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Sur le type principal d'orbites d'un module rationnel

par Th. Vust

Soit G un groupe algébrique réductif opérant linéairement et rationnellement dans

un espace vectoriel M de dimension finie, le corps de base étant algébriquement clos
et de caractéristique nulle. On note mM le maximum des dimensions des orbites de G
dans M. Il n'est pas difficile de vérifier que l'ensemble des points de M dont l'orbite est
de dimension mM est ouvert. On sait d'autre part (cf. [7], [4]) qu'il existe un type
principal pour les orbites de G dans M, c'est-à-dire qu'il existe un ouvert de M, stable

par G, formé d'orbites (^-isomorphes. En particulier, les orbites de type principal sont
de dimension mM.

Dans le cas où G est simple, A. G. Élashvili a donné dans [3] la liste complète des

représentations rationnelles G-*GL(M) pour lesquelles mM est strictement inférieure
à la dimension de G. De plus, pour chacune de ces représentations, il décrit l'algèbre
de Lie ï) du sous-groupe d'isotropie d'un point d'une orbite de type principal.
L'examen des tables de [3] fait apparaître certaines propriétés de la structure des

algèbres ï). En particulier, notant g l'algèbre de Lie de G, on a le résultat que voici,
ielatif au radical de ï):

THÉORÈME 3. On suppose G simple. Soit ï) l'algèbre de Lie du sous-groupe
d'isotropie d'un point d'une orbite de type principal.

(i) Si ï) est réductive dans g, alors ï) est soit semi-simple, soit commutative.

(ii) Si ï) n'est pas réductive dans g, alors ï) est produit semi-direct d'une sous-algèbre

semi-simple par son radical nilpotent.
Le but de ce travail est de donner une démonstration «à priori» du théorème 3.

L'auteur tient enfin à préciser qu'une démonstration due à J. L. Koszul du point (i) a

été utilisée à la proposition 2, §2.

§1. Résultats préliminaires

Le corps de base k est algébriquement clos et de caractéristique nulle.
Soit H un groupe algébrique affine qui opère (morphiquement) dans une variété

affine X. On note Hx le sous-groupe d'isotropie et H{x) l'orbite du point xeX;
TxH(x)cTxXest alors l'espace tangent à H(x) en x. On désigne par k[X~\ l'algèbre
des fonctions régulières sur X9 par ,?•/l'image de/e&pf] par l'automorphisme de

k [X] associé à self et par k [Z]H la sous-algèbre des invariants de k [Z].
Soit K un sous-groupe réductif de H; on suppose que K opère dans une variété

affine Y. On considère alors l'opération de K dans Hx Y définie par t(s,y)
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(s*"1, t-y). On définit la variété affine //xxFpar k[HxKY2 k[H x Y}K (qui est

une algèbre de type fini puisque K est réductif L'opération à gauche de H sur le

premier facteur de Hx Y commute à l'opération de K et induit donc une opération
de H dans HxKY. Ecrivant (s, y) l'image de (s,y)eHxY dans Hx K Y, il n'est pas
difficile de vérifier que H^jj=sKys~1.

De manière générale, on note H° la composante connexe de l'élément neutre e de

H et DH le sous-groupe dérivé de H.
Dans la suite de ce paragraphe, G désigne un groupe algébrique réductif opérant

linéairement et rationnellement dans un espace vectoriel M de dimension finie. Soit

xeM; en vertu d'un théorème de Matsushima (cf. [4]), pour que G(x) soit affine, il
faut et il suffit Gx soit réductif. On note enfin mM (resp. aM) le maximum des dimensions

des orbites (resp. des orbites affines) de G dans M. Si mM dimM, c'est-à-dire si

G a une orbite ouverte dans M, on dit que G opère presque transitivement dans M ou

que M est un G-module presque homogène.

LEMME 1. Soit xeM tel que Gx est réductif de dimension dimG — aM. Le G°x-

module TxMc* M se décompose alors en

M=TxG(x)®T®P

où l'opération de G°x dans T est triviale et l'opération induite de DG°X dans P est presque
transitive.

Preuve. Le sous-groupe Gx étant réductif, on peut trouver un supplémentaire
Gv-stable N de TXG (x) dans TXM~ M. On considère alors la variété affine GxGx N= M'
et le morphisme ç:M' -+M défini par q>(s9 y)=s(x+y). Ce morphisme commute aux

opérations de G dans M' et Af, et est étale au voisinage de {e, 0) (cf. [7], [5]). Il en

résulte que, pour tout y dans un voisinage de l'origine dans N, on a

L'hypothèse faite sur x et le fait que (Gx)Ày (Gx)y pour tout Ae/:-(0) et yeN,
impliquent que, pour tout yeN, (Gx)y est réductif si et seulement si (GX)^ G% Cela

signifie que l'origine est la seule orbite affine de Gx dans le supplémentaire G°-stable

P de (N)G* T; l'origine est donc aussi la seule orbite affine de DG°X dans P. Il
résulte alors du corollaire 2 de [5] que DGX opère presque transitivement dans P.

Soit g l'algèbre de Lie de G et q: g -? gl(M) la représentation de g correspondant à

l'opération de G dans M. Pour tout xeM, on note g* (resp. Dqx) l'algèbre de Lie du

groupe Gx (resp. DGX). Enfin, pour tout endomorphisme a d'un espace vectoriel

N de dimension finie, on note Trjy(a) la trace de a.

LEMME 2. On suppose que G est semi-simple de dimension >0 et que G opère
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presque transitivement dans M. Il existe alors un élément aeQ vérifiant les deux conditions

suivantes:

(i) a est semi-simple non nul et les valeurs propres de ad(a) sont rationnelles,

(ii) TrM(Q(a)2)<Tre(ad(an
Preuve, a) Soit xeM tel que G(x) est ouvert dans M. L'ensemble E des éléments

beQ vérifiant g(b)x=x est non vide et contient la composante semi-simple de ses

éléments. Soit ï) une sous-algèbre de Cartan de g telle que ï) nE^Q, A l'ensemble des

poids de q relatifs à I) et x=^]Aey4 xA la décomposition de x suivant les sous-espaces de

poids de M. La condition befynE est alors équivalente à À(b)=l pour tout XeA
tel que xA#0. Il est maintenant clair qu'il existe un élément aë\) n E tel que les valeurs

propres de g (a), et par suite celles de ad (a), sont rationnelles ; autrement dit, l'ensemble

E' des éléments de E vérifiant (i) est non vide.

b) Soit aeE' et N un supplémentaire stable par ad(a) de qx dans g. L'application
linéaire if/ : N-> M définie par \j/(b)=Q(b)x est bijective et on a

g[a9 b]x=g(a) g(b) x-g(b) g(a) x=g(a) o(b)x-q{b) x

pour tout beN. Ainsi, si tl9...,tn sont les valeurs propres (comptées avec leur

multiplicité) de Fendomorphisme ad(a) de N, les valeurs propres (comptées avec leur

multiplicité) de g (a) sont 1 +tu..., 1 +tn. Il en résulte que

TrM (q (a)2) dimM+2TrN (ad(a)) + TV* (ad(a)2)

d'où

TrM(e(a)2)= -dimM+Tr* (arf(a)2)

puisque, g étant semi-simple, TrM(()(a))=dimM+TrN(ad(a))=O. Comme d'autre

part, TTQ(ad(a)2) TTQx(ad(a)2)+TrN(ad(a)2% l'élément a vérifie aussi (ii).

PROPOSITION 1. (cf. [1]) On suppose que mM<àimG. H existe alors un élément

aeQ vérifiant les deux conditions suivantes:

(i) a est semi-simple non nul et les valeurs propres de ad (a) sont rationnelles,

(ii) TrM(Q(a)2)^TrQ(ad(an
Preuve. Soit xeM tel que Gx est réductif de dimension dimG-aM. Le g^-module

M se décompose en

comme au lemme 1, et l'hypothèse implique que qx # (0). Il convient alors de distinguer
deux cas:

1) DgJC=(0). Dans ce cas Gx est un tore et par suite gx contient des éléments

vérifiant la condition (i).
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Pour tout élément aeQx vérifiant (i), on a

TrM(e(a)2) Tr8/9></(a)2)

puisque le fait que Dqx — (0) implique que P=(0); par conséquent,

2) Dqx^(0). On prend dans ce cas un élément aeDqx vérifiant les conditions du
lemme 2 appliqué à la représentation de Dqx dans P; cet élément a vérifie (i). De plus,

on a

TrM{Q{af) Txal9x{ad{a

<Trelax(ad(a)2)+TrDBx(ad(ay)

et a vérifie (ii).

§2. Le cas des groupes simples

Dans ce paragraphe, G désigne un groupe algébrique simple opérant linéairement
et rationnellement dans un espace vectoriel M de dimension finie. Soit q:q-+qI(M)
la représentation correspondante de l'algèbre de Lie g de G. Du fait que g est simple,
résulte que les deux formes bilinéaires symétriques invariantes

(a9b)-+TTM(Q(a)Q(b))
et

(a9b)-+Trê(ad(a)ad(b))

sont proportionnelles. Le facteur de proportionnalité 1(q) défini par

TrM(Q(a) e(b))=l(Q)Tre(ad(a) ad(b))

est en fait un nombre rationnel et s'appelle l'indice de q (cf. [1]).

PROPOSITION 2. Soit xeM tel que Gx est réductif de dimension â\mG-aM.
Deux cas sont alors possibles:

1) I(g)# 1 et Qx est semi-simple.

2) t(e)=l et Qx est commutative.

La preuve de la proposition se fait en plusieurs temps.
a) On considère la décomposition du g^-module M donnée au lemme 1
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On a alors, pour tout ae$x,

TxM(e(af) Thl
et

d'où, par définition de

(1 -Ifo)) ThlQx{ad(af)=\{Q) Thx(ad(aY)-TrP(Q(ay). (1)

b) Si I(^)= 1, alors P=(0) et %x est commutative. En effet (1) donne dans ce cas

TrP(Q(a)2) Tr6x(ad(a)2) (2)

pour tout ae§x. Si P n'est pas réduit à (0), alors DQx n'est pas réduit à (0) (lemme 1);
le lemme 2 appliqué à la représentation de Dqx dans P affirme alors l'existence dans

Dqx d'un élément a tel que

ce qui contredit (2). On a donc P= (0) et (2) signifie cette fois que qx est commutative.
c) Si Qx possède un centre non trivial, alors \(q)=\.
En effet, la composante neutre du centre de Gx étant un tore, qx contient un

élément central non nul b tel que les valeurs propres de g(b) sont rationnelles; pour
un tel élément, on a en vertu de (1)

(l-l(e))TTe!ex(ad(bf)=-TrP(e(by^O. (3)

Etant donné que qx n'est pas réduit à (0), mM est strictement inférieure à la dimension
de G1), et par conséquent (1— \{q)) est positif (proposition 1). Il résulte donc de

(3)quel(e)=l.

Il sera commode pour la fin de ce paragraphe d'introduire la notation que voici.
On suppose que G opère dans une variété affine lisse et irréductible X. On sait

qu'il existe alors un type principal pour les orbites de G dans X (cf. [7], [4]); cela

signifie qu'il existe un ouvert de X, stable par G et formé d'orbites G-isomorphes. Soit

xeM un point d'une orbite de type principal; on note t)((j, X) (ou \)(X) si aucune
confusion n'en résulte) la classe de conjugaison dans g de l'algèbre de Lie qx.

THÉORÈME 1. Soit ï)eï)(M).
1 SU(q) ¥" 1

> alors il existe xeM et un sous G®-module P du G°-module M tels que:
a) G°x est semi-simple et opère presque transitivement dans P;

x) Sinon le sous-groupe d'isotropie d'un point en position générale dans M serait fini, donc
réductif ; on aurait ainsi /wm ûm dimG, d'où Qx (0).
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b) ï) est conjuguée dans g d'un élément de

2) SH(q)=1, alors I) est commutative et réductive dans g.
Preuve, SoitxeMtelque Gx est réductif de dimension dim G — aM. SoitNc:TxMcx

M un supplémentaire Gy-stable de TxG(x). Le G-morphisme q>:GxGxN-+M défini

par cp((s, y))=s(x+y) étant étale au voisinage de (e, o)9 ï)(GxGxN) et \){M)
coïncident. Comme Gjj^=s(Gx)ys~1 pour tout (s,y)eGxGxN9 ï)(M) admet un
représentant dans ï) (Gx, N) l) (G°, N). On considère la décomposition du G°-module

N en N=T®P comme au lemme 1. On a t)(G°, N) \)(G°X,P) puisque G°x opère
trivialement dans T. Sachant que P est un DG°-module presque homogène, les

affirmations du théorème sont alors des conséquences faciles de ces remarques et de

la proposition 2.

Remarques. 1) Dans le cas 1) du théorème 1, ï) n'est réductive dans g que si

P (0) (cf. proposition 3 ci-dessous). On voit donc que, pour l'ensemble des G-

modules M tels que ï) (M) # {(0)}, la condition I (q) 1 est nécessaire et suffisante pour
que ï)(Af) soit formée de sous-algèbres commutatives réductives dans g; ce résultat
est démontré dans [3],

2) Dans le cas 2) du théorème 1, ï) n'est une sous-algèbre de Cartan de g que si q est

la représentation adjointe de g. Soit en effet xeM tel que g^ est une sous-algèbre de

Cartan de g et appartient à I)(M). On a alors aM=mM dimg — dim g*. Le g^-module
M se décomposant donc en M=q/qx®T suivant le lemme 1, on voit que les poids
relatifs à qx de la représentation q sont 0 et les racines de g relatives à qx, c'est-à-dire

que q est en fait la représentation adjointe de g.
3) II résulte immédiatement de la proposition 1 que si I(e)> 1, alors ï)(M)= {(0)}.

Il peut arriver que I(é>)< 1 et que I)(M)= {(0)}: par exemple, si Mp= ©p Mx où Mt
est le SZ(/z)-module usuel de dimension n et si qp est la représentation correspondante,

on a l(op)=pl2n et fy(Mp)={(0)} pour n^p. Cependant, si M est un G-module

irréductible, pour que Ï)(M)= {(0)}, il faut et il suffit que l(g)> 1 (cf. [1]).

§3. Le cas des modules presque homogènes

Dans ce paragraphe, G désigne un groupe algébrique semi-simple connexe et M
un G-module rationnel de dimension finie presque homogène et non réduit à (0). On

note x un point de M dont l'orbite G(x) est ouverte dans M.
Soit X une variété affine; par dimension de X, on entend le maximum des dimensions

des composantes irréductibles de X. Si X est irréductible et F est un fermé de X,
on dit que F est de codimension p dans X si dimF=dimX—p.

PROPOSITION 3. (i) M-G(jc) est un fermé de codimension > 1 dans M.
(ii) G(x) n'est pas affine.

(iii) Gx n'est pas réductif.
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Preuve. Les assertions (ii) et (iii) sont équivalentes en vertu d'un théorème de

Matsushima (cf. [4]); (i) implique (ii) puisque le complémentaire d'un ouvert affine
de M, s'il n'est pas vide, est toujours de codimension 1 dans M; enfin (i) résulte de

[5] lemme 4.

Remarque. L'affirmation (iii) de la proposition 3 est démontrée dans [6].

PROPOSITION 4. Le groupe Gx est connexe.
Preuve. Le morphisme canonique p: GjG°x -> G/Gx est un revêtement étale connexe

de la variété GjGx qui est isomorphe à la variété G(x)cM. Le fermé M-G{x) étant
de codimension > 1 dans M (proposition 3), on sait (cf. [8] exposé X) qu'il existe une

équivalence entre la catégorie des revêtements étales de GjGx et celle des revêtements
étales de M. Le morphisme/? est ainsi un isomorphisme et par suite GX G°X.

LEMME 3. Soit H un groupe algébrique affine opérant dans deux variétés affines
irréductibles X et Y. On fait opérer H dans Yx Xpar le produit des actions de H dans

Y et X. On suppose déplus qu'il existe un point xeX dont l'orbite H{x) est ouverte dans

X. Alors, pour tout fermé Gx~stable Z de Y, on a:

(i) H(Zx{x})n(Yx{x})

(ii) si Z est de codimension p dans Y, H(Z x {x}) est de codimension p dans YxX.
Preuve. Soit pr2 la projection de YxX sur X; on vérifie facilement que pr2:

H(Zx {x})-+H(x) est un fibre localement trivial (au sens étale) de fibre type Z,
c'est-à-dire qu'il existe une variété U et un morphisme £/-> H(x) étale et surjectif tel

que Ux (Zx {x})ca U x H(X)H (Z x {x}). On a alors un diagramme commutatif

?H(Z x {x})

J5T(x)

»H(Yx{x})

où les flèches horizontales sont des morphismes étales et surjectifs, et où les variétés

Ux (Z x {x}) et Ux (Y x {x}) s'identifient aux produits fibres correspondants. Il en

résulte que

dimH (Z x {*})=dim U + dimZ=dimH (x)+dimZ
=dimlr+dimZ

et que H (Z x {x}) est fermé dans ^(7x{^}). Les affirmations du lemme sont dès

lors claires.

PROPOSITION 5. Le groupe des caractères de Gx est trivial.



Sur le type principal d'orbites d'un module rationnel 415

Preuve, Soit x un caractère de Gx; on sait qu'il existe un G-module rationnel N de

dimension finie et une forme linéaire/sur N tels que s-f—x(s)f pour tout seGx
(cf. [2]). On note Z l'hyperplan de N annulé par/et on fait opérer G dans NxM par
le produit des actions de G dans N et M. On considère alors G(Z x {x})cN x M;
G(Z x {x}) est un fermé irréductible de codimension 1 dans NxM, stable par G et tel

que G(Zx{x})nNx {x} Z x {x} (lemme 3). L'idéal de G(Zx{x}) est principal
et est engendré par une fonction polynomiale G-invariante a sur Nx M (puisque G

est semi-simple et connexe); de plus, la restriction b de a à N x {x} est <7x-invariante et
s'annule exactement sur Z x {x}. Il en résulte qu'il existe un entier n et une constante

A/0 tels que b À(fx)n, oiifx est la fonction sur N x {x} correspondant à/. On a
alors pour tout seGx

d'où

Ainsi (xY 11 sachant que Gx est connexe (proposition 4) on a bien x 1
•

THÉORÈME 2. Le sous-groupe d'isotropie Gx d'un point x de l'orbite ouverte de G

dans M est un groupe non réductif connexe produit semi-direct d'un sous-groupe semi-

simple connexe par son radical unipotent.
Preuve. Les propositions 3 et 4 affirment que Gx est non réductif et connexe. On

condidère alors le groupe GJR où R est le radical unipotent de Gx ; GJR est un groupe
réductif connexe dont le groupe des caractères est isomorphe au groupe des caractères
de Gx qui est trivial (proposition 5). Il en résulte facilement que GJR est semi-simple,
ce qui achève la démonstration.

Remarques. 1) Si G opère presque transitivement et non transitivement dans une
variété affine X vérifiant les deux conditions

(i) k[X~\ est un anneau factoriel,
(ii) tout revêtement étale connexe de X est trivial,

alors les affirmations du théorème 2 sont encore visiblement vraies.

2) Le radical unipotent de Gx n'est pas nécessairement commutatif, comme le

montre l'exemple du 5/?(«)-module usuel de dimension 2n.

§4. Démonstration du Théorème 3

Le théorème 3 est une conséquence des théorèmes 1 et 2: le théorème 1 donne le

résultat lorsque l'indice de la représentation est égal à 1, et transforme le problème en

le problème analogue pour les modules presque homogènes lorsque l'indice est
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différent de 1, le groupe étant cette fois semi-simple; le théorème 2 fournit l'affirmation
dans ce dernier cas.

Remarque. Soit Mx le 5L(«)-module usuel de dimension n. L'exemple du SL(n) x
S£(w)-module (Mx ®&)©(fc®sl(«)) (où SL(n) opère dans sl(«) par la représentation
adjointe) et d'autres exemples du même type, montrent que le théorème 3 ne s'étend

pas tel quel au cas des groupes semi-simples.
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