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Un Théoréme de Finitude pour les Morphismes g-Convexes

par PIERRE SIEGFRIED

0. Introduction

Un théoréme classique de Cartan-Serre (1953) affirme que si X est un espace
analytique compact et & un faisceau cohérent sur X, alors les cohomologies H" (X, F)
sont de dimension finie (sur C) pour tout n>>0.

En 1960, Grauert a démontré [4] une forme relative de ce théoréme qui s’énonce
de la maniére suivante:

Si m:X— S est un morphisme propre d’espaces analytiques et &% un faisceau
cohérent sur X, alors les faisceaux images-directes R"n,# sont des faisceaux cohérents
sur S. (Le théoréme de Cartan-Serre n’est autre que le cas particulier ou S est réduit
a un point).

Andreotti-Grauert ont obtenu en 1962 [2] des théorémes de finitude pour une
classe d’espaces non-compacts, les espaces g-convexes. Plus précisément, si & est un
faisceau cohérent sur un espace g-convexe X, alors les cohomologies H" (X, %) sont
de dimension finie pour n>¢q+1.

Pour généraliser ces théorémes au cas relatif, nous reprenons la définition des
morphismes g-convexes m:X — S d’espaces analytiques introduite par Knorr [7].
Cette définition implique la g-convexité des fibres de w et une propriété de continuité
de ces fibres. Pour les morphismes g-convexes, nous démontrons I’analogue du
théoréme de Grauert. Plus précisément:

Si n: X — S est un morphisme g-convexe et # un faisceau cohérent sur X, alors
les faisceaux images-directes R"n,% sont cohérents pour n>q+1.

Nous démontrerons également que pour les ouverts de Stein S'<=S et n=>¢g+1,
les H"(n71(S’), &) sont des espaces séparés (donc Fréchet) et que les sections de
R'n,.% au-dessus de S’ sont précisément les éléments de cet espace de cohomologie.
Ces résultats sont annoncés dans [12].

Des cas particuliers de ce théoréme ont été démontrés par Knorr [7], Knorr-
Schneider [8] et Siu [13], [14].

La démonstration de Grauert de son théoréme central est longue et difficile. Des
démonstrations plus simples ont été trouvées par Forster-Knorr [3], Kiehl-Verdier
[6] et Houzel. (Elles sont toutes basées sur des idées de Malgrange et Grothendieck).
Tandis que les démonstrations du théoréme de 'image directe pour les morphismes
g-convexes déja connues sont calquées sur celle de Grauert, la nétre utilise les mé-
thodes de Forster-Knorr. L’adaptation de cette démonstration au cas g-convexe fait
intervenir plusieurs difficultés techniques, mais la différence essentielle consiste &
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obtenir un théoréme d’approximation de cocycles (du type de Runge) intéressant en
soi. Remarquons en passant que ce résultat n’a pas d’analogue dans le cas propre.

J’ai le grand plaisir de remercier ici Otto Forster de son aide précieuse, ses conseils
constants et son amitié. Je remercie également Knut Knorr de nombreuses conversa-
tions.

I. MORPHISMES ¢-CONVEXES

Dans ce chapitre, nous généralisons les théorémes d’épuisement pour les espaces
g-convexes d’Andreotti-Grauert (cf. [2]) au cas des espaces relatifs. Un premier
résultat est démontré dans (I.13). Afin d’obtenir un théoréme plus précis (théoréme
(1.20)), nous devons imposer ’hypothése (voir (I1.16)) que certains groupes de coho-
mologie sont des espaces séparés (donc Fréchet). Nous démontrons également (voir
(1.17)) un théoréme d’approximation du type théoréme de Runge. A I'aide des tech-
niques développées dans les chapitres suivants, nous montrerons dans (IV.6) que
cette hypothése de séparation découle du théoréme (1.13).

1. Recouvrement standards

Soit (X, 0x) un espace analytique complexe dénombrable a I'infini (non néces-
sairement réduit).

(1.1) DEFINITION. Une famille % = (U;);; est un recouvrement standard de X
si les U; sont des ouverts de Stein de X qui forment une base dénombrable de la
topologie de X.

Pour un 0y-module cohérent Z, les espaces vectoriels C* (%, %) (resp. Z" (%, F))
des cochaines (resp. cocycles) alternés sont munis naturellement d’une structure
d’espace de Fréchet. En vertu du théoréme de Leray sur les recouvrements acycliques,
on a un isomorphisme canonique

H (U, F)=Z"(U, F)|5C"~ (¥, F)5 H" (X, F)

et la topologie induite sur H" (X, #) (qui n’est pas séparée en général) ne dépend
pas du choix de % (cf. [9]). Pour un sous espace ouvert Y X, #y={Ue# | Uc Y}
est un recouvrement standard de Y.

(1.2) Remarques. 1) Pour (eC"(%y, F) on définit EeC" (%, F), 'extension par
zéro de ¢, de la maniére suivante:

E — cio wein Si (io, ooy i”)ENerf%Y
fo-""10 sinon
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la restriction & | Y=_E | %y est alors ¢.

2) Soit ¢*:K*— L* un morphisme de complexes. Si pour un n, ¢ et
o*: H"(K*)— H" (L") sont surjectifs, alors 6" | Z"(K*) —» Z"(L*) est surjectif. En par-
ticulier, si % et #* sont deux recouvrement standards de X, Z#*c %, la restriction
Z" U, F)— Z"(u*, F) est surjectif.

3) Soit Y= X un ouvert; alors la restriction H"(X, #)— H"(Y, #) est d’image
dense si et seulement si Z"(%, F)— Z"(%y, F) est d’image dense pour un recouvre-
ment standard % de X (et par conséquent pour tout recouvrement standard de X).

La démonstration de la proposition suivante, qui est de nature topologique, est
facile.

n—1

(I.3) PROPOSITION. Soit % un recouvrement standard de X;V, WX des
ouverts, X=V U W. Alors il existe un recouvrement standard U* =¥ de X tel que:

Nerf#* = Nerf%;, u Nerf %y,

2. Morphismes g-convexes; théorémes d’épuisements en degré >g+1

(1.4) DEFINITION. Soit Q< CN un ouvert et z;,..., zy les coordonnées canoni-
ques de CV. Une fonction ¢:CN - R de classe €* est strictement g-convexe si pour
tout ae®, la forme de Levi

62qo

1<i,j<N 02;0Z;

L,(a)= (a) dz,®@dz;

a au moins N—gq valeurs propres positives.

(1.5) DEFINITION. Soit X un espace analytique. Une fonction ¢:X—R est
strictement g-convexe si pour tout a€ X, il existe une carte (U, ¥, 2) (ot Uc X est un
voisinage ouvert de a, Q< CN un ouvert et : U—  un plongement fermé) et une
fonction @:Q2 — R strictement g-convexe telle que ¢ | U=doy.

On montre que cette définition est indépendente du choix de la carte [1]. Les
fonctions ¢: X — R de classe ¥ sont définies de maniére analogue.

(1.6) DEFINITION. Soit 7: X — S un morphisme d’espaces analytiques. 7 est un
morphisme g-convexe (resp. g-complet) s’il existe une fonction ¢: X —R et un yeR
tels que:

1) ¢ | {xeX | @(x)>y} soit strictement g-convexe (resp. ¢ soit strictement g-
convexe)

2) pour tout ceR, n | {xeX | ¢ (x)<c} soit propre.
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La fonction ¢ est appelée fonction d’épuisement, y la constante exceptionelle.

(1.7) Remarques. 1) Si S est un point et n:X— S g-convexe (resp. g-complet)
alors X est strictement (g+1)-convexe (resp. (¢+1)-complet) au sens d’Andreotti-
Grauert [2]. Nous appellerons ces espaces g-convexes (resp. g-complets).

2) Les fibres d’'un morphisme g-convexe (resp. g-complet) sont des espaces
g-convexes (resp. g-complets). La réciproque est visiblement fausse (la projection
C2— {0} -» C n’est pas O-convexe).

A partir de maintenant, nous supposerons toujours que S est dénombrable a
I'infini (lorsque S est Stein par exemple). Dans ce cas, ’espace X est aussi dénombrable
a Pinfini.

(I.8) Notations. Soit 7: X — S un morphisme g-convexe, ¢ une fonction d’épuise-
ment et % un recouvrement standard de X. Posons, pour $’< S et ceR:

n.=n|{p<c}—S
X=m;"(S), X($)=n"'(S8"), X.(S)=n"(5"),
U (S )={UeU=X,(S")}

(1.9) LEMME. Soit X un espace de Stein, ¢:X—R" une fonction strictement
g-convexe a valeurs positives, & un Ox-module cohérent et % un recouvrement standard
de X.

Soit ceR; alors

i) X, est g-complet, en particulier

H"(X, #)=0 n>g+l1
ii) l'image par la restriction
ZY U, F)— 29U, F)

est dense.

Démonstration. Soit ¢:X — R une fonction d’épuisement strictement 0-convexe
(une telle fonction existe vu qu’un espace de Stein est 0-complet, cf. [10]), et on peut
supposer ¢ & valeurs positives. La fonction y=¢ +(c—¢) ™! est alors une fonction
d’épuisement strictement g-convexe de X, = {p <c} d’ou i) (cf. [2]).

Lorsque ¢ est propre, donc une fonction d’épuisement de X, I'affirmation ii) n’est
autre que le théoréme 12 p. 248 de [2]. Pour démontrer le cas général, il suffit (cf.
(1.2.3)) de montrer que I'image par la restriction Z4(%, F)— Z1(%*, ¥) est dense,
ol %* est le recouvrement de X, défini par #*= {Ue% | UEX,}.

Pour cela, soit K = X, un compact; pour 5 >0 assez petit et ¢, €R convenablement
choisi, 'ouvert Y= {xeX | ¢ (x)+ny (x)<c,} jouit de la propriété K< YCX..

Comme ¢ +ny est une fonction d’épuisement de X strictement g-convexe et que
Uy=Uy on déduit ii).
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Soit E un espace vectoriel localement convexe; I’espace séparé associé E, est
I’espace quotient de E par intersection des noyaux de toutes les semi-normes con-
tinues sur E.

(I.10) LEMME. Soit X un espace analytique, F un Oy-module cohérent et U un
recouvrement standard de X. Soient Xy, Y= X des ouverts tels que X=X, Y. Suppo-
sons que:

1) H (Y, #)=0

2) H*" ' (Xon Y, F)=0

3) L’image par la restriction Z* (U y, F)— Z(Ux,~y, F ) est dense.

Alors, la restriction

HY Y (X, F )= HT (X0, F )

sép

est injective.

Démonstration. 1l faut montrer quesié€ Z9* ! (%, F)tel que ¢ | X, B! (Ux,, F),
alors (e B (%, F), ou B1*! est ’'adhérence de 6C? dans Z2*! (ou C**1),

On peut supposer que # vérifie la propriété:

Nerf % =Nerf %y, w Nerf %y (*);

en effet, il existe, par (I1.3), #* <% qui vérifie cette propriété, et ’hypothése 3) est

satisfaite pour %* car Z4(#Ux,ny, F )= ZU(U%yny> F ) est surjectif par (1.2.2).
Comme ¢ | XoeB™ ! (Uy,, F), il existe une suite (n*)=C(%y,, F) telle que

n”—¢&| X, et en vertu de 1), il existe {€C(%y, F) tel que §{=¢| Y. On a donc

5| Xon Y—={| XonY) =0 dans Z9' (%y,.y» F)
Par 2), ’homomorphisme
6:C* (%Xonb ‘7) - Zq+1 (%XonY’ '9;‘)

est surjectif et il existe donc (théoréme de Banach) une suite (8)=C4(Xx,nys F)
telle que

6B*=6(n"| XonY—{|XonY) et B"—0.
Soit

P=n" l XonY—¢ | XonY—=B€Z(Ux,nys F);
par 3.), il existe (3*)c=Z4(%y, F) telle que

7| Xon Y—y" >0
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Soit B*eCl(%y, F) lextension par zéro de B* (cf. (1.2.1)). Posons, pour
(%o, ..., i;)eNerf %, (compte tenu de (x))

o _ o, S (i - .., i,) € Nerf Uy, :
i0 ... Iq (?V+BV+C)io s sinon .

En utilisant la propriété (), on vérifie facilement que
da’ — &.

Soit 7: X' — .S un morphisme g-convexe, ¢:X — R une fonction d’épuisement de
constante exceptionnelle y, # un Ox-module cohérent et  un recouvrement standard.

(I.11) LEMME. Soit S'€S un ouvert de Stein et ceR, ¢>y. Alors il existe une
famille finie (Uy);<;<y d’ouverts de Stein de {xeX | ¢ (x)>7v} et £,>0 tels que pour
tout €, 0<e< g, il existe des ouverts X, X, 0< k<N, avec les propriétés:

1) Pour tout k, 0<k< N, il existe une fonction d’épuisement /,: X — R de constante
exceptionnelle vy telle que: X, = {xeX | Y (x)<c).

2) @ Xi+1(S)=X(S") U (Xi41(S') N Vi1 (S)), 0Sk<N-1.

B) X.(S)=Xo(S") <X, (S')c - Xy (") =Ko o (")

3) @) H'(X,(S')nU,;(S"), F)=0,n=q+1, 0<i, k<N.

B) L’image par la restriction

A (%Xk+ 10Uk+1 (S’)’ .0,7')__) Zq(%xkﬁvk+l (S,)’ ﬁ)

est dense, 0<k<N-—1.
Démonstration. Désignons par

X'={xeX | @ (x)>7}
A.={xeX|p(x)=c}.

Alors A.n X(S") est compact et il existe un recouvrement fini de 4.n X (S’) par
des ouverts de Stein U;cX?, 1<i<N. Soit V€(J\Y, U, un voisinage de 4.0 X(S’)
dans X. Il existe n>0 tel que

X.(S)UV(S') =X,y (S")

Soit a;: X = R, 1<i< N des fonctions € avec les propriétés:
a) supp(a;)=U; 1<i<N
b) ;>0 et Yii,a(x)=1, VxeV.
Fixons g, 0 <ey, <1, tel que pour tout &, 0<e<¢,, les fonctions

k
p—¢e Y o, 1<k<N
i=1

soient strictement g-convexes.
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Posons, pour g, 0<e<eg,

k

Yi=p—¢ ) o, 1<k<N,
i=1

Yo=0, X, ={xeX l Ye(x)<c}

d’ou 1); I’affirmation 2) résulte des conditions imposées aux «;. 3) est une conséquence
du Lemme (1.9).

(I1.12) PROPOSITION. Soit S'€S un ouvert de Stein et ceR, y<c. Alors, il
existe £,>0 tel que pour tout ¢’, c<c’'<c+gy, on ait

1) H(X, ("), #)—» H'(X.(S"), #)
est un isomorphisme en degré n>q+1; un épimorphisme en degré n=gq+1

2) HO (X, (8"), F )y = HIH (X (S), F e
est un isomorphisme.

Démonstration. Soient &, (U;);<;<y comme dans le lemme précédent. La suite
des X; du lemme vérifie la propriété 2, a):

Xi+1(8)=X,(S")U (X441 (8") 0 Uy 11 (S"))

Appliquons la suite exacte de Mayer-Vietoris ([2], p. 236), (en posant X, = X, (S’),
U;=U,(S")):

H' ™ (X0 Uy, F) > H (X, F) - H (X F)OH (Xi1 10 Upyy, F)
- H' (X" Upy1, F)

Par (I.11.3.0), H (X341, F) = H' (X, F) est surjective (bijective)si/>q+1 (I>¢g +1).
Par induction on obtient alors 1). Pour 2) on applique (1.10).

(1.13) THEOREME. Soit n:X—S un morphisme g-convexe, @ une fonction
d’épuisement de constante exceptionnelle y et  un Oy-module cohérent. Soit S'CS
un ouvert de Stein et ¢, c'eR, y<c<c'. Alors les restrictions

1) H"(X,.(S"), #)» H'(X,(S"), #)

H"(X(S"), F)->H"(X.(S"), F)
sont des isomorphismes en degré n>q+1;
des épimorphismes en degré n=q+1.
2) Hq+l (Xc'(S’)’ f)sép - Hq+1 (Xc (SI)’ ‘g)sép
HO (X(S"), F)ap = H (X (S), F )y
sont des isomorphismes.

Pour la démonstration de ce théoréme, nous avons besoin d’une proposition qui

résulte facilement de (1.2.2):
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(I.14) PROPOSITION. Soit X un espace analytique, (X;);cn une suite d’ouverts
de X, X;+12X, U2 1 X;=X et soit F un Ox-module cohérent. Si pour tout ieN,
H"(X;41, F)—> H"(X;, F) est surjectif, alors, pour tout ieN, H" (X, #) - H"(X;, F)
est surjectif.

Démonstration du théoréme. Posons: X =X _(S'), %.=%.(S’).

a) Démontrons d’abord que les homomorphismes de 1) sont surjectifs; il suffit
pour cela de montrer que si ¢c>y et n>q+1, H*(X, #)-> H"(X,, &) est surjectif.
Pour 7 et ¢ fixés, considérons la famille </ des sous-ensembles 4 <[ ¢, oo ] qui vérifient
les propriétés:

1) ceA

2) sia, bed et a<b, alors H"(X,, #)— H"(X,, ¥) est surjectif.

& est ordonné inductif et contient donc un élément maximal 4,; posons a=sup 4,
(x< 0). Alors ae A, car il existe une suite (a,) = 4, qui converge vers o et on applique
(1.14). Si on avait a < oo, alors 44U {a+¢} serait un élément de & pour ¢ assez petit
par (L.12) et 4, ne serait pas maximal, donc a= co.

b) Démontrons que les homomorphismes de 1) sont injectifs pour n>g+1; il
suffit pour cela de montrer quesi c>yetn>q+1, H*(X, #)— H"(X,, F) est injectif.
Pour c et n fixés, considérons I’ensemble C<[c, o] des ¢’ tels que H"(X,.,, ¥)
- H"(X,, %) soit injectif. Soit a=supC et montrons que aeC. Soit (¢;) < C une suite
croissante qui converge vers «. Soit % un recouvrement standard de Xet £ € Z" (% 5, F).
Alors, pour tout i, ¢ | X,,=6n', n;eC"" ' (%,,, #). Par (1.2.2), on peut choisir les n* de
telle maniére que n*** | X, =#'; d’olt £=4n. Alors a= oo par (1.12).

c) Démonstration de 2). Compte tenu de la premiére partie du théoréme, il suffit
de montrer que H** (X, F )y, > H¥ ' (X, F )y, est injectif. Soit C=[¢, co] I'ensem-
ble des ¢’ tels que H*" ' (X, F)yy— H1" (X, F)g, soit injectif; soit a=supC.
Montrons que aeC; soit (¢;)=C une suite croissante qui converge vers o et
ez (U, F) tels que

E| X (S)eB ™ (U, F). Alors &,=¢ | X, (S")e B (2., F).

Soit donc (1}),en=C4(#%,,, F) tel que dn; — &; si v— co; en vertu de (I.2.1), on peut
supposer n;€C**!(%,, ). En appliquant le procédé diagonal a la suite double
(1)yens ien» ON €n déduit que Ee BT (%,, F). Compte tenu de (1.12.2) on voit que
o= 00.

(I1.15) COROLLAIRE. Avec la condition supplémentaire aux hypothéses du thé-
oréme (1.14): le morphisme n: X — S est g-complet, on a

H"(X(S'), F)=H"(X,(S"), #)=0

pour n>q+1 et ceR.
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3. Théorémes d’épuisement en degré g+ 1

Soit 7: X — S un morphisme ¢ convexe; nous dirons que 7 satisfait & I’hypothése
(sép) si la propriété suivante est vérifiée:

(1.16) HYPOTHESE (sép). Quels que soient une fonction d’épuisement ¢ de
constante exceptionnelle y=v(¢p), S'€S un ouvert de Stein et ceR, y<c, l'espace
H¥ (X, (S"), F) est séparé pour tout Og-module cohérent F (c'est donc un espace de
Fréchet).

(I.16) est équivalent a:

B Y (# (S"), F)ycZ (U (S'), F).

est un sous espace fermé, % étant un recouvrement standard arbitraire de X.
Nous montrerons au chapitre IV que tout morphisme g-convexe vérifie I’hypothése

(sép).

(1.17) THEOREME. Soit nt: X — S un morphisme g-convexe qui vérifie I'hypothése
(sép) et @ une fonction d’épuisement de constante exceptionnelle y. Soit S'€S un
ouvert de Stein; alors, pour ¢, c'eR, y<c<c',

ZW(%.(S'), F)=>Z4(U(S"), F)
ZUWU(S"), F)=>Z9(U.(S"), F)

sont d’image dense (ou % est un recouvrement standard de X ).
La démonstration de ce théoréme, qui est analogue a la partie a) de la démonstration
de (I.13), découle des deux lemmes suivants:

(1.18) LEMME. Supposons que I’hypothése (sép) soit vérifiée. Soit S'€S un
ouvert de Stein et ceR, y<c. Alors il existe ¢,>0 tel que pour tout ¢’'eR, c<c'<¢,

ZY(UN(S'), F)>Z(U(S"), F)
soit d’image dense.

(I.19) LEMME. (Principe d’épuisement de Mittag-Leffler). Soit (X, ¢;);en un
systéme projectif d’espaces métriques complets tel que 9;: X, — X, soit d’image dense.
Alors, pour tout iyeN, la projection

limXi - Xio
«-—

est d’image dense. En particulier, si pour un iy, X; #0, alors li_r_r_lX  #0.
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Le lemme (1.19) est démontré dans [2], page 246.
Démonstration de (1.18). Définissons &, comme dans (I.11) et introduisons les
notations

X,=X,(S"), U=U(S), =%(S").

(X, (S"), U;(S') comme dans (I.11)). Par induction, il suffit de montrer que
Z9(Uy,,,, F)> Z Uy, F) O<k<N—1

est d’image dense. Compte tenu de (1.2.3) et (1.3), on peut supposer que
Nerf %y, ,,=Nerf Uy, o Nerf Uy, ., ~vy. .- (*)

Soit (e Z9(Uy,, F); en vertu de (L.11) il existe (*),cNnSZ (Xxy s (nvks 1 F) tel
que

7 l X0 Ugy1—¢ l XinUpys.
Posons (compte tenu de (*)), pour (io,..., i;)eNerf %y, ,,

W = iooig Si (igs.ers i) e Nerf Uy,
fota ™\ iy 4,  sinon.

Alors
on*—0 dans B (Uy,,,F)
et comme
0:C1 (U, F) > B (Uxy 1y F)
est un morphisme surjectif d’espaces de Fréchet, il existe (y")c C?(%y,., ,, ¥ ) tel que

y* —0, 5y°=3n". Alors n° =y €Z%(Uy,,,, F) et 1" —y" .

(L.20) THEOREME. Soit n:X—S un morphisme g-convexe, ¢ une fonction
d’épuisement de constante exceptionnelle y, F un Ox-module cohérent et supposons que
I’hypothése (sép) soit vérifiée. Alors, pour tout ouvert de Stein S'€S, on a:

1) H1*1(X(S"), F) est séparé

2) pour ¢, c'eR, y<c<c/,

HY (X, (S"), F)—» H (X (S'), F)
HT ! (X(S7), F)-» H(X.(S"), #)

sont des isomorphismes.
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Démonstration. Par (I1.13.2) on a: 1)=>2). Pour prouver 1), il suffit de montrer que
que BV (% (S"), F)<=Z* 1 (%(S’), F) est un sous-espace fermé pour un recouvre-
ment standard % de X. Soit (¢;)=R une suite croissante non bornée et (e B7*!
X (%(S"), #); en vertu de (sép) on a:

E| X, =6n, n,eCU (% (S"), F).
Compte tenu de (I.17), on peut appliquer (I.19) au systéme projectif
(ni+Zq (%ci(‘s’)’ y))ieN'

(I.21) COROLLAIRE. Avec la condition supplémentaire aux hypothéses du thé-
oréme (1.20): ¢ est g-complet, on a:

H"(X(S"), F)=H"(X.(S"), F)=0

pour nzq+1 et ceR.

II. RECOUVREMENTS ET COMPLEXES ASSOCIES

Ce chapitre est déstiné & I’étude du complexe image directe d’'un morphisme
g-convexe 7m:X — S pour un faisceau cohérent F sur X. Pour cela, on compare
H'(X_, %) ala cohomologie d’une famille finie de polydisques relatifs de X (famille
distinguée, voir paragraphe 1 et 2) qui recouvrent X.. A I’aide des systémes de fais-
ceaux liés on construit au paragraphe 3 un complexe de faisceaux quasi libres dont la
cohomologie est isomorphe a celle définie par la famille distinguées (pour la définition
des faisceaux quasi libres, voir (II.13)). Les propriétés de ces trois cohomologies sont
énoncées dans (II.11).

Nous supposerons toujours donnée la situation suivante: 7: X — S est un morphisme
globalement g-convexe, ¢ une fonction d’épuisement de constante exceptionnelle y,
& un Ox-module cohérent.

1. Familles distinguées

Soit D(r)={zeC" | |z;|<r}, r>0, le polydisque de rayon r. Soit U< X un ouvert
et j: U— SxD(1) un morphisme.

(I1.1) DEFINITION. Le couple (U, j) (ou U tout court) est un ouvert admissible
si j est un plongement fermé tel que le diagramme suivant commute (p:SxD(1)— S
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désigne la projection)

U—s8SxD(1)
NN
S

Posons, pour O0<r<l et S'cS§
U(r, S )=j"1(D(r)xS’).

(I.2) LEMME. Soient 0<r<r’'<1, xeX et V un voisinage de x. Alors il existe un
ouvert admissible (U, j) tel que

a) UcV, b)xeU(r',S), c)U(r,S)=0.

Démonstration. Soit U un ouvert de X, xe Uc ¥, et tel qu’il existe un plongement
fermé f:U— D(1) avec f(x)=0. Soit r*, r<r*<r' et D,(1)=C; posons

j:U->SxD(1)xD,(1)
y—= @) f(3), r*);

(U, j) répond a la question.
Soit W=(U;),;.; une famille d’ouverts admissibles; nous noterons, pour 0<r<1,
S'csS,

U, $)=(Ui(r, )ier, U, 8)=U Ui(r, §).

iel

(I1.3) DEFINITION. Soient ¢;eR, 0<i<p, p>0, co<c;<--<c, et SocS. Une
famille W= (U;), est distinguée pour cy, ..., ¢, au dessus de S, si U est une famille
finie d’ouverts admissibles et s’il existe des nombres réels r,, R, 1 <k<p,

0<r1<R1<r2<R2<“'<rp<Rp<1
tels que, pour tout ouvert S’ < S,, on ait

X, (S (r, S)Hc|U(R, S)NNX(S)=X,,(S'), k=1,...,p.

(II.4) PROPOSITION. Soient c;eR,0<i<p, co<--<c, et S,€S un ouvert.
Alors il existe une famille 1 distinguéé pour cq, ..., ¢,, au-dessus de S.

Démonstration. Soient R,eR, 1<k<p, tels que 0<R; <---<R,<1. Considérons,
pour tout k, la famille des ouverts admissibles U* vérifiant les conditions:

a) U*€X,, b) U*(Ry-y, S)=9.
Alors les U*(R,, S) recouvrent le compact X,, _, (S,) (en vertu de (II.2)) donc un
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nombre fini Uf(Ry, S),..., UF(R,S) d’entre-eux. Pour r,<R, assez grand, les

Ut (re, S), ..., UF(rs, S) recouvrent encore X, _, (S,). La famille

k-1
U= (UI;)ISISI;(, 1<k<p

vérifie les propriétés, les r;, R, étant ceux définis dans la démonstration.
2. Complexes associés

Soit U =(U;); <i<y une famille distinguée pour cy, ..., ¢, au-dessus de S (S,€S).
Désignons par C-(U(r’, S’), #) le complexe de cochaines alternées a coefficients
dans #, soit & ’opérateur cobord. Les C' sont des Og(S’)-modules et § est Og(S’)-
linéaire.

Pour O<r<r’'<1, soit

C-U(r’, 8°), F)-»CU(r, $7), F) (a)

la restriction naturelle.
Il existe un recouvrement standard % de X qui vérifie les propriétés suivantes:
désignons par J; ’ensemble d’indices de %, (S,); il existe

T i={1,.., N}, o {l,..., N}>J,
tels que

100, =1d
et

Ua(So)CUtka(rk+1, So) k=0,...,p—1
Ui(Rka SO)CUaki(SO) k=1,>p

Pour k=0,...,p—1letS'= Sy, ona

T C (U (res1, 87), F) > C (%, (S"), F). (b)
Pour k=1,...,pet S'=Sy, on a

05 :C (% (S7), ) C(U(R,, S'), F). ©
Pour k=1,..., p—1, le diagramme suivant est alors commutatif’

C(U(Fier1, ), F)C(Ue (5, #)

(:\. 1 ©

C(U(Ry, §'), #)
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On définit alors:
1) Pour r,<r<R,, k=1,..,p

C-QU(r, '), F)> C(%,,_,(S'), F) (1)

le composé de (a) et (b).
2) Pour r<R,, k=1,---,p

C(%.(8), F) - C(U(r, §"), F) )

le composé de (c) et (a).
3) Pour k=1,...,p

C (% (S"), F)= C (U, (S'), ) (3)

de la maniére suivante: soit r, <r<R,; (3) est alors le composé

C (U ("), F)SC-(U(r, '), F)SC (U, _,(S), F);

cette définition étant indépendante du choix de r.
(IL.5) Remarques. 1) Sir,<r<R,,r,_;<r’'<R,_,, le composé

c-(U(r, 8"), F)Bc (%, _ (8), F)BC-U(r', S"), F)

est le morphisme de restriction (a).
2) Le morphisme (3) n’est pas le morphisme de restriction

0:C- (U (S7), F) > C (U, (S'), F)

induit par %, _,(S')c#,(S'). Mais les homomorphismes induits en cohomologie

e*, 3)*:H'(C" (%, (S"), F) > H'(C(%,_,(S"), F))

sont les mémes ([5], Lemma 2.6.1).
Soient S’, S” des ouverts de S, S"<=S’'<S,, on a des morphismes de restriction

C (% (8'), )~ C (2 (S"), F)
cCQU(r,S), F)>C(U(r, S"), F).

ces morphismes étant compatibles avec les morphismes définis ci-dessus.
3. Systémes de faisceaux liés

Nous rappelons ici des résultats décrits dans [3], ou I’on trouvera une déscription
détaillée avec démonstrations.
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Soit U= ((U, j;))i<i<y une famille finie d’ouverts admissibles de X,
Ji:U;—> Sx D;(1). Soit

An={(k0,...,k") , 0<k0<...<kn<N}’A= U An.

nz0

Pour ae4, S'=S et r<1, on a par produit fibré, un plongement fermé (au-dessus
de S')

Ja:Ua(r, S') = 8" x Dy(r)
ou

U,(r,8)=NU;(,S), Da(r)=HDi(r)'

iea iea
Pour «, fe A, a=f on a un diagramme commutatif

Ug(r, S') 5 U, (r, S)
jﬂ jaz
S'x Dy (r) 58" x D,(r)

ou 7, est la projection et i I’inclusion.

(I1.6) DEFINITION. Un systéme de faisceaux liés (®,, ¥ ,5) sur (S’ x D, (r), m)
r<1, S’'cS, est la donnée de:

a) une famille (®,),.4 de faisceaux analytiques sur S’ x D,(r).

b) une famille (,4), <  de morphismes de faisceaux

d/aﬂ :(5a d (naﬁ)* 613

vérifiant les conditions:

lpaa=id, ‘/’7a= ((naﬂ)* ‘llyﬁ)oll’ﬁw

On définit de maniére évidente un morphisme de systémes de faisceaux liés.
Si & est un Oy-module, & induit un systéme de faisceaux li€s j, F :(joF ).

=(ja)* 'g

(II.7) LEMME. Soit & un Ox-module cohérent, S' =S un ouvert de Stein. Alors
pour tout ouvert de Stein So= =S’ et r<1, il existe une résolution

—-)9?"—)---—-)9?1—99?0—-)]'*5‘——»0
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sur (Sox D, (1), myp), ot les B*=(RL, Yip) sont des systémes de faisceaux liés et les
RE des faisceaux libres de type fini sur S, x D,(r).
Soit (®,, ¥,4) un systéme de faisceaux liés sur (S’ x D,(r), 7,4); posons

Cn(ra S, (5)'_- @D F(S’XDa(r)’ (ﬁa)
aeA,

et soit
5:C"(r, S',®)->C"*"(r, S, ®)

définie de la fagon suivante: soit £=(¢,)eC"(r, S’, ®), alors

n+1

(68)p= .Z (— 1) Yrgp, (&5

i=0

01‘1 ﬁ=(k0, ceey kn+1)EAn+1 et Bi=(k0’ taey Ei’ ceey kn-l-l)'
Si & est un Ox-module, on a un isomorphisme

C(U(r,S"), F)->C(r, S, juF). (*)

Soit # un 0y-module cohérent et soient r, S, tels que que la résolution du lemme
(I1.7) existe au-dessus de (Sox D,(ro), m,p). Pour r<r, et S’'=S, considérons le
complexe double C:(r,S’, #*) et soit C:(r,S’) le complexe simple associé:

C'(r,S)= ®;_4=n C'(r, S"), Z").

L’homomorphisme C:(r, S’, #°)— C*(r, S’, j«F) définit un morphisme C-(r, S’)
- C*(r, S, juF) d’ol, compte tenu de (*)

7:C*(r, S') = C(U(r, S'), F).

(11.8) PROPOSITION. Avec les notations introduites ci-dessus et pour r<r,
S’'c S, un ouvert de Stein, on a

1) v:C(r, S")>C-(U(r, S"), #)
est un quasi-isomorphisme (c.d.d. ©* induit un isomorphisme en cohomologie).

2) :C"(r, ")~ C"(U(r, S’), F) est surjectif pour tout n.

3) Pour tout n>0, il existe un nombre fini de polydisques D;(r)=C", 1<i<k,
tels que

C"(r, S )= I'(S'xD;(r), Osx ci)-
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4. Propriétés des complexes

(11.9) Notations.

C-(e, §)=C:(,(S"). #)
C(r, S)=C(U(r, S"), F).

Nous pouvons résumer les résultats obtenus jusqu’ici de la fagon suivante:

Soit #: X — S un morphisme g-convexe, ¢ une fonction d’épuisement de constante
exceptionnelle y et # un Ox-module cohérent. Soit S,€S un ouvert et ¢y, ¢’'€R,
y<co<c’ et peN. Soient ¢, ..., ¢,€R, ¢ <c;<+--<c,<c’. Alors il existe

a) une famille W= (U;), <;<y distinguée pour ¢y, ... ¢, au-dessus de Sy ;

b) un recouvrement standard % de X jouissant des propriétés du numéro 2);

¢) un complexe C(R,, S;) construit au numéro 3). (Alors C*(r, S') est bien
défini pour r<R,, S'cS,).

On obtient alors pour tout ouvert S’ =S, un diagramme commutatif, les morphismes
étant ceux définis dans 2) et 3):

C(cp §')
!
C+(r, )5 C(r, S") r,<r<R,
!
C'(cp-1,8S")
§

i (1L.10)
C (¢, S')
¢

! !

C(r',8) 5 C(r', S) r<r' <R,
!

C(c;, S")

(I1.11) PROPOSITION. Soit S'<S, un ouvert de Stein.
1) Pour k, I, 0<I<k<p,

H"(C(cx, 8')) > H"(C(c1, S7))

est: surjectif pour n>q+1, bijectif pour n>q+1.
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2) Pour k,1,0<I<k<p, H"*'(C* (¢, S'))-0— HT* 1 (C*(c;, S'))-0 est bijectif.
3) Pour k,0<k<petr=r.,,,

H"(C(r, §")) > H"(C* (¢, §'))

est surjectif pour n=q+1
4) Pour r,r;<r<R,

™ H"(C(r, S"))~> H"(C:(r, S"))

est bijectif, n>0.
5) Pour n> N (N=nombre d’ouverts de 1)

c'(r,$)=0, C"(r,S8")=0.
6) Soit Q=dimX_.(S') (Q< ). Les complexes
C(ce, S"), C(r,8), C(rS")

sont acycliques en degré > Q.

Démonstration. 1 et 2) résultent de (I.13), de (11.5.2) et du théoréme de de Leray
sur les recouvrement acycliques; 3) résulte de 1); 4) résulte de (I1.8.1); 5) est évident;
6) résulte du théoréme de Leray et d’un théoréme classique ([11], Satz 2).

5. Complexes de préfaisceaux et faisceaux quasi libres

Pour étudier les propriétés des faisceaux images directes R"n,.%, nous introduisons
les complexes de préfaisceaux de Og-modules

€ (c):U—C(c, U)
€ (r):U—C(r,U)
¢ (r):U—C(r,U) (I1.12)

ou Uc S, est un ouvert (avec les mémes notations que cidessus).
Remarquons que €"(r), €"(r) sont méme des faisceaux.

(11.13). DEFINITION. Les 0s-modules de la forme

—?(R)’—' @ Pfk @SXD:(R)
1<isrI
sont appelés Og-modules quasi libres (ou faisceaux quasi libres), ou 7eN, D;(R)<= C"*
est un polydisque de rayon R>0 indépendant de i (N;=>0, si N;=0, D;(R) est un
point) et p*: S x D;(R) — S la projection.
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Etant donné & (R)= @ pi Usx p,(x), on définit, pour r<R, £ (r)=® p' Osxp,cr)
et on a un homomorphisme de restriction f:%(R)— £ (r). Nous étudierons au
chapitre IV des propriétés intéressantes des faisceaux quasi libres.

Le diagramme (II.10), transcrit en termes de préfaisceaux, devient

‘f‘(cp)
‘Z'gr')——»T(r')
: : (I1.14)
i !
€(r) =%(r)
!
%*(co)

ou les #* sont des complexes de faisceaux quasi libres.
(I1.15) Remarque. Désignons par F® le faisceau associé & un préfaisceau .
Alors

R, F = H"(F&* (c))= FH" (%" (c)).

III. TECHNIQUES DE DEMONSTRATION

Le but de ce chapitre est de démontrer les affirmations 4 (g+1) et B(g), qui sont
énoncées dans (II1.8) et (III.10). La démonstration, qui suit les méthodes de [3],
utilise des techniques d’espaces de Fréchet. On notera que la cohérence des faisceaux
R'n, % pour n>q+1 (avec n: X — S g-convexe) découle déja de 4(q+1).

1. Topologies

Soit (S, 05) un espace analytique et # un Og-module cohérent. Alors, pour tout
ouvert S'<S, # (S') est muni naturellement d’une structure d’espace de Fréchet.
Par semi-norme sur % (S'), nous entenderons toujours semi-norme continue; une
semi-norme sur Og(S') sera de plus supposée multiplicative, a savoir g (xy)<q(x)q(»).

(II1.1) DEFINITION. Soit p une semi-norme sur & (S); une semi-norme g sur
Z (S') est adaptée & p si

qoB<p
ou f:F (S)— & (S') désigne la restriction.
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(IIL.2) LEMME. Soit S'€S; alors il existe une semi-norme p sur F (S) telle
que la famille des semi-normes sur F (S') adaptées a p définissent la topologie de F (S').
Soit D(R)<=CN un polydisque et zy,..., zy les coordonnées canoniques de CV.

(II1.3) LEMME. Tout x€0g p r) (S x D(R)) admet un développement unique en
série de Taylor

aeNN

x= ) aa(g)’ a,e0s(S)

et la série

Tt (5)’

converge pour toute semi-norme q sur Og(S) et tout r <R (pour a= (0, ..., 0ly) on pose
lot| =0ty + -+ +ay).

Les (z/R)”* forment donc une Og(S)-base Fréchétique de Ogy p(gy (S x D(R)) que
nous noterons ({,),.n~. Remarquons que la restriction de la base de O(Sx D(R)) a
S’ x D(R) est la base de €¢(S' x D(R)).

Introduisons les semi-normes (multiplicatives) sur @ (S x D(R)):

|l
pour x=F oty  Ixly=3q(a) (1%)

ou g est une semi-norme sur Og(S) et r < R. On vérifie que la topologie définie par ces
semi-normes est la topologie d’espace de Fréchet naturelle de 0 (S x D(R)).

Soit Z(R)= @ <i<1P% Osxpyry avec D;(R)=CY, un Og-module quasi libre.
Alors Z(R) (S) est muni d’une structure d’espace de Fréchet et il existe une 0g(S)-
base (réunion des bases des Ogy p,z)(S % D;(R))) que nous noterons ({,),cq, OU
A={@, )| 1<i<I et a'eN"}. Pour a=(i, &), soit |a|=|a’|. Si x=(xy,..., X;)€
eZ(R) (S), posons:

”x”qr: Sup {”xi"qr}
1<i<I

ou ¢ est une semi-norme sur Og(S) et r<R.
(II1.4) Remarques. 1) Pour toute semi-norme g sur 0s(S), il existe une constante
M telle que

N
”Ca"qrsM(E) Vae A
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2) Pour toute semi-norme g sur Og(S) et r<R, on a

R\
q (aa)< (7) ”x“qr X = Z aaCa

xed
3)
ZA q(a,) [lallg< 0.

4) Soit S'ES, r<Ret f:Z(R)(S)— L (r)(S’) la restriction. Soit p une semi-
norme sur Og(S), ¢ une semi-norme sur 0g(S’) adaptée A p et g<r. Alors

1Bxll o< lxll,, VxeZ(R)(S)

Soient #, ® de spréfaisceaux de Og-modules Fréchétiques (c’est a dire pour tout
ouvert S'c S, #(S') et 6 (S’) sont munis d’une structure de Og(S’)-module Fréché-
tique et les applications de restriction sont continues).

(HIL.5) DEFINITION. Unmorphisme ¢:% — @ estcontinusig:# (S')—» G (S ")
est un morphisme continu de 05(S’)-modules Fréchétique pour tout ouvert S’'c<S.
Les préfaisceaux €' (c,), €' (r) et €'(r) de (I1.12) sont des Og-modules Fréchétiques
et les morphismes du diagramme (II.14) sont tous continues.

La remarque suivante, qui est une conséquence immédiate du théoréme de Banach,
nous sera utile dans la suite.

(II1.6) Remarque. Considérons le diagramme

E
®
F4G,

E, F, G étant des espaces de Fréchet, ¢, ¥ des applications linéaires continues,
surjective. Soit (g;) une famille de semi-normes sur E qui définit la topologie. Alors,
pour toute semi-norme p sur F, il existe une semi-norme ge(q;) et une constante M
telles que

VxeE,IyeF telque Y (y)=o9(x) et p(y)<Mq(x).
2. Les affirmations 4 (n) et B(n)

Soit S un espace de Stein, 7: X — .S un morphisme g-convexe, ¢ une fonction
d’épuisement de constante exceptionnelle y et & un @y-module cohérent.
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Soit S, €S un ouvert de Stein et ¢,eR, y<c,. On peut alors effectuer les con-
structions indiquées au chapitre II: soit ¢'eR, ¢o<c’ et S, un ouvert de Stein,
S« €S,CS. Posons

Q=dimX..(So) (@<w), p=Q—q+3

et soient ¢y, ..., ¢,, ¢o <y <:--<c,<c'. Il existe alors une famille U= (U;), <; <y dis-
tinguée pour c,..., ¢, au-dessus de S,, un recouvrement standard # de X et un
complexe €*(r) (au-dessus de S,) tels qu’on ait un diagramme (I1.14).

(IIL.7). Soit g, r,<@<R,, fixé une fois pour toutes.

(111.8) Affirmation A(n), n=q+1. Il existe un ouvertde Stein S,, S, €S,E S, et un
complexe de Og-modules libres de type fini

o3 0 P4, 1 4 4, P2 (...

détant Og-linéaire et continu. De plus, il existe des morphismes continus (de Og-pré-
faisceaux au-dessus de S,)

a: L —>€(c,) k=0,....,p
a: ¥ -6 (r) r<r<Rgk,
w: L >€(r) r<r<Rk,

compatibles avec les morphismes du diagramme (I1.14) et tels que pour tout ouvert
de Stein S'c S,

a*: H' (L (S")-» H' (C (e, S7))

soit
1) bijectif pour /I>n et k=0,...,p;
2) surjectif pour I=n et k=0,...,p lorsque n>gq+1
k=0, 1 lorsque n=¢g4-1.
Introduisons le «mapping cylinder» de a* (pour la situation 4 (n)):

A (er)=F" (c)® L'’
%l(r)=%l(r)® egl+1
Jf’(r):‘é'(r)@ P+

la différentielle étant définie par

a:%l(ck)—‘) JfH'l (Ck)
(x, y)——(6x +ay, —dy)
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et de méme pour les autres complexes. Nous noterons
Kl(Ck, S/)=J{‘l(ck) (S’)=Cl(ck, S,)® gl+1 (S 1) etc.

(II1.9). La propriété de a* dans A (n) est équivalente a: pour tout ouvert de Stein
S’'<S,, le complexe K*(c,, S')) est acyclique en degré
1) I>n et k=0,..,p
2) I=n et k=0,...,p lorsque n>q+1
k=0, 1 lorsque n=q+1.
(II1.10) Affirmation B(n—1), g+1<n<Q+2. On suppose que les conditions de
I’affirmation A (n) sont remplies. Alors il existe:
1) un ouvert de Stein S, _;, S4€S,_, €S,
2) Qp-1,7s<0n-1 <Ry, avec s=n—g+1 si n=g+1
s=1 si n=q+1
3) un morphisme Og-linéaire continu au-dessus de S, _,

Mp1: "1 (0) > Z"7H (A (0n-1))

(avec ¢ comme dans (1I1.7) et " comme ci-dessus) tel que le diagramme suivant com-
mute

2@ 40
N )

(ou B désigne la restriction).

La premiére partie de la démonstration du théoréme de 1'image directe consiste a
prouver A(q+1) et B(q); pour cela, nous procédons par induction.

(III.11) Schéma d’induction

1) A(Q+1) estvrai

2) B(Q+1) est vrai

3) A(n)+B(n)=>B(n—1) n=q+1

4) B(n—1)=A(n—1) nzq+2.
L’affirmation 4 (Q +1) est trivialement vraie avec #*=0; cela en vertu de (II.11.6).
D’autre part, les complexes £* de A(n+1) et de 4(n) seront les mémes en degré
>n+1, et les complexes /™ pour les situations 4 (n+1) et 4 (n) seront donc les mémes
endegré >n.

3. Démonstration de B(Q+1)

(II1.12) Affirmation C(m), m=>Q +1. 1l existe
i) un ouvert de Stein S,,, S,€S,,ES,
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ii) @m r,<0m<g¢ (¢ comme dans (IIL.7))
iii) un morphisme Og-linéaire continu au dessus de S,,

T €™ (0) > Z™ (€ (em))
tel que le diagramme suivant soit commutatif (avec f la restriction)

€™ (0) © Z"(%"(e))
1,¢,,. /
s [
Z" (¢ (em))
Visiblement C(Q +1)=B(Q + 1). D’autre part, C(m) est trivialement vrai si m> N,

car €™ (r)=0 par (IL.11.5). Montrons que C(m)=C(m—1), m>Q+1. Soit S,,_, un
ouvert de Stein, S,€S,,_1€S,, et 01, 7, <Qm-1<Cm-

(III.13) LEMME. 1/ existe un morphisme Og-linéaire continu au-dessus de S,,_,
h: 6" (@) > €™ " (em-1)
tel que le diagramme suivant commute (avec B la restriction)

z"(€(0))
VL
" (0m-1)>Z" (€ (0m-1))

C(m—1) est une conséquence immédiate du lemme: en effet, considérons le dia-
gramme (au dessus de S,,_;)
¢! (e)>%" ()
]
(ém— ! (Qm— 1)

h

et posons 7,y =f—hod.
Pour démontrer le lemme, considérons le diagramme

" (0, Si)

@™ 1 (0> Sin) 2> Z™ (€*(Qum» Sty)

En vertu de (I1.11.6), 6 est un morphisme surjectif d’espaces de Fréchet. Soit ({,),c4
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la base de C™ (g, S.,) et p une semi-norme sur 05 (S,,) qui vérifie les conditions de (111.2)
pour S,,_,€S,,. Par (IIL6), il existe o* 0<g*<p, une semi-norme P sur Og(S,,),
une constante M et (7,)uc 4= C™ ' (0> Si) tels que

5ﬁa=nmCa Hﬁa”pgm_l <M"Cax” Po-

Soit 7,e6C™ 1 (g,,- 1, S) la restriction de #,. Par (I[1.4.1 et 4), on a pour toute semi-
norme g sur Og(S) adaptée a p et r<g,,;

*\ |«
Il <M’ (9—) .
Q

On pose

h:€" ()~ €" " (em-1)
X=Y a0, Y, Ay -
Par (II1.4.2), on a g(a,)<(¢/R) | x|l ,z pour g*<R<g, donc Y, q(a,) |n,], con-

verge pour ¢ adaptée a p et r<g,,_,. Alors ) a,n, converge vu qu’il existe suffisam-
ment de semi-normes g adaptées a p.

4, A(n)+B(n)=>B(n—1),n=q+1

Par B(n), on a un morphisme COg-linéaire continu au-dessus de S,

o2 " (0)~ Z" (A (en))
qui jouit encore des propriétés de B(n) (o désigne ici le « mapping cylinder» pour la
situation A (n)).

Soit 9,1, Fs<Qp-1 <Ry, (s=n—q+1sin>q+1,s=1sin=qg+1)et soit S,_; un
ouvert de Stein, S, €S, _,CS,.

(1I1.14) LEMME. 1 existe un morphisme Og-linéaire continu au-dessus de S, ,

h: A" (@)= A" (0u-1)
tel que le diagramme suivant commute

z" (A (e))
/ p
|
fn—l (Qn-—l)'l’zn('i.(en—l))
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B(n—1) est une conséquence immédiate du lemme; en effet, considérons le dia-
gramme (au-dessus de S,_,)

A" ()2 +"(e)
lp W /S
n—1 ‘/
i (Qn—l)
On pose alors
ﬂn_1=ﬂ-—h°a.

Pour démontrer le lemme, soit o*, ¢, <0* <R, (¢,-, et s comme ci-dessus) et
considérons le diagramme

A" (0, S,)
Z"(A (2w S))
B
A" (%, S,) > 2" (A (0, S,)

(II1.15). On a ImBon,cIma.
On voit cela facilement en considérant le diagramme.

" (0w Sn)-> K" (2> Sy)

!
B K" (cs’ Sn)

i)
+"(¢* S») > K" (2 S,)

et en tenant compte du fait que K*(c,, S,) est acyclique en dégré n (IIL9).
Considérons le produit fibré:

N=Ker {" (¢, S,) @A (¢" S,) Z223 2" (+(e%, S,)} -
En vertu de (II1.15), la projection
Y:N-A"(e, S,)

est un morphisme surjectif d’espaces de Fréchet.

Soit ({,).c4 1a base de E’"(g, S,) et p une semi-norme sur 0g(S,) qui vérifie les pro-
priétés de (IIL.2) pour S,_,€S,. En vertu du théoréme de Banach appliqué a y,



Un théoréme de finitude pour les morphismes g-convexes 443

il existe une semi-norme P sur 05 (S, ) et 3, 0 <@ <, une constante Metf, e K"~ * (¢*, S,)
tels que

(Cm ﬁz)eNs llﬁa!‘pgn_1<M|[Ca[|P£‘

Soit n,€ K"~ (0,-1, S,—1) la restriction de #,; alors par (II1.4.1 et 4), on a, pour toute
semi-norme g sur Og(S,-) adaptée a p et r<g,_,

5\ lal
@
”na”qrgM (_) .
0

On pose alors

h: A" (0, n) > A" (0n—1, 1)
Z aaCa"’ Z ANy -

acA acA

Pour la convergence, voir la fin de la démonstration de (III.13).
5.B(n—1)=>A(n—1),n=q+2
Dans ce paragraphe, nous supposerons toujours que B(n—1) est vrai.

(I11.16) LEMME. 1 existe un ouvert de Stein S,_,, Sy S,_1 €Sy, un Og-module
Z libre de type fini et un morphisme Og-linéaire continu au-dessus de S, _, (au sens des
préfaisceaux)

Q% L >Z" (A (cs-3))
tel que, pour tout ouvert de Stein S'<S,_,

S+0*:C"2(cy_y, SVDL > Z" (K (Cs— 2, S”))

soit surjectif (s=n—q+1 comme dans B(n—1) et X" est le «mapping cylinder» pour
la situation A(n)).
 Remarquons que X"~ 2(c,_,)=%""2(c,-2).
Avant de démontrer ce lemme, montrons comment on peut en déduire 4 (n—1).
En vertu de (I1.11.1) et de propriétés elémentaires du «mapping cylinder», ’homo-
morphisme

Hn—l (K'(Cp, S,,..l))"" Hn_l (K' (Cs—z’ Sn—l))
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est surjectif; par (1.2.2), il en est donc de méme de

Z”-l (K. (cp’ Sn—l)) - Zn—l (K' (cs- 2 Sn—l))'
Il existe donc un morphisme Og-linéaire au-dessus de S,_,

L 2" (A" (c,))
tel que le diagramme suivant commute

ZL(S,- 1)2’2"_ ! (K*(cps Su-1))

N l
z" ! (K.(cs—Z’ Sn— l)) :
On définit @,: % — Z"~1 (A" (R,)) en rendant commutatif le diagramme
S —
,?;» Z" Y (A (c,))
N
2 (A(R,)).

En vertu de (1.2.2) et (I1.8.1)

Z" (K Ry 8p-1)) > 2" (K (Rp, S,-1))

est surjectif; on peut donc définir &,:. L — Z""! (A *(R,)) de telle maniére que le
diagramme suivant commute

L—2,7"" 1 (A (c,))
1% \"’\2l
Z N (AR 2 (H(R,))

Par composition avec les morphismes de (I1I.14), (si on désigne par @ tous les mor-
phismes définis ci-dessus), on définit « et d par

L-Z" (A (a))=C" " (a)DL"
O=(a, —d): L > Z" (A (r))c€ ()DL (*)
L-Z A (r))cC (r)oL"

Le complexe #* de 4 (n—1) est alors défini par
L= 05 L 5P P

Les morphismes a* de A(n—1) sont ceux de 4(n) en degré >n et ceux qui figurent
dans (*) en degré n—1.
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Pour démontrer (II1.16), considérons le diagramme déduit de (IL.14):

H(c,)
l
Ho(r) = oH(r) r.<r'<r<R
l 1
H(r') = (")
!
e%/‘.(cs— 1)
!
.%7'(r”) - A (r") reo1<r'<R,_,

{
%.(Cs— 2)

r

Posons:

M1 (', r")=Ker{Z" ™ (A(r')@ A" (r") S 2" (A ("))}
(avec B la restriction) et

QI (¢, P7) > 27 (A (r)
la projection. Soit

M (e, 8= (r ") (S7).

(I11.17). PROPOSITION. Pour tout ouvert de Stein S'<S,_,, on a:

1) la somme des homomorphismes

7Y A (r, S))
e
ML, S')—Q’>Z"—1 ((r', "))

est surjective.
2) I’homomorphisme (obtenu par composition)

Z" (K (r', ) o (M1 (r', 1", 8")) > H" 1 (K*(¢s— 2, S”))

est surjectif.
_la démonstration de cette proposition est facile; il suffit de remarquer que
K:(r,S')—>K*(r, S’) est un quasi-isomorphisme par (IL.11.4) et que les homo-
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morphismes

(K (r, $) = H" ™ (K" (6,1, 5"))
H™ (K (r', ")) » H"* (K*(¢,-2, S"))

sont surjectifs par (I1.11.3).

Pour prouver (IIL.16) il suffit donc de montrer:

(IIL.18). 11 existe un ouvert de Stein S,_;, Sx€S,_,€S,, un Og-module ¥
libre de type fini au-dessus de S,_; et un morphisme Og-linéaire continu (au-dessus
de S,_,)

Y:L—-Z" (A (r))

tel que, pour tout ouvert de Stein S’ < S,_;, ’homomorphisme
l/l+(PI$(S’)@Mn—1(r', l'”, Sl)__)zn-l(lz'.(rr’ S,))

soit surjective.
Pour démontrer cette affirmation, rappelons que par B(n—1), on a un morphisme

7z"n—lz'j‘”“1 (Q)_)Znul ('{‘. (Qn—l))

au-dessus de S,_; (r;<g,-1<R,, s=n—q+1).
Considérons le diagramme:

jn*l (Rpa S:l’—l)
B
j"—-l (Q’ Sr,z—l)

Tn—1

M" (Qn—J’ R,_;, S;—l)l’zn_l (Jf'(Qn-—n S;—1))

ou ¢ +m,_,°f est surjectif par (I11.17.1).
Muni de la topologie induite,

Mn—l (Qn—ly Rs—h S;_I)C‘i‘"’l (Qn—ls S;—l)®jn—2(Rs~la S;n——l)
est un espace de Fréchet et cette topologie est définie par les semi-normes:

” (x’ y)"qu =Sup {"x”qr’ "y"qR}

avec r<g,.;, R<R,_; et ¢ semi-norme sur Og(S, ;).
(IIL.19). Soit S,_;, Sx€S,_,€S,_;, un ouvert de Stein, soit ({,),.4 la base
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de I?""(g, Sn—1) et p une semi-norme sur Og(S,_,) qui vérifie les conditions de
(111.2) pour S,_, €S, _,.

Comme ¢ +m,_, o f§ est surjectif, on peut appliquer (II1.6): il existe g*, 0<g* <g,
une semi-norme P sur 0g(S,_,), une constante M et

ﬁaeMn_l (Qn—l’ Rs-ls Srli—l)’ Eaekn—l(R’” S:r—l)
tels que

(pﬁa +7I,,_1 oﬁza=nn—lca’ Sup {”Ea”pa’ ”ﬁanpr,r,..l} < M” Caz”q" -

En vertu de (III.4.1 et 4) on a:
(II1.20). Les restrictions

"aEMn—l(rs’ rs—l’Sn—l)’ CaEI?n_I(Qs Sn-—l)

jouissent de la propriété suivante:
Pour toute semi-norme ¢ sur 0g(S,_,) adaptée a p, r<r,r'<r,_; R<g, on a

*\ |a] * ||
0 . @
””a”qrr' < C(-“) ’ ”fa”qR < C(._.._)
0 @

ou C est une constante indépendante de g, r, r’, R.
Soit g, 0* <@o <0, fixé; on a (avec g et R comme ci-dessus)

0 la] (Q >|¢| (Q*>‘¢| Q*)lal
— B C — —_ = C _ W
a;A (Qo) “éa”qR < aEE:A Qo 0 anA (Qo =®

(IIL.21). 1l existe une partie finie 4, <4 telle que

Jal
y (—9) 1 r <3

aeA—A4o \ Qo

Pour un ouvert de Stein S'<S,_;, considérons le diagramme:

'%‘;-n—l (Q, Sr)
Tn-1

M (ry 1y, )27 (A (1, S7))
(II1.22) PROPOSITION. Tout zeZ"~'(K+(r,, S')) s’écrit

Z=T,_1X+Qy
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avec

x=Y ait,elX" '(0,S) a,e0:(S)

acAgp
-1 ’
yeM" " (ry 1y, S).

Cette proposition implique visiblement (III.18) et donc aussi (I11.16). La démonstra-
tion se fait par itération, utilisant le fait que ¢ +m,_, est surjectif par (III.17.1) et &
I’aide du lemme suivant:

(II1.23) LEMME. 1/ existe des constantes M,, M, avec la propriété: pour tout
xe K" (o, "), il existe

X1 Ej”-—l (Q’ Sl)
x*= Z aaéae')f”_l(g9 S,)’ aae@S(Sl)

ae Ao

yleMn-l (rs9 rs—l’ Sl)

tels que

1) x=m,_1x*+m,_1x; +0y,

2) pour toute semi-norme q sur Og(S') adaptée a p (p comme dans (111.19)) et
0’,00<0 <@, 0na:

2) 1%1lgq <31l

b) q(aa)<M1 nx"qa" aEAO

C) "ylnqr‘r”SMz Hx“qa’, r’<rs’ r”<rs—1°

Démonstration. Soit

x=)Y al,, a,e0:(S).

aed
Posons
5 x* _
x1= Z aagc’ X = Z aaéa’ yl_ Z aa”a‘
acA— Ao acAop acA

Ces séries convergent par (I11.4.2) et (II1.20).
1) est visiblement vérifié. Pour 2), on a par (111.4.2)

fal la|
g (aa)s(g) nxn.,g,<(f~) Il )

0
Posons
0 L
L=sup {|«|}, M1=(—>
aecdo Qo

d’o1 2b).
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Pour 2a), on a par (*) et (II1.21)

lel
“x] ”qg’< Z q (aa) ” Cua”qq’ < ”x”qa’ Z (£> ” Cfu“qq' <‘% ”xuqe’ .

acA—Ag aeA—A4o \Qo

Pour 2c), on a par (*) et (II1.20)

0 lal Q* Ja
il < T 4(a) linaliqo,<C|ux|1.,a,z(_) <_) |

aed \CQo 0
On pose

My=C 5 (Qf)m.

acd \ Qo

IV. LE THEOREME DE L’IMAGE DIRECTE

Dans le premier paragraphe de ce chapitre, nous démontrons quelques propriétés
des faisceaux quasi libres. Ces résultats combinés avec ceux des chapitres précédents
nous permettent alors de démontrer (voir (IV.6)) que tout morphisme g-convexe
vérifie ’hypothése de séparation (I.16) et ensuite le théoréme de I'image directe
(théoréme (IV.8)) dans toute sa généralité. Un théoréme d’approximation (voir (IV.10))
du type théoréme de Runge généralisant (I.17), qui permet d’améliorer un peu (IV.8.2),
est démontré au paragraphe 3.

1. Propriétés des faisceaux quasi libres

(IV.1) THEOREME. Soit (S, O5) un espace de Stein, =2 (R) un Og-module
quasi libres, F un Og-modules cohérent et ¢: L —F un morphisme continu. Alors

1) le Og-module ® =Im ¢ est cohérent

2) pour tout ouvert de Stein S,cS, ¢: P (Sy)— ®(S,) est surjectif (donc
0 (L (S,))=F (S,) est un sous espace fermé)

3) pour toute paire de Runge d’ouverts de Stein (Sy, S;), Sy =So< S, la restriction

Ker (Z(So) = Z (So)) - Ker (£ (S,)~» F (S,))

est d’image dense.

Démonstration. a) Démontrons d’abord la premiére affirmation et le cas particu-
lier de la deuxiéme lorsque S,€S. Soit ({,),c4 la base de Z(R) (S), #"<=Z le
Os-module cohérent engendré par les ({,)4) < €t #"= @ ("). En vertu d’un théoréme
bien connu ([4], Satz 8) la suite croissante (#"),.n de sous-modules cohérents de & est
stationnaire sur les compacts de S et Z=, #" est donc un Og-module cohérent.
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Posons encore & =|_J, &/". Pour tout ouvert de Stein S,€S on a les deux pro-
priétés:

o (So)= £ (S,) est un sous espace dense, (*)
@ ((So))=%(S,). (++)

La premiére propriété est évidente. D’autre part, il existe n, tel que & | So=%"™ | S,
et @: L™ | So— & | S, est donc surjectif, d’ou (**) en vertu du théoréme B.

Pour achever la démonstration, il suffit de montrer que ® =%. Compte tenu de
(*#), on a pour tout ouvert de Stein S,€S:

'@(So)=¢(d(so))c¢(-5?(So))c'gr(so)-

Vu la continuité de ¢ et la propriété (x), #(S,) est dense dans ¢ (£ (S,)) (pour la
topologie induite par £ (S,)); comme #(S,) est fermé dans F(S,;), on a
#(So)= (¥ (S0))-

b) Démonstration de 3). Remarquons d’abord que pour un Og-module quasi
libre #* et une paire de Runge (S,, S;) d’ouverts de Stein, S, =S, S,

g*(so)"’g*(sl)

est d’image dense.
Pour démontrer 3), il suffit, compte tenu de (1.19), de considérer le cas particulier
ou S,€S, et ce cas résulte de la remarque ci-dessus et du lemme suivant.

(IV.2) LEMME. Soit ¢:Z —%F comme dans le théoréme et S,€S un ouvert de
Stein. Alors il existe un Og-module quasi libre #* au-dessus de S, et un morphisme
continu Y: P - &L | S, tel que, pour tout ouvert de Stein S' < S,, la suite

P*(S) b Z2(S)BF(S)

soit exacte.

Démonstration du lemme. Soit ({,),c 4 la base de Z(S), £,=¢({,) et soit S; un
ouvert de Stein, S,€S,;ES. Comme & =¢(Z) est un Os-module cohérent (voir
ci-dessus), il existe un entier n, tel que G | S; soit engendré par les &, | Sy, |ol <#o.
Renumérotons: ({,)aj<n=(Cn)1<ncn> €t soit &,=0((,) et A, ={aecd||a|>no}.
Considérons la suite exacte de Og-modules cohérents au-dessus de S;:

0—)9?-—)0?'5'1-3».9"'81—)0

ou u est induit par les £, et Z=Keru.
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On a: pour tout ae A, il existe G*=(GY, ..., Gy)eds (S,) tel que

&= ) G, sur S,.

1sn<N

Affirmation 1. 1l existe r<R (R comme dans I’énoncé du théoréme) et un choix
des G* (xeA,) avec la propriété: pour toute semi-norme g sur @3 (S,), il existe une
constante M telle que

o\ lal
GH<M|( -] .
q(G%) (R)
Pour cela, considérons le diagramme
@Isv (S1) - @g (So)
I "
&z (Sl)g"@ (51)‘+ ® (So)-

Soit p, une semi-norme sur 0% (S;) qui vérifie les propriétés de (I11.2) pour S,€S;.
Comme u est surjective, il existe une semi-norme p, sur ®(S,) telle que pour tout
ye®(S,), il existe xe0j (S,) avec

y=u(x) et po(x)<ps(»).
Comme ¢ est continu, il existe une semi-norme p, sur Og(S;) et r <R tels que

pi(@(X))< x>  YxeZ(S)).

Pour une constante K, on a par (1I1.4.1)

P\l
Py (&a) < ”Ca”pzr < K (R)
et il existe G*€00(S,) avec
lal
r
@ s nerex(])"

Vu le choix de p,, on en déduit le résultat.
Affirmation 2. Pour tout ouvert S’ cSq et X=Y ,c 4 2,{,€ L (S"), la série

Z aaG: € (ps (S,)

acA

converge Vn, 1<n< N (pour les G, de I’affirmation 1).
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En effet, pour une semi-norme g sur 0g(S’) et ¢, r <¢ <R (r comme dans I'affir-
mation 1) on a, par (111.4.2),

q(aa)s(g)'“' Il,e

donc
|}
q(aacz)sq(aa)qw:)sx(g) 1%]re.

Soit F*=(F{,..., F3)els(So), 1<A<L, un systéme de générateurs de Z | S,.
Affirmation 3. Soit S’ < S, un ouvert de Stein et

x=Y a,l,=Y al,+ Y al,eZ(S).

acAd n<N aceA;

Pour que ¢ (x)=0, il faut et il suffit qu’il existe b,€05(S"), 1 <A<L, tels que I’on ait,
pour tout n, I<n<N,

a,,+ Z aanr- Z bAF:

aed; 1<A<L
En effet,
e(x)= Y (a,+ ) a.Gp) i,

1<ns<N acAy

donc ¢ (x)=0 si et seulement si

(a1+ Y a,Gy,...,ay+ Y, aaG}‘(,)eQ?(S’).

acA; acAy

Considérons, au-dessus de Sy, le Og-module quasi libre
F*=05| Se®Z | So.

Soit (1;)1<1<L" (Ma)ae 4 12 base de P*(S,) définie par:
¥2=(0,..., 1,...,0)€05(S,) et n,={,|SoeZ(So).

Définissons:
w:g*—)gls()a
B [0 si ¢4
l//(yl)—K;sNFﬁm b (n)=1 _ Y Gglgn+§a si aed,.

1<n<N
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Alors @oy: $* > F | S, est z€éro; d’autre part, pour S’ Stein et

x= Y al+ Y al,eZ(S)

1<n<N acAy

tel que ¢ (x)=0, on a pour tout n

a,+ Y, a,Gi= Y b,F}.

aeAy 1<ASL

Alors ¥ (z)=x, avec

Z= Z Lbly}.+ Z aana

I EYES acAj

ce qui démontre le lemme.
c) La démonstration de la deuxiéme affirmation du théoréme pour des ouverts de

Stein arbitraires est maintenant facile. On utilise pour cela I’affirmation 3) du théoréme
et (1.19).

2. Le théoréme de ’image directe

Soit S un espace de Stein, #: X — .S un morphisme g-convexe, ¢ une fonction
d’épuisement de constante exceptionnelle c* et # un 0Oy-module cohérent.

(IV.3) LEMME. Soit Sy< S un ouvert de Stein et c<c*. Alors il existe, au-
dessus de Sy, un complexe

Vﬂ-=...__)0—+,,/7‘1—-)jq+l > A¥NS0>-

de Og-module, avec M" libre de type fini pour n>q et M#*? quasi libre, a différentielle
continue, et un morphisme continu de complexes

a: M —>E(c)

tel que, pour S'c S, Stein,
1) a*:H"(A*(S"))—> H"(C*(c, S"))
soit un isomorphisme en degré n>q+1;
un épimorphisme en degré n=q +1.
2) a:Hq+1 ('//{. (S’))sép —=* Hq+l (C‘ (C’ S'))sép
soit un isomorphisme.
Démonstration. Reprenons les constructions du chapitre III; les affirmations
A(q+1) et B(q) sont donc vérifiées (avec co=c).
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Soit

Y:Z2(A(c))~>€(c)
p:Z(A(c))»> 2!

les projections, qui sont défines au dessus de S,.; (ou S,;; et £* sont comme dans
A(g+1)et A (c) est le «mapping cylinder» de a*: #* - %" (c)). Comme

Z1(A(c))={(& x)e¥ (c)@ L™ | 8¢ = —ax, dx=0},
le morphisme de complexes

v 0—— Z4(Ko(c, S')) 2> 2111 (S) S 112 (S') >

! v da le
C' (e, ') Cl(c, S') B C* (¢, 8') B C* 2 (e, S) >

induit en cohomologie un isomorphisme en degré >g+1 pour S'cS,,, Stein.
Soit B,*!(c, §")=C?!(c, S") 'adhérence de C?(c, S’) et posons

B=o"1(B*1(c, S' )2 (£ (S") =L (S)

Soit S’€S- un ouvert de Stein (S comme dans B(q)) et considérons le diagramme:
(Iv.4)
AH(e, 5

Z* (A (ep 5')) > Z* (K (2 §')

Z(K*(c, S')) 5 gort ()

(> 0, comme dans B(g)). Soit y: K (e, )= Z%(K*(¢c, S')) ’homomorphisme com-
posé. Visiblement

ImpoycImpc B £+ (S’)

(IV.5) Affirmation. Impoy est dense dans B (pour la topologie de .#7**(S")).

De cette affirmation, on déduit facilement le lemme en posant: .#7="(p) et
M'=L" n>q,avecd=poy: M1 M1 et al=y)oy:. 47— (c). La premiére partie
de (IV.3) découle alors de A(g+1) et la deuxiéme de I’affirmation.

Démonstration de (IV.5). Soit xeB; alors dx=0 (d:£1*1(S’)—L1*%(S")).
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Posons
E=axeBi(c, S') (*)
Considérons le diagramme (avec un changement de notations pour a)

$q+l (S/)___g'_)cq+] (cp, S’)

l; NG

(e, §)—C""" (o, S")

et posons
E=axeCi*(c, '), E=axeC®(g,8’), E=axeC?*l(q, S").

En vertu de (*), de (IL.11.2) et (IL5.2), &’eBv*!(c,, S’) et il existe donc une suite
("*)=Ci(c,, S’) telle que én*——¢'. Par restriction, il existe donc une suite

(T)=C(o, S’) telle que 6if* - —E. Construisons une suite (r;")c Ci(g, S') telle que
on— — Z
Pour cela, considérons le diagramme

C(e,S') 5C(o, S")
'} é

271 (Co(e, S)NHZ(C(e, S1)

ol les lignes sont surjectives par (1.2.2) et (I1.8). Soit donc (¢*)=C(g, S'), ta*=#*.
Alors

7(0a* +&) =67 +& >0,

et il existe donc (b*)=Z2*1(C+ (o, ")) telle que
t(b*—6d*—F)=0 et B 0.

Puisque 7 est un quasi-isomorphisme, on a
b*—d6d*—EedCi(g, S').

Soit (c")c C4(g, '), ck=b*—5a*~¢.
On pose 7 —a"+c" Considérons la suite ((n" x))< K9(g, ).

Affirmation. y (n , X) = X.
Pour voir cela, rappelons la définition de x, (II1.14):
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n,=B—ho0, B étant la réstriction et J(u, v)=(du+oav, —dv). Donc =, (,‘1’::’ x)
= (Bn*, x)—h(on* +¢, 0); comme h(Sn* +¢, 0)— 0, on en déduit Iaffirmation.

(IV.6) COROLLAIRE. Aveclesnotationsde (IV.3), ona: les espaces H** (4 (S"))
et H*1(C*(c, S")) sont séparés (donc Fréchet) et

A (A (S) > B (C e, §)

est un isomorphisme (d’espaces de Fréchet).
En d’autres termes, I’hypothése (sép) de (1.16) est donc toujours vérifiée.
Démonstration. Dans le diagramme commutatif suivant

H* (-(S")—— H* 1 (C(c, §))

H (M(S)) o —225 HT* 1 (Co(c, §'))gy

u et o, sont des isomorphismes par (IV.1.2) et (IV.3), et «* est un épimorphisme par

(Iv.3), d’ou le résultat.
En fait, pour des ouverts S'€S*, la démonstration du corollaire n’utilise que
les résultats du théoréme (IV.1) démontrés sous a).

(IV.7) COROLLAIRE. Soit S,€S un ouvert de Stein et c<y*. Alors il existe,
au-dessus de Sy, un complexe

M= 0> M> M1 5.5 4N 50>

de Og-modules libres de type fini et un morphisme (continu) de complexes
a: M — € (c)

tel que, pour S' < S, Stein,
a*: H* (A (S'))> H"(C(c, S"))

soit un isomorphisme (d’espaces de Fréchet) pour n=q+1.
Compte tenu du corollaire précédent, c’est une conséquence immédiate de (IV.1.1).
Ces deux corollaires, (1.20), (II.15) et le théoréme B impliquent maintenant trivi-
alement le théoréme principal. '

(IV.8) THEOREME. Soit S un espace de Stein et n: X — S un morphisme g-con-
vexe, @ une fonction d’épuisement de constante exceptionnelle y, et F un Ox-module
cohérent. Alors
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1) les Og-modules R*t % et R'n % sont cohérents et la restriction
R'n,# — R'n %

est un isomorphisme pour n=q+1 et ¢c>y (avec n,=n | X, —S).
2) pour tout ouvert de Stein S'CS, c>y et n=q+1, les espaces H*(X(S'), ),
H"(X,(S'), #) sont Fréchet et les morphismes du diagramme

H" (X (5), )= R"1,F ()
! |
H"(X,(S'), )= R"1.F (S')

sont des isomorphismes (d’espaces de Fréchet).
On notera que la démonstration du fait que les espaces H"(X(S'), #) sont
Fréchet utilise de maniére essentielle la définition globale de la fonction d’épuisement.

3. Un théoréme d’approximation

(Iv.9) THEOREME. Soit S un espace de Stein, n: X — S un morphisme g-convexe,
@ une fonction d’épuisement de constante exceptionnelle y, F un Oyx-module cohérent
et U un recouvrement standard de X. Alors, pour c¢>7v et pour (S, S;) une paire de
Runge d’ouverts de Stein S, <= S,< S, la restriction

ZU(U(So), F) = Z9(U:(51), F)

est d’image dense.
Démonstration. Compte tenu de (I.19), il suffit de considérer le cas ou S,ES, et
par (1.17), il suffit donc de montrer que

Z(U:(So), F) > Z0(U.(S1), F)

soit d’image dense. Considérons les complexes .#*, €*(c) et o*: A* —€*(c) de (IV.3)
(avec Sx=S,); par (1.2.3), il suffit de montrer que

Z4(C(c, So) = Z4(C* (¢, 1)) (*)
soit d’image dense (le recouvrement standard utilisé pour définer €*(c) n’est pas le
recouvrement %).

(IV.10) LEMME. Le morphisme o:.#*—%€"(c) construit dans (IV.3) a la pro-
priété: pour S’ = Sy ouvert de Stein,

al:Z1( M (S'))—>Z%(C(c, S"))

est d’image dense.
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Ce lemme implique le théoréme; en effet, comme dans le diagramme

Z°(M~(So)) > Z°(A*(S,))

Z8(C+(c, S0))— 2%(C(c, S1))

B est d’image dense par (IV.1.3), on en déduit ().
Démonstration de (IV.10). Comme pour la démonstration de (IV.3), reprenons les
constructions de 4 (g+1) (avec ¢y=c); par (1.17)

Zi(C (e §)) > Z9(C* (c, §))

est d’image dense. Cet homomorphisme se factorise par Z?(C* (g, S')) (comme dans
(11.10)), donc

Z1(C (e, §"))~2°(C(c, §))
est d’image dense. Par (1.2.2) et (II.8)
Z4(C+ (e, 5"))~»2%(C*(e, "))
est surjectif. Comme
Z4(C-(o, )= Z*(K- (o, ")) = K2 (e, ') = A*(S")
et
poy(Z%(C-(e, §)))=0e.4**1(S")
(avec p et y comme dans (IV.4)), on en déduit le résultat.
(IV.11) COROLLAIRE. La deuxiéme partie du théoréme (1V.8) est vraie pour tout

ouvert de Stein S’ < S.
Pour la démonstration, utiliser (I1.19).
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