 assez petit et ^eR convenablement

choisi, l'ouvert Y= {xeX | (p(x)+n\l/(x)<cl} jouit de la propriété Kcz Y<GXC.

Comme (p+n\j/ est une fonction d'épuisement de X strictement g-convexe et que

^F=^î on déduit ii).
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Soit E un espace vectoriel localement convexe; l'espace séparé associé issép est

l'espace quotient de E par l'intersection des noyaux de toutes les semi-normes
continues sur E.

(1.10) LEMME. Soit X un espace analytique, ^ un (Démodule cohérent et °U un
recouvrement standard de X. Soient Xo, Yc:X des ouverts tels que X=Xq\jY. Supposons

que:

2) ^+1(IonFJ(f)=0
3) L'image par la restriction Zq(WYi ^r)-^Zq(^XonY9 &) est dense.

Alors, la restriction

est injective.
Démonstration. Il faut montrer que si ÇeZq+x ($r, #") tel que { | Xo eEq+ x

(<WXo, &\
alors ÇeBq+1(W, &\ où Bq+1 est l'adhérence de ÔCq dans Zq+i (où Cq+1).

On peut supposer que % vérifie la propriété :

Nerf% Nerf<%Xo u Nerf^ Y (*) ;

en effet, il existe, par (1.3), <%*cz% qui vérifie cette propriété, et l'hypothèse 3) est
satisfaite pour ^* car Zq{<&XonY, &)-^Zq(<%XonY, &) est surjectif par (1.2.2).

Comme £\Xos&+1{<ttXQ,&r)9 il existe une suite (t/v)cC?(fXo,^) telle que
ny-*£, | Xo et en vertu de 1), il existe ÇeC€(^y, J^) tel que <5£ <î; | Y. On a donc

ô(rjv\XonY-t;\XonY)-+0 dans Zq+1(WXonY,^)

Par 2), l'homomorphisme

est surjectif et il existe donc (théorème de Banach) une suite (Pv)<^Cq(<WXonY,

telle que

ôpv ô(rjx\ XonY-Ç\XonY) et j5v->0.

Soit

yv rj* | XonY-Ç \ XonY-FeZq{<%XonY> &);

par 3.), il existe (fv)cZ?(ty, &) telle que

yv |Xon7-/->0
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Soit /J*eC*(#y,#") l'extension par zéro de J8V (cf. (1.2.1)). Posons, pour
(z0,..., /€)eNerf#, (compte tenu de (*))

si Oo^-.
k..,, sinon

En utilisant la propriété (*), on vérifie facilement que

Soit n:X->S un morphisme ^-convexe, (p:X-*R une fonction d'épuisement de

constante exceptionnelle y, 3? un 0x-module cohérent et % un recouvrement standard.

(1.11) LEMME. Soit S'<GS un ouvert de Stein et ceR, c>y. Alors il existe une

famille finie (Ui)1^i^N d'ouverts de Stein de {xeX\ q>(x)>y} et eo>0 tels que pour
tout s, 0<e<£0, il existe des ouverts XkczX,0^k^N9 avec les propriétés:

1) Pour tout k,Q^k^N, il existe une fonction d'épuisement \l/k:X-*Rde constante

exceptionnelle y telle que: Xk= {xeX | \l/k(x)<c).
2) a Xk+1(Sf) Xk(Sf)u(Xk+1(S')nUk+1(S

3) a) Hm(Xk(S')nUi(S')90r)=
P) L'image par la restriction

est dense,

Démonstration. Désignons par

X>={xeX\q>(x)>y}
Ac={xeX\cp(x) c}.

Alors Acn X(S') est compact et il existe un recouvrement fini de AcnX(S') par
des ouverts de Stein UiaX\ Ki^JV. Soit Kë|Jfal Ut un voisinage de AcnX(S')
dans X. Il existe rj>0 tel que

Soit ai;X~+R, 1 <i<iV des fonctions ^^ avec les propriétés:
a) supp(ai)cz£/f l^i^N
b) a,>0 et £{Lia«(x)=l, VxeK
Fixons e0, 0<eo<fy, tel que pour tout e, 0<8<e0, les fonctions

Y*

soient strictement ^-convexes.
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Posons, pour e,

k

Ë
» i

d'où 1); l'affirmation 2) résulte des conditions imposées aux oct. 3) est une conséquence
du Lemme (1.9).

(1.12) PROPOSITION. Soit S'<£S un ouvert de Stein et ceR, y<c. Alors, il
existe eo>0 tel que pour tout c\ c^c'^c+e0, on ait

est un isomorphisme en degré n > q +1 ; un épimorphisme en degré n

2) H-+1 (Xc,(S'), J%,-» H*" (XC(S'), J^)sép

est un isomorphisme.
Démonstration. Soient e0, (Ui)1^i^N comme dans le lemme précédent. La suite

des Xk du lemme vérifie la propriété 2, a):

Appliquons la suite exacte de Mayer-Vietoris ([2], p. 236), (en posant Xk Xk (Sf),

H1'1 (Xkn Uk+i9 ^)->Hl(Xk+u &)->Hl(Xk9 ^)®Hl(Xk+1 n Uk+l9

Par (1.11.3.a), H1 (Xk+u &) -+Hl{Xk9 «F)est surjective (bijective)si /^q +1 (/>q +1
Par induction on obtient alors 1). Pour 2) on applique (1.10).

(1.13) THÉORÈME. Soit n:X-+S un morphisme q~convexe, cp une fonction
d'épuisement de constante exceptionnelle y et fF un (9x-module cohérent. Soit S'@S

un ouvert de Stein et c, c'eR, y<c<c'. Alors les restrictions

sont des isomorphismes en degré n>q + l;
des épimorphismes en degré n q + l.

2) H"+l(XAS'),^U-^H**1 (XC(S'),

sont des isomorphismes.
Pour la démonstration de ce théorème, nous avons besoin d'une proposition qui

résulte facilement de (1.2.2):
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(1.14) PROPOSITION. Soit X un espace analytique, (Xt)ieN une suite d'ouverts
de X, Xi+1^>Xi9 Ui^i^^^ et s°tt ^ un ®x~module cohérent. Si pour tout /eN,
Hn (Xi+l9 &) -» Hn (Xi9 &) est surjectif, alors, pour tout /eN, Hn (X, &) -* Hn (Xh &)
est surjectif.

Démonstration du théorème. Posons: XC XC(S')9 <%C <%C(S').

a) Démontrons d'abord que les homomorphismes de 1) sont surjectifs; il suffit

pour cela de montrer que si c>y et n^q + l9 Hn(X9 ^)^Hn(Xc9 ^) est surjectif.
Pour n et c fixés, considérons la famille s/ des sous-ensembles A c [c, oo] qui vérifient
les propriétés :

1) ceA
2) si a, beA et a<b, alors Hn(Xb9 ^)-^Hn{Xa9 &) est surjectif.

*s/ est ordonné inductif et contient donc un élément maximal Ao; posons a sup^40

(a< oo). Alors oleAo car il existe une suite (ak)c:A0 qui converge vers ce et on applique
(1.14). Si on avait a< oo, alors Ao u {a +e} serait un élément de se pour e assez petit
par (1.12) et Ao ne serait pas maximal, donc a= oo.

b) Démontrons que les homomorphismes de 1 sont injectifs pour n > q +1 ; il
suffit pour cela de montrer que sioyçtn>q + l,Hn(X,&r)-+Hn (Xc9 &) est injectif.
Pour c et « fixés, considérons l'ensemble Cc[c, oo] des c' tels que Hn{Xc>9^
-> Hn (Xc9 ^) soit injectif. Soit a sup C et montrons que ae C. Soit (cf) c C une suite
croissante qui converge vers a. Soit tft un recouvrement standard de Zet ^eZ" (^a, &).
Alors, pour tout /, Ç\XCi ôrj1, ly, e Cn~x (%Ci9 #"). Par (1.2.2), on peut choisir les n1 de

telle manière que ni+1 \ XCi r\l\ d'où Ç ôrj. Alors a=oo par (1.12).

c) Démonstration de 2). Compte tenu de la première partie du théorème, il suffit
de montrer que Hq+1 (X, ^)sép -> Hq+1 (Xc9 P)^ est injectif. Soit Ce [c, oo] l'ensemble

des c' tels que Hq+1(Xc,9 ^")sép-> Hq+1(Xc9 J^)sép soit injectif; soit a supC.
Montrons que aeC; soit (ct)c:C une suite croissante qui converge vers a et

ÇeZq+i(Wa,JF) tels que

{ | Xc{S')e&+1{®c9 &). Alors {, £ | XCi(S')eBq+1(WCi9 &).

Soit donc (riJ)veNcCq(^Ci9 &) tel que ôrj}-*^ si v^ oo; en vertu de (1.2.1), on peut
supposer t\leCq+1{%a9 #"). En appliquant le procédé diagonal à la suite double
W)v€NM6N> on en déduit que ÇeSq+1(Wa9 &). Compte tenu de (1.12.2) on voit que

a=oo.

(1.15) COROLLAIRE. Avec la condition supplémentaire aux hypothèses du
théorème (1.14): le morphisme n;X-*S est q-complet, on a

Hn (X(S f)9^)=Hn (Xc (S '), &)=0

pour n>q + l et ceR.
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3. Théorèmes d'épuisement en degré q + \

Soit n:X-> S un morphisme q convexe; nous dirons que n satisfait à l'hypothèse
(sép) si la propriété suivante est vérifiée :

(1.16) HYPOTHÈSE (sép). Quels que soient une fonction d'épuisement (p de

constante exceptionnelle y y((p)9 S'&S un ouvert de Stein et ceR, y<c, l'espace
Hq+1 (Xc(Sr), IF) est séparé pour tout ®s-module cohérent & (c'est donc un espace de

Fréchet).
(1.16) est équivalent à :

est un sous espace fermé, °tt étant un recouvrement standard arbitraire de X.
Nous montrerons au chapitre IV que tout morphisme ^-convexe vérifie l'hypothèse

(sép).

(1.17) THÉORÈME. Soitn'.X-* S un morphisme q-convexe qui vérifie l'hypothèse
(sép) et cp une fonction d'épuisement de constante exceptionnelle y. Soit S'<GS un

ouvert de Stein; alors, pour c, c'eR, y <c<c\

zq (pc (s '),&)-> z* {qic (s '), &)

sont d'image dense (où °ll est un recouvrement standard de X).
La démonstration de ce théorème, qui est analogue à la partie a) de la démonstration

de (1.13), découle des deux lemmes suivants:

(1.18) LEMME. Supposons que l'hypothèse (sép) soit vérifiée. Soit S'&S un

ouvert de Stein et ceR, y<c. Alors il existe eo>O tel que pour tout c'eR,

Zq(<%c,(S'), 9^)->Z*(Wc(S'), &)

soit d'image dense.

(1.19) LEMME. (Principe d'épuisement de Mittag-Leffler). Soit (Xi9 Qi)teN un

systèmeprojectif d'espaces métriques complets tel que Qi:Xi+1-^Xi soit d'image dense.

Alors, pour tout /oeN, la projection

est d'image dense. En particulier, si pour un i0, Xio^Q, alors limX(#0.
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Le lemme (1.19) est démontré dans [2], page 246.

Démonstration de (1.18). Définissons e0 comme dans (1.11) et introduisons les

notations

(Xk(S'% Ui(S') comme dans (1.11)). Par induction, il suffit de montrer que

est d'image dense. Compte tenu de (1.2.3) et (1.3), on peut supposer que

Soit {eZ«(«Xk, <r); en vertu de (1.11) il existe (r)*.N<=Z€(**k+1«ifc+1, &) tel

que

Posons (compte tenu de (*)), pour (j0,...,

m°'"iq !%...«, sinon.

Alors

Ôtjv-+O dans 5*+1(*xk

et comme

est un morphisme surjectif d'espaces de Fréchet, il existe (yv)^Cq(<%Xic+1, &) tel que

yv^o, ôy^Stf. Alors ^-y'eZ«(«Xk+1, &) et ^v-yv^^.

(1.20) THÉORÈME. Soit n:X-+S un morphisme q-convexe, (p une fonction
d'épuisement de constante exceptionnelle y, & un @x-module cohérent et supposons que

Vhypothèse (sép) soit vérifiée. Alors, pour tout ouvert de Stein S'ŒS, on a:

1) H«+1 (X(Sf), &) est séparé

2) pour c, c'eR, y<c<c\

sont des isomorphismes.
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Démonstration. Par (1.13.2) on a : 1 => 2). Pour prouver 1 il suffit de montrer que

que Bq+1 (<^(S")> ^)ciZq+1 (W(S'), &) est un sous-espace fermé pour un recouvrement

standard W de X. Soit (c^cR une suite croissante non bornée et

x (<%(S'% &)\ en vertu de (sép) on a:

Compte tenu de (1.17), on peut appliquer (1.19) au système projectif

(1.21) COROLLAIRE. Avec la condition supplémentaire aux hypothèses du
théorème (1.20) : q> est q-complet, on a:

Hn(X(S')9 &) H*(Xe(S')9 ^) 0

pour n^q + l et ceR.

IL RECOUVREMENTS ET COMPLEXES ASSOCIÉS

Ce chapitre est destiné à l'étude du complexe image directe d'un morphisme

^-convexe n:X-*S pour un faisceau cohérent !F sur X. Pour cela, on compare
H' (Xc, IF) à la cohomologie d'une famille finie de polydisques relatifs de X (famille
distinguée, voir paragraphe 1 et 2) qui recouvrent Xc. A l'aide des systèmes de

faisceaux liés on construit au paragraphe 3 un complexe de faisceaux quasi libres dont la

cohomologie est isomorphe à celle définie par la famille distinguées (pour la définition
des faisceaux quasi libres, voir (11.13)). Les propriétés de ces trois cohomologies sont
énoncées dans (11.11).

Nous supposerons toujours donnée la situation suivante : n : X-> 5est un morphisme
globalement ^-convexe, q> une fonction d'épuisement de constante exceptionnelle y,

& un ^-module cohérent.

1. Familles distinguées

Soit D(r)= {zeCN | |zf|<r}, r>0, le polydisque de rayon r. Soit C/clun ouvert
et j: U-* S x D (1) un morphisme.

(II. 1 DÉFINITION. Le couple {U, j) (ou U tout court) est un ouvert admissible
si j est un plongement fermé tel que le diagramme suivant commute (p:SxD(l)-+S
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désigne la projection)

s

Posons, pour 0<r^l et S'aS

U(r,S')=j-x(D(r)xS').

(II.2) LEMME. Soient 0<r<r'^l, xeXet V un voisinage de x. Alors il existe un
ouvert admissible (JJ, j) tel que

a) C/cF, b) xeU(r'9 S), c) U(r, S)=0.
Démonstration. Soit C/un ouvert de X, xe Ucz V, et tel qu'il existe un plongement

fermé f:U->D(l) avec f(x) 0. Soit r*, r<r*<rf et D^lJcC; posons

(C/, j) répond à la question.
Soit VL (Ui)ieI une famille d'ouverts admissibles; nous noterons, pour

S'czS,

U (r, S') (Ut (r, S'))ieI, |U (r, S')| U^i (r, S').
iel

(113) DÉFINITION. Soient cfeR, 0</<p,/?>0, co<c1<---<cp et ^qc:^. Une
famille U (t/0/ei est distinguée pour c0,..., cp au dessus de So si U est une famille
finie d'ouverts admissibles et s'il existe des nombres réels rfc, Rk, 1

0<r1<Ri<r2<R2<'"<rp<Rp^l

tels que, pour tout ouvert S ' c= So, on ait

(II.4) PROPOSITION. Sofen/ c^eR, 0<:i^pf co<--<cp et ^0^5 w« ouvert.
Alors il existe une famille U distinguée pour c0,..., cp, au-dessus de So.

Démonstration. Soient RkeR, 1<^</>, tels que 0<J?1<---<i?p<l. Considérons,

pour tout k, la famille des ouverts admissibles Uk vérifiant les conditions:
a) Uk€XCk9 b) U*(Rk-uSt) *.

Alors les Uk(Rk9 S) recouvrent le compact XCk_1(S0) (en vertu de (II.2)) donc un
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nombre fini Ui(Rk9 S),..., Utkk(RkS) d'entre-eux. Pour rk<Rk assez grand, les

Ui(rk, S),..., Uikk(rk9 S) recouvrent encore X^^^Sq). La famille

vérifie les propriétés, les rk, Rk étant ceux définis dans la démonstration.

2. Complexes associés

Soit U (Ui)1<i^N une famille distinguée pour c0,..., cp au-dessus de S0(S0€S).
Désignons par O(lt(r', S')9 ^) le complexe de cochaînes alternées à coefficients
dans J^, soit ô l'opérateur cobord. Les Cl sont des 05(S")-modules et ô est ^(5")-
linéaire.

Pour 0<r<r/<l, soit

C-(U(r'9S'l^)-+C-Ql(r,S')9^) (a)

la restriction naturelle.

Il existe un recouvrement standard % de X qui vérifie les propriétés suivantes:

désignons par Jk l'ensemble d'indices de <%Ck(S0); il existe

tels que

tk°ak '\A

et

Ua(So)c:Utk0t(rk+1,So) k 0,...,p-l
Ut(Rk,S0)^Uaki(S0) k=l,...,p

Pour k=Q, ...,p—1 et 5"<=5"0, on a

xî: C-(U(rk+l, S'), *) -* C-(*Cfc(S'), ^). (b)

Pour k=l,...,p et S'c50, on a

Pour k=l,...,p—l, le diagramme suivant est alors commutatif:

O(U(rk+1,S'),.

(«0"
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On définit alors:

le composé de (a) et (b).
2) Pour r^Rk,k l, ~,p

le composé de (c) et (a).
3) Pour£=l,...,/;

(1)

(2)

O(%Ch{S'\ &)-.O{Wc^(S'\ *) (3)

de la manière suivante: soit rk^r^Rk; (3) est alors le composé

cette définition étant indépendante du choix de r.

(II.5) Remarques. 1) Si rk^r^Rk, r^-i^r'^jR^.!, le composé

est le morphisme de restriction (a).
2) Le morphisme (3) n'est pas le morphisme de restriction

induit par %'^^(5")^^ck(S')- Mais les homomorphismes induits en cohomologie

q*9 (3)* :Hl (C- (®Ck (S %&)-+ H1 (C-(4^ (S '),

sont les mêmes ([5], Lemma 2.6.1).
Soient S\ S" des ouverts de S, S"aS'czS0, on a des morphismes de restriction

ces morphismes étant compatibles avec les morphismes définis ci-dessus.

3. Systèmes de faisceaux liés

Nous rappelons ici des résultats décrits dans [3], où l'on trouvera une description
détaillée avec démonstrations.
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Soit U= ((UhJt))i^i^N une famille finie d'ouverts admissibles de X,
jt:(/,->SxDi(l). Soit

AH={(ko,...9kH)\0<ko<...<kH^N},A=\jAn.

Pour aeA, S'czS et r<l, on a par produit fibre, un plongement fermé (au-dessus
de S')

j\:Ux(r,S')->S'xDx(r)
où

Ua(r,S')=nut(r,S'), D.(r)=Y[D,(r).
ieoc ieot

Pour a, fie A, a cj? on a un diagramme commutatif

I"

où 7raj8 est la projection et i l'inclusion.

(II.6) DÉFINITION. Un système de faisceaux liés (®a, ij/^) sur (S ' x Dx (r tt^),
r^l, aS'cS, est la donnée de:

a) une famille (©a)ae^ de faisceaux analytiques sur S' x Da(r).
b) une famille (i^a/î)a <= p de morphismes de faisceaux

vérifiant les conditions :

il/aa id, ^ya ((tt^)# tytf) o\l/fia.

On définit de manière évidente un morphisme de systèmes de faisceaux liés.
Si & est un ^-module, & induit un système de faisceaux liés j^:(j^)a

(II.7) LEMME. Soit 3F un d)x-module cohérent, S'czS un ouvert de Stein. Alors

pour tout ouvert de Stein SoczcS' et r<\, il existe une résolution
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sur (SoxDa(r)9 n^), où les @tk (@ka, ij/^) sont des systèmes de faisceaux liés et les
Mka des faisceaux libres de type fini sur SoxDa(r).

Soit (®a, \l/ap) un système de faisceaux liés sur (S' xDa(r), n^); posons

Cn(r9S\ ©)=©
aeAn

et soit

ô:Ct(r,S'9<5)-+C"+1(rfS'9<&)

définie de la façon suivante: soit ^ (^a)eC"(r, S', (5), alors

où P (kO9...9 kn+i)eAn+1 et pt (k0,..., fch..., kn+1).
Si !F est un (Px-module, on a un isomorphisme

O(U(r, S'), JO-+C-(r, S\U&). (•)

Soit «^" un ^-module cohérent et soient r0, »So tels que que la résolution du lemme

(II.7) existe au-dessus de {SQxDa{rQ), nap). Pour r^r0 et S'aS0 considérons le

complexe double O(r, S', £%•) et soit C'(r9 S') le complexe simple associé:

L'homomorphisme C'(r, S\ M°)-*O{r9 S'J^) définit un morphisme £-(r, S')
-*O(r,S', j*&) d'où, compte tenu de (*)

(II.8) PROPOSITION. Avec les notations introduites ci-dessus et pour
S'c:Soun ouvert de Stein, on a

est un quasi-isomorphisme (c.à.d, r induit un isomorphisme en cohomologie).
2) T?\£n{r, S')-+Cn(U(r, S')9 &) est surjectifpour tout n.

3) Pour tout n^O, il existe un nombre fini de polydisques Dt(r)c:CNt9
tels que

&(r,S')~@ r(S'xDt(r)9OSxCtlt).
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4. Propriétés des complexes

(II.9) Notations.

433

Nous pouvons résumer les résultats obtenus jusqu'ici de la façon suivante:
Soit 7i :X-» S un morphisme ^-convexe, 9 une fonction d'épuisement de constante

exceptionnelle y et !F un ^-module cohérent. Soit S^S un ouvert et c0, c'eR,
y<co<c' et/?eN. Soient cl5..., cpeR, c'. Alors il existe

a) une famille VL (Ui)1^içN distinguée pour c09... cp au-dessus de So;

b) un recouvrement standard °U de X jouissant des propriétés du numéro 2);
c) un complexe Cm(Rp, So) construit au numéro 3). (Alors €'(r, S') est bien

défini pour r^Rp, SfcS0).
On obtient alors pour tout ouvert S'czSo un diagramme commutatif, les morphismes
étant ceux définis dans 2) et 3):

C-(cp,S')

l

t (11.10)

C'(ck, S')

l
i

C'(r',S')
l

C'{eb S')

(11.11) PROPOSITION. Soit S'cSoun ouvert de Stein.

est : surjectifpour n bijectifpour n>q + l.
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2) Pour kJ,0^l^k^p9Hq+i(C-(ck,S'))-0-*Hq+i(C-(chS')y0 est bijectif.
3) Pour k9 O^k^p et

H»(O(r9S'))-+H»(C-(ck9S'))

est surjectifpour n

4)

est bijectif,
5) Pour n>N(N= nombre d'ouverts de U)

C(r,S') O, £n(r,S')=O.

6) Soit Q dimXc,(S') (g<oo). Les complexes

O(ck9S% O(r9S'% C-(r9S')

sont acycliques en degré > Q.
Démonstration. 1 et 2) résultent de (1.13), de (II.5.2) et du théorème de de Leray

sur les recouvrement acycliques; 3) résulte de 1); 4) résulte de (II.8.1); 5) est évident;
6) résulte du théorème de Leray et d'un théorème classique ([11], Satz 2).

5. Complexes de préfaisceaux et faisceaux quasi libres

Pour étudier les propriétés des faisceaux images directes Rnn^9 nous introduisons
les complexes de préfaisceaux de ^-modules

-(r, U)
&{r):Ub-*ù\r9 U) (11.12)

où UcS0 est un ouvert (avec les mêmes notations que cidessus).

Remarquons que W(r)9 të"(r) sont même des faisceaux.

(11.13). DÉFINITION. Les 0s-modules de la forme

sont appelés ^-modules quasi libres (ou faisceaux quasi libres), où 7eN, Di(R)c: CNi

est un polydisque de rayon i?>0 indépendant de i (N^O, si Nt=09 D^R) est un
point) etpt.SxDi (R) -? S la projection.
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Etant donné J^(i*)= ® pl* ®SxDaR)> on définit, pour r<R9 £{r)= ® p% Vsxdm
et on a un homomorphisme de restriction /? : «^ (i£)->«£*( r). Nous étudierons au

chapitre IV des propriétés intéressantes des faisceaux quasi libres.
Le diagramme (11.10), transcrit en termes de préfaisceaux, devient

ï

1 I
; ; (n.14)
i i

#(r) ->tf-(r)
4

où les $• sont des complexes de faisceaux quasi libres.

(11.15) Remarque. Désignons par F© le faisceau associé à un préfaisceau ©.
Alors

=Hn (FV- (c)) FHn (V- (c)).

III. TECHNIQUES DE DÉMONSTRATION

Le but de ce chapitre est de démontrer les affirmations A (q +1) et B(q), qui sont
énoncées dans (III.8) et (III. 10). La démonstration, qui suit les méthodes de [3],
utilise des techniques d'espaces de Fréchet. On notera que la cohérence des faisceaux

pour n > q +1 (avec n : X-> S ^-convexe) découle déjà de A {q 4-1

1. Topologies

Soit (S, (9S) un espace analytique et !F un ^-module cohérent. Alors, pour tout
ouvert S'a S, #"(£') est muni naturellement d'une structure d'espace de Fréchet.

Par semi-norme sur ^(Sf), nous entenderons toujours semi-norme continue; une
semi-norme sur 0s (S') sera de plus supposée multiplicative, à savoir q (xy) ^ q (x) q(y).

(III. 1) DÉFINITION. Soit/? une semi-norme sur ^(S); une semi-norme q sur
est adaptée kp si

où jS: Jr(S)-*^r(S") désigne la restriction.
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(III.2) LEMME. Soit S'<GS\ alors il existe une semi-norme p sur ^(S) telle

que lafamille des semi-normes sur <^(S') adaptées àp définissent la topologie de ^{S'\
Soit D(R)czCN un polydisque etzu...,zN les coordonnées canoniques de CN.

(III.3) LEMME. Tout xe@SxD(R)(SxD(R)) admet un développement unique en
série de Taylor

*=

et la série

converge pour toute semi-norme q sur ®S(S) et tout r<R (pour a (a1,..., ccN) on pose

Les (z/R)* forment donc une 0s(S)-base Fréchétique de ®sxd(r)(SxD(R))
nous noterons (Ca)aeN^- Remarquons que la restriction de la base de O(SxD(R)) à

S'xD(R) est la base de 0(S' x D(R)).
Introduisons les semi-normes (multiplicatives) sur @(SxD(R)):

pour x=
/r\l«l

K) -
où q est une semi-norme sur (PS(S) etr<R. On vérifie que la topologie définie par ces

semi-normes est la topologie d'espace de Fréchet naturelle de 0 (S x D (R)).
Soit J?(1O= ©kki^1* 0Sx*,<*)> avec AWCCW' un ^-module quasi libre.

Alors &(R) (S) est muni d'une structure d'espace de Fréchet et il existe une 0s(S)-
base (réunion des bases des ®s*Di(R)(SXjDi(R))) Que nous noterons (Ça)<xeA> où

{(i9(xl)\ l<i</ et a'eN*'}. Pour a (î,af), soit |a| |af|. Si x (xl9...9xt)e
£ posons:

sup {\\Xi\\qr}

où q est une semi-norme sur 0s(S) et r<R.
(III.4) Remarques. 1) Pour toute semi-norme # sur 0s(S), il existe une constante

M telle que
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2) Pour toute semi-norme q sur ®S(S) et r<R9 on a

R\1*1

3)

4) Soit S'€S, r<R et fl\2(R) (S)->&(r) (S') la restriction. Soit p une semi-

norme sur <PS(S)9 # une semi-norme sur 0s{S') adaptée kp et Q<r. Alors

Soient ^", © de spréfaisceaux de ^-modules Fréchétiques (c'est à dire pour tout
ouvert S'a S, ^(Sf) et ©(S') sont munis d'une structure de 05(S")-module Fréché-

tique et les applications de restriction sont continues).

(III.5) DÉFINITION. Unmorphisme^:^-^ ©est continu si cp.-J5" (5")-> (5(Sf)
est un morphisme continu de ^s(*S")-modules Fréchétique pour tout ouvert S'a S.

Les préfaisceaux Vl(ck)9 ^l(r)et^l(r)de (11.12) sont des ^-modules Fréchétiques
et les morphismes du diagramme (11.14) sont tous continues.

La remarque suivante, qui est une conséquence immédiate du théorème de Banach,
nous sera utile dans la suite.

(III.6) Remarque. Considérons le diagramme

E, F, G étant des espaces de Fréchet, (p, \j/ des applications linéaires continues, \jj

surjective. Soit (#,) une famille de semi-normes sur E qui définit la topologie. Alors,
pour toute semi-norme/? sur F, il existe une semi-norme q^{qi) et une constante M
telles que

VxeE, 3yeF tel que ^(y) <p(x) et p{y)^Mq{x).

2. Les affirmations A (n) et B(n)

Soit S un espace de Stein, n:X-*S un morphisme ^-convexe, <p une fonction
d'épuisement de constante exceptionnelle y et & un ^-module cohérent.
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Soit S* €S un ouvert de Stein et coeR, y<c0. On peut alors effectuer les
constructions indiquées au chapitre II: soit c'eR, co<c' et So un ouvert de Stein,
S*ŒS0ŒS. Posons

Q dimXc,(S0) (g<oo), p=Q-q+3

et soient cl5..., cp9 co<cl<---<cp^:cf. Il existe alors une famille U (Ui)1^i<N
distinguée pour c0,..., cp au-dessus de 50, un recouvrement standard ^l de X et un
complexe ^'(r) (au-dessus de 50) tels qu'on ait un diagramme (11.14).

(III.7). Soit q, rp<Q<Rp, fixé une fois pour toutes.

(III.8) Affirmation A(n), n^q + \. Il existe un ouvert de Stein Sn, S*<GSn<QSoet\m

complexe de ^-modules libres de type fini

détant ^-linéaire et continu. De plus, il existe des morphismes continus (de ^-pré-
faisceaux au-dessus de Sn)

compatibles avec les morphismes du diagramme (11.14) et tels que pour tout ouvert
de Stein S 'cSn

oi*:Hl(J?-(S'))-*Hl(C-(ck,S'))

soit
1) bijectif pour l>n et k—0,...,/?;
2) surjectif pour /=n et k 0,...,/? lorsque n > q +1

fc=0, 1 lorsque n q + l.
Introduisons le «mapping cylinder» de a* (pour la situation A(n)):

la différentielle étant définie par

d:jr'(c»)-»jrl+1fo)
(x, y)-—(ôx+ay, - dy)
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et de même pour les autres complexes. Nous noterons

etc.

(III.9). La propriété de a* dans A (n) est équivalente à: pour tout ouvert de Stein

S'cSn9 le complexe K'(ck, S')) est acyclique en degré
1) l>n et k 09...9p
2) /=n et A: 0,...,/? lorsque n>q + l

k=0, 1 lorsque n q + \.
(III. 10) Affirmation B{n—\), q + lt^n^Q+2. On suppose que les conditions de

l'affirmation A(n) sont remplies. Alors il existe:

1) un ouvert de Stein S'H-l9 5Ht€S;_1Ê5rt
2) Qn-u rs<Qn-i<Rs> avec$=/i-0 + l si n

s=l si n
3) un morphisme ^-linéaire continu au-dessus de 5^_t

(avec ^ comme dans (III.7) et X* comme ci-dessus) tel que le diagramme suivant commute

-'ï

(où j5 désigne la restriction).
La première partie de la démonstration du théorème de l'image directe consiste à

prouver A(q + l) et B(q); pour cela, nous procédons par induction.

(III. 11) Schéma d'induction
1) A{Q + l) est vrai
2) B(Q + l) est vrai
3) A(n)+B(n)=>B(n-l) n>q + l
4) B(n-l)=>A(n-l) n>q+2.

L'affirmation A(Q + 1) est trivialement vraie avec j£?#=0; cela en vertu de (IL 11.6).

D'autre part, les complexes <£?• de A(n + l) et de A(n) seront les mêmes en degré

^ n +1, et les complexes Jf• pour les situations A (n +1 et ,4 (w) seront donc les mêmes

en degré ^n.

3. Démonstration de

(III. 12) Affirmation C(m), m^Q + l. Il existe

i) un ouvert de Stein S'm, S*€S'm€S0
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ii) gm9 rp<Qm<q (q comme dans (III.7))
iii) un morphisme ^-linéaire continu au dessus de S'm

tel que le diagramme suivant soit commutatif (avec fi la restriction)

Visiblement C (Q +1 )=B (Q +1 D'autre part, C(m) est trivialement vrai si m > N,
car ^m(r) 0par (IL 11.5). Montrons que C(m)=>C(m-i)9 m>Q + l. Soit Srm-1 un
ouvert de Stein, S^S'm^S'm et çm_u rp<^m

(III. 13) LEMME. // existe un morphisme @s~linéaire continu au-dessus de S'm-i

tel que le diagramme suivant commute (avec j8 la restriction)

C (m-1) est une conséquence immédiate du lemme: en effet, considérons le

diagramme (au dessus de Sfm-t)

et posons ?:,„_! p — h°ô.
Pour démontrer le lemme, considérons le diagramme

^>, S'm)

En vertu de (II.11.6), ô est un morphisme surjectif d'espaces de Fréchet. Soit (Ça)xeA
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la base de Cm (q, S'm) et/? une semi-norme sur 0s (S'm) qui vérifie les conditions de (III.2)
pour Sln-^Sn. Par (III.6), il existe q*, 0<q*<q, une semi-norme P sur ®s(S'm),

une constante M et (fja)a 6 A c Cm"* (çm, S'm) tels que

Soit rjaeCm~1(Qm.u S) la restriction de fja. Par (III.4.1 et 4), on a pour toute semi-

norme q sur ®S(S) adaptée kp et r<Qm_1

On pose

Par (III.4.2), on a q(aa)<(Q/R) \\x\\qR pour q*<R<q, donc X^K) N«ll«r con"

verge pour g adaptée à p et r<^w_x. Alors £ ^a^/a converge vu qu'il existe suffisamment

de semi-normes q adaptées à p.

4. A(n)+B(n)^B{n-\\ n

Par B(n\ on a un morphisme ^-linéaire continu au-dessus de Sn

qui jouit encore des propriétés de B(n) (jt' désigne ici le «mapping cylinder» pour la
situation A («)).

Soit Qn-U rs<Qn^t<Rs, (s=n — q-\-l si n>q + l, s=l si « # + l)et soit Srn^l un
ouvert de Stein, S*€S'n-t€Sn.

(III. 14) LEMME. // existe un morphisme Os-linéaire continu au-dessus de S^-x

tel que le diagramme suivant commute

>/ I'
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B(n-\) est une conséquence immédiate du lemme; en effet, considérons le
diagramme (au-dessus de S'n-t)

(e)±> ±»(e)

j±tt-l(Q»-i)

On pose alors

Pour démontrer le lemme, soit q*, gn_l<Q*<Rs (£„_! et s comme ci-dessus) et
considérons le diagramme

I-
»., S.))

I'

(m. 15). On a lmponnczlmd.
On voit cela facilement en considérant le diagramme.

I
K"(cs,Sn)

l
±n(Q*,Sn)+K»(Q*,Sn)

et en tenant compte du fait que K* (cs, Sn) est acyclique en degré n (III.9).
Considérons le produit fibre:

JV=Ker{#"(<?, SJ0JT"-1 (q*, S.) ^^Z"(jf•(<?*, S.))}

En vertu de (III.15), la projection

est un morphisme surjectif d'espaces de Fréchet.

Soit (CodaeA ^a base de Ktt(g9 Sn) ttp une semi-norme sur ^s(^«) Qui vérifie les

propriétés de (III.2) pour S^CS,,. En vertu du théorème de Banach appliqué à \j/9
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il existe une semi-normePsur (Ps(Sn)etQ9 0<q<q, une constante Met fj^eK*1'1 (q*> Sn)

tels que

(ta,fja)eN9 IIWI^.^MIICJp;.

Soit rjae K*1'1 (on-i, Sfn-X) la restriction de fja; alors par (III.4.1 et 4), on a, pour toute
semi-norme q sur 0s(iSi-.i) adaptée kp et

On pose alors

Pour la convergence, voir la fin de la démonstration de (III. 13).

5. B(n-l)=>A(n-\), n^q+2

Dans ce paragraphe, nous supposerons toujours que B(n — 1) est vrai.

(III. 16) LEMME. // existe un ouvert de Stein Sn-U S^aS^^So^un (9s-module
£é? libre de type fini et un morphisme Os-linéaire continu au-dessus de Sn^i (au sens des

préfaisceaux)

tel que, pour tout ouvert de Stein S'<

Z»-1(K-(cI.2, S'))

soit surjectif (s=n — q + l comme dans B(n—\) et Jf# est le «mapping cylinder»pour
la situation A(n)).

Remarquons que ^n"2(cs-2)=^/l"2(cs-.2)-
Avant de démontrer ce lemme, montrons comment on peut en déduire A(n — 1).
En vertu de (II. 11.1 et de propriétés élémentaires du « mapping cylinder», Thomo-

morphisme
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est surjectif; par (1.2.2), il en est donc de même de

z"-1(x-(cp,5._1))-z"-1(iî:-(c.-2,5,_1)).

Il existe donc un morphisme ^-linéaire au-dessus de Sn-t

tel que le diagramme suivant commute

On définit 4>2 :3? -? Zn~x (Jf• (Rp)) en rendant commutatif le diagramme

En vertu de (1.2.2) et (II.8.1)

est surjectif; on peut donc définir <P3: J? -+ Zn~x (jt9 (Rp)) de telle manière que le

diagramme suivant commute

Par composition avec les morphismes de (11.14), (si on désigne par 0 tous les mor-
phismes définis ci-dessus), on définit a et d par

Le complexe «£?• de ^4 {n— 1) est alors défini par

Les morphismes a- de A {n— 1) sont ceux de A {ri) en degré ^n et ceux qui figurent
dans (*) en degré »— 1.
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Pour démontrer (III. 16), considérons le diagramme déduit de (11.14):

4

jf-(r) -*JT'(r)
I i

jf-(r') -> Jf«(r')
i
ï

->Jf-(r")
1

Posons :

(avec j8 la restriction) et

la projection. Soit

(III. 17). PROPOSITION. Pour tout ouvert de Stein S'<=S'n.u on a:
1 la somme des homomorphismes

M"-1 (/•', r", S')-^Z"-1 (.#•(>•', S'))

est surjective.
2) l'homomorphisme (obtenu par composition)

est surjectif.
La démonstration de cette proposition est facile; il suffit de remarquer que

K'(r9 S')-+K*(r9 S') est un quasi-isomorphisme par (IL 11.4) et que les homo-
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morphismes

H*-1(K-(r,S'))-+H*-1(K-(ca-uS'))
Hn-1(K-(r',S'))-+Hn-1(K-(cs_2,S'))

sont surjectifs par (II. 11.3).
Pour prouver (III. 16) il suffit donc de montrer:
(III. 18). Il existe un ouvert de Stein 5n_l5 S^S^^Sq, un ^-module &

libre de type fini au-dessus de Sn^t et un morphisme ^-linéaire continu (au-dessus
de SH-t)

tel que, pour tout ouvert de Stein SfczSn^l9 l'homomorphisme

soit surjective.
Pour démontrer cette affirmation, rappelons que par 2?(«— 1), on a un morphisme

au-dessus de Srn-t (rs<Qn-t<Rs, s n —

Considérons le diagramme:

où (p+7rn_1 oj? est surjectif par (III. 17.1).
Muni de la topologie induite,

M""1 («._!, R.-u Si-Ocjf"' ((f.-i, S;

est un espace de Fréchet et cette topologie est définie par les semi-normes :

avec r<Qn-l9 R<RS^X et q semi-norme sur 0s{S'n.1),
(III. 19). Soit Sn-U StGSn-tGS'u-u un ouvert de Stein, soit (QaeA la base
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de Kn~1(g, S'n-^ et p une semi-norme sur (Ps(Sfn-i) qui vérifie les conditions de

Comme (p+nn-1op est surjectif, on peut appliquer (III.6): il existe £*, 0<q*<q9
une semi-norme P sur @s{S'n-i)> une constante M et

tels que

En vertu de (III.4.1 et 4) on a:
(111.20). Les restrictions

jouissent de la propriété suivante:
Pour toute semi-norme q sur ®s{Sn-i) adaptée à p,r<rs,r'<rs_j R<q, on a

9*\|a|

QJ

où C est une constante indépendante de q, r, r ', R.

Soit q0, q*<qo<q, fixé; on a (avec q et R comme ci-dessus)

(111.21). Il existe une partie finie AocA telle que

Pour un ouvert de Stein S'czSn-.l9 considérons le diagramme:

(111.22) PROPOSITION. Tout zeZ"-l{K-{rs, S')) s'écrit
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avec

x= £ aJUeJt'^&S') aae<9s{S')
aeAo

Cette proposition implique visiblement (III. 18) et donc aussi (III. 16). La démonstration

se fait par itération, utilisant le fait que (p+nn^t est surjectif par (III. 17.1) et à

l'aide du lemme suivant:

(111.23) LEMME. // existe des constantes Mu M2 avec la propriété: pour tout
xeJt'1(Q9Sf)9 il existe

**= Z a&ejt'^faS'), aae0s{S')
aeAo

tels que
1) x=nn-1x*+nn_1x1+(py1
2) pour toute semi-norme q sur (PS(S') adaptée à p (p comme dans (111.19),) et

Q',Qo<Q'<Q, on a:
a) H*illw.«ilWlf,.
b) ?(«„)< AT! M,,., a eA0
c) Wyàqr'r-^M^WxW^., r'K^r'Kr,^.
Démonstration. Soit

*= I aj:., aae0s(S').
tzeA

Posons

aeA — Ao aeAo aeA

Ces séries convergent par (III.4.2) et (111.20).

1) est visiblement vérifié. Pour 2), on a par (III.4.2)

Posons

L=sup{|a|}, tJ^)
d'où 2b).
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Pour 2a), on a par (*) et (111.21

II**L'< I *te)llçJ«'<IWI«' I f~V IIU«'<ilWI«-
aeX-Ao aeA-w40 \QoJ

Pour 2c), on a par (*) et (111.20)

On pose

IV. LE THÉORÈME DE L'IMAGE DIRECTE

Dans le premier paragraphe de ce chapitre, nous démontrons quelques propriétés
des faisceaux quasi libres. Ces résultats combinés avec ceux des chapitres précédents

nous permettent alors de démontrer (voir (IV.6)) que tout morphisme ^-convexe
vérifie l'hypothèse de séparation (1.16) et ensuite le théorème de l'image directe

(théorème (IV. 8)) dans toute sa généralité. Un théorème d'approximation (voir (IV. 10))
du type théorème de Runge généralisant (1.17), qui permet d'améliorer un peu (IV.8.2),
est démontré au paragraphe 3.

1. Propriétés des faisceaux quasi libres

(IV. 1) THÉORÈME. Soit (S, ®s) un espace de Stein, g g{$) un Gs-module

quasi libres, &> un (9s-modules cohérent et <p\&-*1F un morphisme continu. Alors
1) le &s-module © Imç) est cohérent

2) pour tout ouvert de Stein S0<^S, (p:J$(S0)-> ®(S0) est surjectif (donc
& S0))alF {So) est un sous espace fermé)
3) pour toute paire de Runge d'ouverts de Stein (50, St), Sic:Soc:S, la restriction

est d'image dense.

Démonstration, a) Démontrons d'abord la première affirmation et le cas particulier

de la deuxième lorsque S0€S. Soit (Ca)«e^ & base de &{R) (5), sén<=.£ le

0s-module cohérent engendré par les (C«)|«| <„ et &n cp {s/n). En vertu d'un théorème

bien connu ([4], Satz 8) la suite croissante (&n)neN de sous-modules cohérents de^ est

stationnaire sur les compacts de S et &={Jn&n est donc un 0s-module cohérent.
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Posons encore stf=-\Jnœ/n. Pour tout ouvert de Stein S0<GS on a les deux
propriétés:

<s/(S0)cz&(S0) est un sous espace dense, (*)

La première propriété est évidente. D'autre part, il existe n0 tel que & | S0 |

et q>: jtfno | 50 -*^7 | So est donc surjectif, d'où (**) en vertu du théorème B.
Pour achever la démonstration, il suffit de montrer que ffi=«^. Compte tenu de

(**), on a pour tout ouvert de Stein S0€S:

Vu la continuité de cp et la propriété (*), &(S0) est dense dans (p(J?(S0)) (pour la
topologie induite par ^{So))\ comme &(S0) est fermé dans ^"(So), on a

:
b) Démonstration de 3). Remarquons d'abord que pour un ^-module quasi

libre S* et une paire de Runge (So, St) d'ouverts de Stein, Sx cSoc:S,

est d'image dense.

Pour démontrer 3), il suffit, compte tenu de (1.19), de considérer le cas particulier
où SoëS9 et ce cas résulte de la remarque ci-dessus et du lemme suivant.

(IV.2) LEMME. Soit <p:«£*->#" comme dans le théorème et S0€S un ouvert de

Stein. Alors il existe un 0s~module quasi libre &* au-dessus de S0 et un morphisme
continu ^f\3? -*3ï \ So tel que, pour tout ouvert de Stein S'cS0, la suite

soit exacte.
Démonstration du lemme. Soit (Ça)aeA la base de J^(*S), £« <?>((«) et s°iï *^i un

ouvert de Stein, Sq^S^S. Comme © <p(j?) est un (Ps-module cohérent (voir
ci-dessus), il existe un entier n0 tel que © | Sx soit engendré par les £a | Si9 |a|<«0.
Renumérotons: (C«)|.|<I(0 (C»)i<«<n» et soit Çn=<p(Cn) et Ax {aeA \ |a|>«0}.
Considérons la suite exacte de ^modules cohérents au-dessus de St :

où m est induit par les Çtt et
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On a: pour tout aeAu il existe (?* ((/!,..., G%)e0s(Si) tel que

C«= I GKB sur St.

Affirmation 1. Il existe r<R (R comme dans l'énoncé du théorème) et un choix
des Ga (ae^j) avec la propriété: pour toute semi-norme q sur $£(So), il existe une
constante M telle que

Pour cela, considérons le diagramme

Soit/?0 une semi-norme sur ^5 {Sx) qui vérifie les propriétés de (II1.2) pour S^S^
Comme u est surjective, il existe une semi-norme px sur ©(S^) telle que pour tout
ye(î>{S1\ il existe x€(D*(Si) avec

y=u{x) et Po{x)^Pi(y)-

Comme (p est continu, il existe une semi-norme p2 sur <^s(^i) et r<i? tels que

Pour une constante K, on a par (III.4.1)

vl«l

et il existe G"ed>0(S1) avec

w(Ga) ^ et po(G")<«M •

Vu le choix de p0, on en déduit le résultat.

Affirmation 2. Pour tout ouvert S'cS0 et x=Y,*eA aJiae&{S'), la série

converge V«, 1 <w< A^ (pour les G* de l'affirmation 1).
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En effet, pour une semi-norme q sur @S(S') et g, r<g<R (r comme dans
l'affirmation 1) on a, par (ÏII.4.2),

\M\qQ

donc

q (aaG"n)^() (GÎ)<kQ
"

Soit FA=(F/,..., Fè)€&Ns(So)9 1 <A<L, un système de générateurs de 0t \ So.

Affirmation 3. Soit S'czS0 un ouvert de Stein et

I IaeA n^N cteAi

Pour que (p(x) 0, il faut et il suffit qu'il existe bxe(9s(S% l<A^L, tels que l'on ait,

pour tout n,

En effet,

donc <p(x)=0 si et seulement si

Considérons, au-dessus de So, le <Ps-module quasi libre

Soit (jA)i<A«i.^('/«)«,e^ la base de J?*(S0) définie par:

^=(0,...,1,...,0)6(PS(50) et i,.=C.|S

Définissons:

siS1
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Alors 90^:^*-^^ | So est zéro; d'autre part, pour S' Stein et

tel que q>(x) 0, on a pour tout n

an+ E afil= £ bxFxn.

Alors \l/(z) x, avec

ce qui démontre le lemme.

c) La démonstration de la deuxième affirmation du théorème pour des ouverts de

Stein arbitraires est maintenant facile. On utilise pour cela l'affirmation 3) du théorème
et (1.19).

2. Le théorème de l'image directe

Soit S un espace de Stein, n:X-+S un morphisme ^-convexe, <p une fonction
d'épuisement de constante exceptionnelle c* et &> un ^-module cohérent.

(IV.3) LEMME. Soit Suciez S un ouvert de Stein et c<c*. Alors il existe, au-
dessus de S*, un complexe

de Os-module, avec <J?n libre de type fini pour n>q et Jéq quasi libre, à différentielle
continue, et un morphisme continu de complexes

u:\Jt- -+V-(c)

tel que, pour S'czS* Stein,

1) <x*:Hn(^-(S'))-+Hn(C-(c, S'))
soit un isomorphisme en degré n > q +1 ;

un épimorphisme en degré n~q + \.
2) a:H«+1(ur-(5')U-^f+I(C-(c, S'))sép

soit un isomorphisme.
Démonstration. Reprenons les constructions du chapitre III; les affirmations

A(q + \) et B{q) sont donc vérifiées (avec co=c).
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Soit

les projections, qui sont défines au dessus de Sq+l (où Sq+i et ££• sont comme dans

A (q +1) et Jf' (c) est le «mapping cylinder» de w\S£*-+ <€% (c)). Comme

le morphisme de complexes

.••->0 >Zq(K-(c9 S'

ï I* I-

induit en cohomologie un isomorphisme en degré ^q + l pour 5"cztS'€+1 Stein.

Soit Eq+1(c9 S')cCq+1(c, S') l'adhérence de ÔCq(c, S') et posons

Soit S'€S- un ouvert de Stein (S comme dans B(q)) et considérons le diagramme:
(IV.4)

(tc€, ^ comme dans B{q)). Soit y: Âg(^, S')->Zq(K*(c, S')) l'homomorphisme
composé. Visiblement

ImpoyczlmpciBc:&q+1(S')

(IV.5) Affirmation. Im/?o-y est dense dans B (pour la topologie de J?q+1(S')).

De cette affirmation, on déduit facilement le lemme en posant: Jtq—$q(f)) et

Jtn &\n>q, avec d=p°y : Jfi-* Jtq+x et <xq ^oy :uT« ->««(c). La première partie
de (IV.3) découle alors de ^4(^ + 1) et la deuxième de l'affirmation.

Démonstration de (IV.5). Soit xe£; alors dx=0 (d:&q+i(S')->&q+2(S')).
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Posons

Considérons le diagramme (avec un changement de notations pour a)

et posons

l(cp,sr), !=âxeC+1(e,s'), i=Zxeëq+1(e,s').

En vertu de (*), de (II. 11.2) et (II.5.2), Ç'eËq+1(cp, S") et il existe donc une suite

(rjk)czCq(cp, S') telle que ôrjk-* — £'. Par restriction, il existe donc une suite

(rjk)cCq(Q, S') telle que ôrjk->-%. Construisons une suite (J'JcCfe S') telle que

Pour cela, considérons le diagramme

où les lignes sont surjectives par (1.2.2) et (H.8). Soit donc (c/c)czCq(Q, S')9 rak=rjk.
Alors

et il existe donc (bk)cZq+1 (£-(q, S')) telle que

z(bk-ôak-O=0 et bk-+0.

Puisque x est un quasi-isomorphisme, on a

Soit (c*)c £«((?, 5"), «c****-^-!.
On pose 1^=0*+^. Considérons la suite ((J/k, x))c ^«(^, 5').
Affirmation, y (rjk, x) -» x.
Pour voir cela, rappelons la définition de ^ (III.14):
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nq=f} — hod, p étant la réstriction et d(u, v) (ôu+<xv, —dv). Donc nq(rjk, x)
(prik, x)-h(ôrjk + Ç, 0); comme h(ôrf + Ç, 0)->0, on en déduit l'affirmation.

(IV.6) COROLLAIRE. Avec les notations de (IV.3), on a: les espaces Hq+1 {Jt* (S'))
et Hq+1 (O(c, S')) sont séparés (donc Fréchet) et

oc*:Hq+1(^-(Sf))-+Hq+1(C-(c,S'))

est un isomorphisme (d'espaces de Fréchet).
En d'autres termes, l'hypothèse (sép) de (1.16) est donc toujours vérifiée.
Démonstration. Dans le diagramme commutatif suivant

i-

u et <xfép sont des isomorphismes par (IV. 1.2) et (IV.3), et a* est un épimorphisme par
(IV.3), d'où le résultat.

En fait, pour des ouverts £"€£*, la démonstration du corollaire n'utilise que
les résultats du théorème (IV. 1) démontrés sous a).

(IV.7) COROLLAIRE. Soit S*<£S un ouvert de Stein et c<y*. Alors il existe,
au-dessus de S*, un complexe

de ®s-modules libres de type fini et un morphisme (continu) de complexes

<r:ur--*tf-(c)

tel que, pour S'czS* Stein,

a*:Hn{Jt*{S'))-»Hn(O{c, S'))

soit un isomorphisme (d'espaces de Fréchet) pour n^q + l.
Compte tenu du corollaire précédent, c'est une conséquence immédiate de (IV. 1.1).
Ces deux corollaires, (1.20), (11.15) et le théorème B impliquent maintenant

trivialement le théorème principal.

(IV.8) THÉORÈME. Soit S un espace de Stein et n:X^S un morphisme q-con-
vexe, (p une fonction d'épuisement de constante exceptionnelle y, et &> un (9x-module
cohérent. Alors
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1 les @s-modules E^n^ et Rnn*tF sont cohérents et la restriction

est un isomorphismepour n^q + l et c>y (avec nc n | Xc-? S).
2) pour tout ouvert de Stein Sf<QS, c>y et n^q + l, les espaces Hn(X(S'), ^\

Hn(Xc(S'), &) sont Fréchet et les morphismes du diagramme

i i
Hn(Xc(S')9 &)->Rn

sont des isomorphismes (d'espaces de Fréchet).
On notera que la démonstration du fait que les espaces Hn{X{Si)>^r) sont

Fréchet utilise de manière essentielle la définition globale de la fonction d'épuisement.

3. Un théorème d'approximation

(IV.9) THÉORÈME. Soit S un espace de Stein, n:X-+ S un morphisme q-convexe,
(p une fonction d'épuisement de constante exceptionnelle y, & un Ox-module cohérent

et °ll un recouvrement standard de X. Alors, pour c>y et pour {So, Sx) une paire de

Runge d'ouverts de Stein S1aSociS, la restriction

est d'image dense.

Démonstration. Compte tenu de (1.19), il suffit de considérer le cas où S0€S, et

par (1.17), il suffit donc de montrer que

soit d'image dense. Considérons les complexes Jt\ ^'(c) & a* : u^#-? #• (c) de (IV.3)
(avec S* S0); par (1.2.3), il suffit de montrer que

soit d'image dense (le recouvrement standard utilisé pour définer ^# (c) n'est pas le

recouvrement ^).

(IV. 10) LEMME. Le morphisme a* : J(* -> ^ (c) construit dans (IV.3) a la
propriété: pour S'czS* ouvert de Stein,

<x«:Zq(Ji<-(S'))->Zq(C-(c, S'))

est d'image dense.
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Ce lemme implique le théorème; en effet, comme dans le diagramme

P est d'image dense par (IV. 1.3), on en déduit (*).
Démonstration de (IV. 10). Comme pour la démonstration de (IV.3), reprenons les

constructions de A(q + 1) (avec co c); par (1.17)

est d'image dense. Cet homomorphisme se factorise par Zq(C'(g, S')) (comme dans

(11.10)), donc

Z\O{q,S'))-+Z<>{C'{c,S'))

est d'image dense. Par (1.2.2) et (II.8)

est surjectif. Comme

et

(avec p et y comme dans (IV.4)), on en déduit le résultat.

(IV. 11 COROLLAIRE. La deuxièmepartie du théorème (IV.8) est vraie pour tout
ouvert de Stein S'czS.

Pour la démonstration, utiliser (1.19).
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