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Poincaré Algebras Modulo an odd Prime

R. E. STONG

§1. Introduction

Being given a closed oriented manifold M, of dimension n, and an odd prime p,
the mod p cohomology of M, H*(M; Z,), forms the generic example of an n-dimen-
sional Poincaré algebra over the modp Steenrod algebra A.

If M is the boundary of a compact oriented (»+1)-dimensional manifold with
boundary ¥, one obtains an exact triangle

H*(V;Z,)5H*(M; Z2,)
N VL
H*(V,M;Z,)

which is the generic example of a (n+1)-dimensional Lefschetz algebra over A.

Abstracting the properties involved, one may form a cobordism group Q%, where
Q7 is a set of equivalence classes of n-dimensional Poincaré algebras over 4 in which
the boundaries of (n+1)-dimensional Lefschetz algebras are zero.

The purpose of this note is to analyze Poincaré algebras over 4 and to determine
Q3. In essence, this follows the work of J. F. Adams [1] who studied the characteristic
ring of Poincaré algebras and Brown and Peterson [2] who studied Poincaré algebras
over Z,.

There is another approach to Poincaré algebras, completely unrelated to this one
which may be found in A. S. Mis¢enko: Homotopy invariants of nonsimply connected
manifolds, I Rational Invariants, Math USSR-Izvestia, 4 (1970), 506-519.

The author is indebted to Professors Charles Giffen and Gordon Keller for several
helpful conversations and to the National Science Foundation for financial support
during this work.

§2. Axiomatics

Throughout this paper all algebras and modules will be graded, will be of finite
type, and will have Z,, p a fixed odd prime, as ground field. The modp Steenrod
algebra will be denoted A, with B denoting the Bockstein and #* the i-th reduced p-th
power.

A left A module X is said to be unstable if #'x=0 for xe X7 and 2i>j. X is a left
algebra over the Hopf algebra A4 if X is a commutative algebra (in the graded sense)
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and a left A module so that the Cartan formulae hold; i.e.
B(xy)=Bx-y + (— 1)*t* x-By
P (xy)= Y Px- Py

j=0
(with Z°x=x). X is an unstable left algebra over A if it is an unstable left 4 module,
a left algebra over the Hopf algebra 4, and if #'x=x? if xeX’ and 2i=. Thus, an
unstable left algebra over A is the algebraic analogue of the modp cohomology of a
topological pair.
The analogue of the mod p cohomology of a space is an unstable left algebra over
A with unit. (Note: If the unit coincides with 0, the space is the empty set).

LEMMA 2.1. If X is an unstable left algebra over A with unit, then X° has a basis
over Z, consisting of the minimal idempotents.

Proof. eeX° is an idempotent if e =e. If e, f are idempotents, e< fif e=ef, where
ef is idempotent. More generally, if e, f are idempotents, so are ef and e — ef. By finite
dimensionality of X°, one may write 1 =e¢, +--- +e, where the ¢; are the minimal idem-
potents, and are linearly independent. X then decomposes as the direct sum X=e¢, X ®
---@e,X as algebras over A. To show that the e; span X°, consider the case in which
X has a unique minimal idempotent 1 (i.e. any e;X which has unique idempotent e,
which is its unit). If ueX°, u=P°u=uP, and so (WP~ ') =uP"2-wP=uP" . If u+#0,
u=uP=u-u?"'#0 and so u? "1 #0, so that u?~'=1 being an idempotent. If 1, xe X°
are linearly independent and teZ,, the equations (1 +¢x)?"!=1 give

pil (P — l) tjxj -0
j=1 J
forz=1,..., p—1. Since the Vandermonde determinant is non-singular, (p B 1) xI=0
for each j, so x=0, giving a contradiction, and 1 spans X°. = J

Note. If dimx=0, Bx=0, for x’=P°x=x and Bx=BxP=px? ! Bx=0. This fact
will be used without further mention.

While not much explicit use of this will be made, it will be implicit in most of what
follows. It is the algebraic analogue of the decomposition of a space into its compo-
nents.

An n-dimensional Poincaré algebra M is an unstable left algebra over A4 together
with a homomorphism ¢, : M" - Z, so that

M@M" ' Z,:x®y— dy(x*y)

defines a non-singular pairing for each i. (Note: M*'=0 for i<0 since #°x=x and
P°x=0if xe M' i<0, and from the pairing M ‘=0 for i >n. Further, M has a unit for
there is an element 1 so that ¢, (1-x)=¢,(x) for all x in M").
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An (n+1) dimensional Lefschetz algebra is a 8-tuple (M, M', M", i, j, 8, 1, drav)
in which M, M’, M" are unstable left algebras over 4 and M” is an M’ module
for which

B(m'm") —_ ﬁm"m" + (_ l)degm’ ml.ﬁmll

i
gpi(mrmn)= Z (.@jm')'(.@i—jm”)
Jj=0

for m'eM’', m"eM". Also i:M' > M, j:M"—>M’', 6: M — M" are homomorphisms
of left A modules of degrees 0, 0, 1 respectively, such that

M LM

N
MII

”

is exact. In addition, i and j are algebra homomorphisms, j(m’'m")=m’j(m"), my-m}
=j(mg)-m{ (for m{eM") and & (im’-m)=(—1)"*"" m’-5m. (Using commutativity
rules this could be written § (m-im’)=(dm)-m’, except that M is chosen to multiply
on the left of M” - one may easily introduce right multiplication by using the sign
convention). Finally ¢,,: M"— Z, and ¢,.: M""*! - Z , are homomorphisms so that
b= P06 With ¢, making M an n-dimensional Poincaré algebra and ¢,,- defining a
dual pairing

M/i®M1m+1-i__)Zp:x®y__)¢M”(x_y)

for each i.

Notes. 1) Brown and Peterson would not assume M " to be an algebra, but the
multiplication can be defined by mgmj=j(mg)-mj. There is no unit, however, which
they assume for algebras.

2) ¢y i M1 - Z, gives a unit in M'° by ¢pr (1-y)=¢y-(y) and il=1.

Hopefully, this has described all of the properties needed for the algebraic for-
malism. There is one property of oriented manifolds or Poincaré duality spaces which
is definitely to be avoided: specifically, if M "is an oriented n-manifold, : H" ' (M; Z,)
— H"(M; Z,) is the zero homomorphism. This follows from the underlying integral
structure which will not be assumed.

§3. Right Action and the Characteristic Ring

Following J. F. Adams, one now defines a right action of 4 in an n-dimensional
Poincaré algebra M. Given xe M' and ae 4/, xae M'*J is the unique class so that
for all ye M~ G+ ),

G ((x) y) = e (x° (2))-
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Following Brown and Peterson, one may define a right action of 4 on M’ for an
(n+1)-dimensional Lefschetz algebra (M, M’', M", i, j, 8, ¢p, Pu~). Given xe M’
and ae A7, xae M'**J is the unique class so that for all ye M"** D=0+,

b ((x)-y) = Pprr (% (1))

LEMMA 3.1 i:M'— M is a homomorphism of right A modules.
Proof. If xe M ", acA’, ye M~ (D

ba (i (x)" ¥) = ar 0 (i ()" y) = hare (= 1) (x) 6y)
=(=1)" ¢pr (x+ (a0p))=(=1)""7 ¢y (x* (= 1) Say)
= (1) by (x00y) =Py (8 (ix" 0y))
= ¢u ((ix) - ay) = dar (((ix) 2)- ),

s0 i(xo)=(ix)o. *

Returning to Adams, one defines a class of “words’” W, by the rules:

1) The letter & is a word.

2) If wis a word and a€ 4, then aw and wa are words.

3) If w, w’ are words, then ww' is a word.

4) If w, w’ are words and A, peZ,, then Aw+puw’ is a word.

Being given a left algebra H over the Hopf algebra A4, with unit 15, which is also
a right 4 module, one may define a function 04: W— H by the obvious rules:

1) 6y (5) =1y

2) 0y (aw)=0aby (), Oy (wa)=0p (W) x

3) Og(ww')=0g ()05 (w')

4) 0y (Aw+uw')=2A04 (W) +puby(w').

One now divides W into equivalence classes by letting w be equivalent to w’ if
0y (w)=0,,(w") for every Poincaré algebra M. The equivalence classes form the ele-
ments of a universal domain U. Denote by g: W— U the function assigning to w its
equivalence class.

It is easy to see that U is a graded algebra over Z,, with both left and right 4 actions
and is an unstable left algebra over A.

The function 6,,: W — M, M a Poincaré algebra, clearly defines a homomorphism,
preserving all structure, 63,: U— M.

LEMMA 3.2. If (M, M', M", i, j, 0, ¢r, dar+) is a Lefschetz algebra, the function
Op: W— M’ induces a homomorphism Oy.:U— M’ with 0y =i0)..

Proof. One forms the analogue of the double of a manifold with boundary by
letting L=M'@®M" with (mg, mg). (m}, my)=(memy, my-mi+mg-j(m7)+mg-mp)
where as before mg-my=(—1)em"dem's ' imi, with o(mp, my)=(amg, amg),
¢r(m’, m")=dy-(m"), making L into a Poincaré algebra. Then r:L— M":(m’, m")
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—m’ is a homomorphism, preserving all structure, so that ,,. factors through 6,
(i.e. 6)-=r0.) and one may let 0, =r0;. *

Notes. 1) M" actually admits a right A4 action and in L, (m’, m") a=(m'a, m"a).

2) Thought of as doubling, the double of ¥ is the boundary of ¥ x [0, 1]. The
maps ¥ x0-9(V x [0, 1])— ¥ x [0, 1] induce r and the inclusion of M’ in L, while
o(V x[0,1])—(é(V x [0, 1]), ¥V x0) induces the inclusion of M” in L.

The algebra U will be called the algebra of characteristic classes. Given a Poincaré
algebra M or Lefschetz algebra, the image of 8, or 6, will be called the characteristic
ring. If M is an n-dimensional Poincaré algebra and ue U", ¢, (0, (u)) will be called
the characteristic number of M associated with u.

§4. On Being a Boundary

Let M be an n-dimensional Poincaré algebra. If there is a Lefschetz algebra
(M, M’', M", i, j, 8, du, dy~) for which M is the lead term, then M will be said to
bound.

LEMMA 4.1 If M bounds, there is a homogeneous subalgebra R< M closed under
left and right A action and containing the unit for which R is its own annihilator
R*={meR | ¢y (rm)=0VreR}.

Proof. Let R=iM"'. Then R is the direct sum of its subspaces R’=Rn M7 (i.e. is
homogeneous) and is a subalgebra closed under left and right 4 actions (since i is a
homomorphism preserving the actions) and containing the unit. Further if 7, r’ eR,
r=img, r'=imj, @r (rr')= -0 (img*imy)= Pu-0i(memy) but 6i=0, so r'eR*; i.e.
Rc R If meR*, thenforallm'e M’, ¢y (m'6m) =y (L6 (im’ -m))= +p (im’-m)
=0, so om=0 and me R=image i. =*

LEMMA 4.2. If M contains a homogeneous subalgebra R closed under left and
right A action and containing the unit for which R is its own annihilator, then M bounds.

Proof. Being given R, let M'=R and i:M'— M the inclusion. Let (M")
=M'""'R'"! and 6: M - M" the map M’ — M'/R' obtained by the quotient map.
Let j:M"— M’ be the zero homomorphism. Then for reR, ¢\ (r)=¢)(1-r)=0
for 1eR and reR*, so ¢, induces a homomorphism ¢p.:(M")**'=M"/R">Z,
with ¢,, = ¢,,-0. The required properties are easily verified. =

Notes. 1) In M" as constructed, the product is trivial; i.e. x-y=0 for all x, y.
This is produced by x-y=j(x) 'y and j(x)=0. The module structure of M" as M’
module comes from M"” as M module and is non-trivial - M’ is not an ideal.

2) This Lemma is the crux of the Brown-Peterson argument. It is very well hidden.

LEMMA 4.3. If M bounds, then all characteristic numbers of M are zero. Further
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if n=dim M is even, there is a subspace B M"'? which is its own annihilator with B
containing the characteristic classes of dimension n/2.

Proof. If M is the boundary of (M, M', M", i, j, d», du~), then every charac-
teristic class lies in i(M '), and is killed by ¢,,. Letting B=i(M '"/?) gives the second
part. =*

LEMMA 4.4. If M is a Poincaré algebra of positive dimension having all charac-
teristic numbers zero and letting n=dim M, there is a subspace B< M"'? which is its
own annihilator with B containing the characteristic classes of dimension n/2, then M
bounds.

Proof. Let R= M be defined as follows. If i<n/2, R' is the i-dimensional part of
characteristic subring of M. If i>n/2, R' is the annihilator of R""*. If i=n/2, R'=B.

CLAIM. R is a homogeneous subalgebra which is its own annihilator containing the
unit, and closed under left and right A action. Thus M bounds.

To see this, let y’c M be the image 0, (U'); i.e. the characteristic classes of
dimension i. Clearly R is homogeneous and its own annihilator. Since 1=0),(&), R
contains the unit. Every other step requires a tedious case by case check, and proceeds
as follows.

Step 1. x'< R’ for all i. If i <n/2, this is by definition. If i>n/2, it follows from the
fact that y is self annihilating (i.e. x'-x" ‘= x" and ¢ (x")=0).

Step 2. B (x"?)*. Since x"/* = B, taking annihilators gives B=B*c (x"?)*.

Step 3. R is a subalgebra; ie. R/-R'=R"RIcR'"™/ (igj). If i, j<n/2, R**R/
cx'*Jand " icR™J If i=0, j=n/2 R°-B="- B and x°~ Z, with base the unit, so
x°*BeB. If 0<i<n/2, j=n/2 or i<n/2, j>n[2, then R*-Ricy-(x/)* and y- ()’
c ()t e R,

(Note. If xey', ye(x'), then for zeyx" “*9, ¢, ((xy)z)=du((xy)z)=
+ @r (¥ (x2))=0 for xzey). If i, j=n/2, B is self annihilating so B-Bc {1}'=(R°)*
=R" If i=n/2, j>n/2, M'*7 =0 and similarly, if i, j>n/2, M**/ =0.

Step 4. R is closed under left action of 4; i.e. A'*R/<R*J. If j<n/2, A'R’
=A" ey cR™J and if i=0, j=n/2, A°=Z, with base #°=1, so 4°-BcB.
Ifi>0, j=n/2,then A**Ric A*(y*) eyt <R (ifae 4', xe(x*), and yey" ™ (* D),
Orr ((0x) ¥)= + Pp (- yax) but yaex" 7 so this is 0).

Step 5. R is closed under right action of 4; i.e. R/-A'cR'*J. If j<n/2, RI-A'
=ylAicy*IcR™/ while if i=0, j=n/2, A°=Z, with base #°=1 so B-A°cB.
If i>0 j=n/2 or j>n/2, RI-A'c(yt)-A'c ()t cR™/ (if aed’, xe(x*)’ and
yex" D du(xary)=dy(x-ay) but apex” 7/ so this is 0). *

Note. If n=0 there is an analogous statement: namely, M must contain a sub-
algebra B with the unit which is its own annihilator.

To determine when M bounds thus rests on knowing when one can find Bc M"/?
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which is its own annihilator and which contains the self annihilating subspace x*/2.

The easiest case is when n=2 (mod4). Then M"2QM"* > Z,:x®@y — ¢y (xy) is
a nondegenerate skew symmetric (yx= —xy) bilinear form. Being given x"/? which is
self annihilating, choose a base ey,..., e, for ¥"/? and find f,..., f, in M"? with
dum(ee;)=0, oy (fif;)=0, dp(e;f;)=0if i#j and 1 if i=j. (Since M"? - Hom
(x""?; Z,) is epic, one may find f;. Supposing fi,..., f, found, let T be spanned by
€15ees €4 [15---5 [y and then M "2 - Hom(T; Z,) is epic to find f, . ;. Let V be spanned
by es,..., € f1,-.0, frandlet V= {xe M"* | ¢y (xy)=0forallye V}. Then V*@ V+—
— Z, is a nondegenerate pairing. If ¥*#0, one may take any es0 and its span is a
self annihilating subspace so one may find an f with ¢, (e-e)=0, ¢ (S f)=0,
¢y (e f)=1 and take the annihilator of {e, f}. Proceeding in this way, one finds a
base {e;, f;} 1<i<r+s for M"?, with e,,..., e, spanning x*? and satisfying the
symplectic base conditions. B may be taken to be the span of e, ..., e, .. Thus one has:

Remark. If n=2 (4), B always exists.

The case n=0is next easiest. Given M °, one has a base e, ..., e, formed of minimal
idempotents, and one has r elements of Z, given by a;= ¢, (¢;) #0. If one may reorder
the base so that it is ey, e,, ..., e, 1, €, With a, ;= —a,; _,, then taking B to be span-
ned by the elements e,;+e,;_, gives a subalgebra of the desired form. Conversely,
given a subalgebra with unit Bc M° which is its own annihilator, B has a base con-
sisting of idempotents. Specifically, if xeB, one may write x=a, (e} +-- +e;1) +
w+- +ag (€] +--- +e,) where the o, are distinct elements of Z, and the €/, are distinct.
Then X'=do (ej+---+ep, )+ +ai(e]+-+e}), and 1=x° has «f=1. The sxs
matrix of coefficients of x°, ..., x* ! is a Vandermonde determinant — hence invertible,
so each e} +-- +¢J, belongs to the span of 1, x,..., x*~! and so to B. Thus B has a
base consisting of idempotents which may be written e} +--- +e} (with no common
entries). Since B is self annihilating, no p; can be 1, for a;=¢,,(e;)#0. Since B is its
own annihilator, dim B= (%) dim M° and each p; is 2. Reordering, one may suppose
€1, €;,..., €35_1, €515 a base of M with e,; +e,; ., forminga base of B. Thena,;+a,;
=¢(e;+e,;,-1)=0 since B is self annihilating. This gives

Remark. If n=0, B exists if and only if M° has a base of minimal idempotents
€1, €255 €35 With @pr(e2;)=—du(€25-1)-

Now turning to the case n>0 and n=0 (4), M"2QM"* > Z,:x@y — ¢y (xy) is
a non-degenerate symmetric (xy=yx) bilinear form. Being given such a form
{5 2 VV->Z, {x,x)=0 for all x implies V=0 (for {x, yp=%4{{x+y, x+y)
—{x=y, x—y)}). Thus if ¥V #0, there is an x with {x, x)#0 and let V'<V be
{y | {(x,y>=0}. Then { , >:V'®V'—>Z, is again such a form. Proceeding in this
fashion, one may find a base vy, ..., v, for ¥ so that {v;, v;>=0if i# jand {v;, v;> #0.
Then <{av, av)=a*{v, v) if aeZ, and by taking scalar multiples of the v; one may
change {v;, v;) by any square factor.

The nonzero elements of Z, form two disjoint classes: the squares (quadratic
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residues) and the non-squares (quadratic non-residues). Let P be the number of
{v;, v;> which are squares, and N the number which are not squares. One defines an
invariant of the form ( , > on V by

- _[(P,N)eZ, ®Z, if p=1(mod4)
I_I(V’<’>)_{P—-NGZ4 if p=3(mod4).

To see that this depends only on the form, not on the base, take any base and look
at the determinant D=det({x;, x;>) ({x;} being the base). In any other base, with
change of base matrix U, one has det (U({x;, x;>) UT)=(detU)? D, where UT is the
transpose, and thus D is either a square or nonsquare independently of basis. N is
then determined mod2 by D; i.e. if D is a square N is even and if D is not a square
Nis odd. Since P + N=dim V, Pisthen determined mod2 and alsoP— N=(P+N)—2N
is determined mod 4.

Now let W< V be a self annihilating subspace and choose a base w,,..., w, of W.
One may then find ¢#,,..., ¢, in ¥ so that

{w;, w;>=0 forall i
<wi9 tl>=1
wy, 8=0=Ct;, t;> if i#].

(these will all be linearly independent for ¢; cannot lie in the span of the others since
it alone does not annihilate w;). These may be found inductively for V—Hom(T; Z,)
is epic if T'is spanned by W and ¢,, ..., ¢;. Then letting S be the span of Wand ¢,,..., ¢,,
{, »:S®S—Z,is a dual pairing and S* is a complementary subspace which is also
dually paired by ¢ , ).

Now considering the span of w; and ¢;, suppose ¢, t;>=a; If a;#0, t; and
t;—aw;=s,; form a base with {t;, 5;>=0, {t;, t;)=a;, {s;, sy =—a;. If p=1 (mod4),
—1 is a square so q; and —g; are both squares or both nonsquares. If p=3 (mod4),
—1 is not a square, so one is a square and the other is not.

Thus 1(V,{ , »)=I(S*,{ , »). In particular, if ¥ contains a subspace which is
its own annihilator, (a W as above with dim W=1/2 dim V') then I(¥,{ , >)=0 (for
S+ is zero).

Conversely, if I(V,{ , >)=0and W s a self annihilating subspace then W lies in
a subspace which is its own annihilator. If dim W=1/2 dim ¥, one is done; otherwise
S+#0and I(S*,{ , »)=0 and it suffices to show there is an s#0 in S with (s, s) =0
since adding s to W builds a larger W.

Choose a base v; of S* with (v, v;>=0 i#j and (taking scalar multiples)
{v;, v;>=a® or a’ where a’ is a non-square.

If p=1 (mod4), one may find v, w in the base with {v, v)={w, w). If f>=—1
(modp) {v+pw, v+pw)=0.
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If p=3 (mod4), a’= —a?. If there are v, w in the base with (v, v) = —(w, w),
then {v+w, v+w)=0. If not then <v;, v;>=>b for all i and there are at least four v;.
Consider av, + v, +yv3=x. Then {x, x> =b(a* +p*>+y*) and there is a non-trivial
solution of a®+p%+y2=0. (If not u®+v? is always a square so u?+1 is always a
square, but 1 is a square and inductively everything is a square).

Thus one has:

Remark. If n>0, n=0 (mod4), B exists if and only if I(M"/?)=0, where I is the
invariant in Z,®Z, (p=1 (4)) or Z, (p=3 (4)).

Special note. Nothing about 4 has been used far except that 4°~Z, with base
#°=1. One could consider Poincaré algebras over A4 together with a homomorphism
f:X > M where X is a fixed unstable left algebra over 4 with unit. If X is connected
(X°xZ,), adjoining to A the left multiplications by f(x), x=X, creates a larger oper-
ator algebra 4’ with (4')°~Z,, and the arguments apply to Poincaré algebras over
A'. If X is not connected, then the minimal idempotents e;eX° induce maps
fie; X f(e;)* M and f bounds if and only if each f; bounds. This reduces one to
the direct sum of “‘connected’ cases. Thus the techniques given can be used to solve
the algebraic ““‘bordism” problem with no (or little) additional work.

§5. Algebraic Cobordism Groups

Being given an n-dimensional Poincaré algebra M, with homomorphism ¢,,: M" —
- Z,, one defines —M to be the Poincaré algebra M with a new homomorphism
¢(-my:M"—>Z, given by ¢, (m)=— gy (m).

For M, and M, two n-dimensional Poincaré algebras, M= M, D M, is the Poin-
caré algebra obtained from the direct sum with ¢y (my, m,) =y, (my)+ Py, (m,).

Similarly one may form direct sums and negatives of Lefschetz algebras. If
V=(M,M', M", i, j, 6, dp, dy~), denote by 0V the Poincaré algebra M, with homo-
morphism ¢,,.

DEFINITION. Two n-dimensional Poincaré algebras M and M’ are cobordant
if there are (n+1)-dimensional Lefschetz algebras ¥ and ¥’ with

M@V=M'®oV’

(Note. = denotes the rather obvious definition of isomorphism).

LEMMA 5.1. Cobordism is an equivalence relation.

This is completely trivial. It is very hard to prove transitivity if you use Brown-
Peterson’s type of definition (M~ M’ if M@®(— M ') bounds) although it can be done
using the results of section 4.

One now defines an operation on the set of cobordism classes of n-dimensional
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Poincaré algebras by [M ]+ [M "]|=[M® M "]. With this operation, the set of cobord-
ism classes of n-dimensional Poincaré algebras forms an abelian group, which will
be denoted Q7.

Note. [-M]=—[M], for M®(—M)D0=0®3V where 0 denotes the zero
algebras; i.e. M@ (— M) bounds. Specifically the diagonal in M@®M provides the
subalgebra R required in Lemma 4.2.

One now lets Q% be the direct sum of the groups QZ.

Being given M and N, Poincaré algebras of dimension m and »n, one forms their
product M x N on the algebra M@ N with @y x y (M@n) = (m)* ¢y (n). The homo-
morphism 0: MQ®N - NQM given by 0(m®n)=(—1)*t"42" hQ@m gives M x N
=~ (—1)™" Nx M. Extending this to products M x V with ¥V a Lefschetz algebra, it
is immediate that the product x makes Q% into a commutative ring (in the graded
sense).

The result of section 4 determine much of the structure of Q%.

PROPOSITION 5.1. Qf is a free abelian group of rank (p—1)/2.
Proof. Define a function

cWB->ZD---@Z

p—1)/2

by ¢(M)=(c;(M),..., c(p—1)2(M)) where c;(M) is the number of minimal idem-
potents e in M with ¢,,(e)=i minus the number of minimal idempotents e in M with
du(e)=—i. Clearly ¢c(M,®M,)=c(M;)+c(M,) and ¢(M)=0 if and only if M
bounds, so ¢ defines a homomorphism of QF into Z®---@Z, which is in fact monic.
To see that c is epic, one forms the Poincaré algebra M,= Z, with base the unit 1 and
with ¢y, (1)=a for a#0 in Z,. Then M_,=—-M,, and if 1<a<(p—-1)/2, c(M,)
=(0,...,0, 1,0,..., 0) where the 1 occurs in the a-th position. =*

One may describe the ring structure in QJ as follows: Letting x,= [M,], a#0 in
Z,, x4 is the unit in QF, x_,= —x, and x,* X, =X,

For n>0, one defines a homomorphism y:Qf —»Hom (U"; Z,) where U" is the
n-dimensional part of the algebra of characteristic classes by x (M) (u)= ¢ (03 (1))
Since Oy (u)=(0y, (1), O3y, (v)) if M=M,®M, this is additive, and if M=0V,
O (03 (4)) = a0 (i03-(u))=0, showing that y induces a homomorphism on Q}.

For n>0 and n=0(4), one defines a homomorphism

Szz@zz p=1(4)
(Z4 p=3(4)

by assigning to M the invariant 7(M"?). This is easily seen to be additive and sends
boundaries to zero, and so induces a homomorphism on Q7.

I QF
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PROPOSITION 5.2. If n>0, the homomorphisms
x:QF »>Hom(U"; Z,) n#0(4)
and

Z,8Z, p=1(4), n=0(4)

«OP n.
xDI1:QF - Hom(U"; Z,)® Z. p=3(4)

are monic. Thus, for n#0(4), Q7 is a Z,, vector space and for n=0(4), Q% is the direct
sum of a Z, vector space and either Z,®Z, (p=1) or Z, (p=3).

Proof. That y and y@®I are monic follows from section 4 immediately. For the
last part, one needs to see that 7 is epic. Consider M*=H*(CP(2); Z,). Dimensional
considerations show that M* has trivial 4 action (#°=1,#'=0 i>1, §=0), and
I(M*)=(1,0) if p=1(4) or I(M*)=1 if p=3(4). Given two Poincaré algebras M*/
and N*¥, (M x N)*U*® js the direct sum @(M"®M*) for r+s=2(j+k) and the
terms with r <2j give a self annihilating subspace W with S formed of the terms with
r#2j. Thus I((M x N)*U*®)=1(M?* @ N?*). From the tensor product of two “dia-
gonal” bases, this is I(M ). I(N?¥),

Note. In Z,®Z, (Py, Ny)*(P3, Ny)=(P.P,+N,N,, P,N, +P,N,). Then, (M*)*
=M*x .- x M* (k copies) has trivial 4 action, so y (M*)¥)=0and I((M*)*)=(1, 0)
or 1. If a#0in Z,, and M, is the 0-dimensional algebra with ¢, (1)=aand M**isa
4k-dimensional algebra with diagonal basis v;, M, x M** has diagonal basis 1®uv,,
with {(I®uv;, I®v;>=a{v;, v;>. Thus if a is a square, I(M,x M**)=I(M**) and if a
is not a square, I(M**)=(P, N) or P— N gives I(M,x M**)=(N, P) or N—P. Thus
Iis epic. =

This permits the description of the multiplicative structure in the 2-primary part
of Q4.. One has a 4 dimensional generator y, with 2y,=0 (p=1) or 4y,=0 (p=3)
and x,y,=y, if a is a square.

Note. 1t is no coincidence that y((M*)*¥)=0. Multiplication by p? defines a pro-
jection onto the 2 primary part of QZ, since p?>=1(4), killing the p-torsion, and multi-
plication by 1—p? defines a projection onto the p primary part of Q7 killing the 2
torsion.

§6. Construction of Poincaré Algebras

In order to complete the calculation of Q% one must find the image of y: Q% —
—Hom (U"; Z,). For this one may show how to construct Poincaré algebras.

Let X be an unstable left algebra over 4 with unit and let ¢: X" — Z, be a homo-
morphism. Let I/={xe X/ | ¢ (xy)=0 for all yeX "/}, with I X being the sum of
the 1.
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Ifx, x'el’, 4, A'eZ, thend (Ax +A'x") y)=A¢ (xy) +1'¢ (x'y)=0forallye X",
soAx+A'x'el. If xel’, ze X*, then for any ye X"~ U*® ¢ ((zx) y)=(—1)* ¢ (x(zp))
=0, so zxeI’**, Thus I is an algebra ideal in X, and M=X/I is a commutative Z,
algebra, with 7: X - M the quotient homomorphism.

¢:X"—>Z, sends I" to zero, for if xelI”, ¢ (x)=¢(x-1)=0, and so ¢ induces a
homomorphism ¢y : M" - Z,,.

If meM' and ¢y (m-m’')=0 for all m'eM"™", then letting xeX' represent
m, w(x)=m, ¢ (xx")=¢y(m n(x'))=0 for all x’€e X"~ " and so xelI’ or m=0. Thus
M'QM" '>Z,:m@m’ — ¢ (mm’) is a nonsingular pairing for each i.

Clearly, if 7 is an A ideal, M becomes an unstable left 4 algebra, with = a homo-
morphism of left 4 modules. This being the case, there are elements be M! and
v;e M2 P~ 1) 50 that

dp(Pm)=¢y(b-m) forall memM"?
and
Oy (P'm)=¢y (v;m) for all meM" 211,

Hence there are elements b’e X' and vje X*'®~1 with ¢ (Bx—b'x)=0 for all xe X" !
and ¢ (P'x—vjx)=0 for all xeXx " 2i(¢~D),

Conversely, suppose there are elements b’e X!, v;e X2/®~1) with ¢ (Bx—b'x)=0,
xeX" 1 and ¢ (P'x—vix)=0, xeX"~2/P~D_Then [ is an 4-ideal. To see this pro-
ceed as follows: Let xel’ and yeX"~Y*V and ¢ ((Bx) y)=¢ (B(xy)—(=1) x-By)
=¢(b' (xy))+(=1Y*1 ¢(x(By))=0+0=0 so Bxel!*!. If xel’/, #°x=xel’, s0
suppose inductively that if i<k, xel/ implies P'xel/*?'®~1 Then for xel’,

yeXn—(J+2k(P—l)), ¢((.?kx).y)=¢(gk (xy)__z’{;é gix,.@k—iy)=¢(véxy)
—YkZ L $((P'x)-(P*1y))=0, so Prxe[i*2k@1),

DEFINITION. In any unstable left 4 algebra with unit which is a right 4 module,
let 5=1p and v;=1%".

LEMMA 6.1. a) If M is a Poincaré algebra and me M, then
mp = (= 1™ (bm — pm)

i-1
m# =om— Y (# 'm)P.
j=o

b) If ueU, then
up = (= 1)"** (bu — pu)
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u? = vu — iil (P ) P!,
Proof. e (bmn) = b (8nn)) = (B -+ (= 15" m () and
(o) = b (P () = b £, @7m) @) + m ()

for all n of appropriate dimension, giving a). Applying 6, to the formulae of b) gives
an identity in any Poincaré algebra, and by universality the formulae hold in U. =*

LEMMA 6.2. Let F,cU" be the subspace spanned by the elements Pu—bu,
ueU"™ !, and Pu—vu, ueU" '@~ Then peHom(U"; Z,) lies in x (%) if and only
if ¢ (F,)=0.

Proof. If M is an n-dimensional Poincaré algebra and ¢ =y (M), then ¢ (fu—bu)
= Gae (O (Bu—b1)) = B (BOye () — Oy (1B) O () = hpe (BB} (1) — (1 B) O30 () =0
and similarly ¢ (#'u—vu)=0. Thus ¢ (F,)=0.

If $:U"—Z, with ¢ (F,)=0, let M be the n-dimensional Poincaré algebra U//
formed from ¢ by the above construction, with n: U— M the quotient map. Since
¢ (F,)=0, n(b)=b and n(v;)=v;. = is a homomorphism of algebras with unit and
left A modules, and by the formulae of Lemma 6.1 is a homomorphism of right 4
modules (use induction on i to get n (u?*)=mn (u) #*). Since 0};: U~ M is characterized
as the unique homomorphism of algebras with which is a right and left 4 module
homomorphism, n=0,, This being the case, x(M) (u)=cy (03 (1))=dy (7 (1))
=¢(u). *

This is, of course, the analogue of Dold’s formulation of relations among charac-
teristic numbers. In an algebraic context, the Brown-Peterson formulation will be
more convenient.

Let A = A denote the augmentation ideal consisting of elements of positive degree.
The quotient homomorphism U-— U/UA* induces a monomorphism Hom
((ujua*)"; z,)»Hom(U"; Z,), and identify Hom ((U/UA*)"; Z,) with the homo-
morphisms ¢:U" - Z, with ¢ (U4™)")=0.

PROPOSITION 6.1. x(25)=Hom((U/UA™)"; Z,).
Proof. The identities

Bu — bu = (— 1)*5“*1 yp

Pu—vu=-Y (P u)P?
=1

J=
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give F,c(UA*)" Using the some identities an induction on i to prove u#?'eF, gives
(UA*Y'cF,. =

§7. The Structure of U

In order to calculate x(£7) explicitly, it will be necessary to know U precisely.
Adams has done most of the work, and one need only repeat his arguments.

First, recall that 4 is a Hopf algebra with a diagonal map 4: 4 -+ A® A4. As con-
vention one writes

4(a)=Y a,Qa,

and if x, yeX, X an unstable left 4 algebra,
a(xy) = X (= 1" (alx) (@)

The canonical antiautomorphism y: 4 — A4 is defined inductively on degree by
x(D=1)Y x(a;)a; =0 (dima > 0).

One now defines classes in U by b=18 and §,= 1y (#"). Using Adam’s methods,
it will be shown that

PROPOSITION 7.1. U is multiplicatively generated by the classes b, q;, and Bq;.
The proof proceeds by a sequence of lemmas.

LEMMA 7.2. a) If dima>0 and ueU, then
(1a)- = au + 3 (= 195 (qpu) a + (= 1) ** ua,

the sum being for those terms other than a®1 and 1®a in Aa.
b) If dima>0, then

(1a) (18) = a (16) + Y. (= 1)**#" = (a; (10)) a;
+(— 1) 97 (1b) a.

Proof. Just as in Lemma 6.1 or Adams’ Lemma 8. =

LEMMA 7.3. U is multiplicatively generated by the elements la, ac A.

Proof. Adams’ proof of Lemma 9 goes through verbatim, except for the signs in
his formula for Wa, which are immaterial. =

Let D(U) denote the decomposables in U.
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LEMMA 7.4. IfueD(U), ac A, then uacD(U).
Proof. Adams’ Lemma 10.

LEMMA 7.5. If dimb>0, then
a(1b) = (= )1%8* 98> 1py(a) modD (U).
Proof. Adams’ Lemma 11 with the appropriate sign convention. *

LEMMA 7.6. U/D(U) is spanned by the elements 1, b, §;, Bg;.

Proof. From Lemma 7.3, U/D(U) is spanned by the elements la, ae4, and it
clearly suffices to consider only a set of elements ae 4 which span A.

Let St’,i=0,1 mod2(p—1) be the elements St2k@~D =gk §p2k(p=D+1_ gopk
If I=(iy,..., ), i,=0,1 (2(p—1)), StT=St"... St*. The set S of elements St! with
iy =pi,, iy =2pis,..., i,_; =pi, span A, and infactformabase of 4, by the Adem relations.

The set S contains the elements St’, and every other element of S is of the form
St'c with 0<dime<if(p—1) (iy=(p—1) (i, +--- +i,) +i,). The set x(S) also spans 4.
x(S) contains the elements y(St’) and every other element of x(S) is of the form
dy (St') with 0<dimd<i/(p—1). By Lemma 7.5,

1dy(St')=+St'(1d) modD(U),

but St*(1d)=0 since dim (1d)<i/(p—1), so 1dx(St') is decomposable.

Thus U/D(U) is spanned by the elements 1y (St*). Since 1y (2")=4; (or 1 if i=0)
and 17(B)= —b, and 13(8%")=1x(#") 2(B)=di(B)=Pdi (mod D(V)), one has the
result. *

This completes the proof of Proposition 7.1.

Let U’ denote the free associative, commutative algebra generated by elements
b, §;, and Bg;; i.e. the tensor product of polynomial algebras Z,[4;] and exterior
algebras E[b] and E[f4,;]. One then has defined an epimorphism ¢: U’ — U.

One now wishes to show that ¢ is an isomorphism.

For this, form an unstable left 4 algebra B=E[b]=H*(S'; Z,) with trivial 4
action. Form a Thom space B for B with B2~ Z, with base 4, and B>~ Z, with base
u, and with 4 action #°u, =u,, #°u, =u,, pu, = —u, (making B a left 4 module) with
®5:B— B a Thom isomorphism given by @5 (1)=u,, ®5(b)=u,=>bu;.

Following Peterson and Toda [6], let BSF=BSG be the classifying space for
oriented spherical fiber spaces, and MSF the associated Thom spectrum, with
¢:H*(BSF; Z,)— H*(MSF; Z,) the Thom isomorphism.

Then B H* (BSF; Z,) isanunstableleft Aalgebraand ;@ ¢: B H* (BSF; Z,)—
— B®H*(MSF; Z,) is taken as Thom isomorphism. BQH*(MSF; Z,) is a left
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A-module, and one defines a right 4 module structure on BQH*(BSF; Z,) by
ua=(—1)* """ (P,@¢)7" x(a) (P®9) (u).
Note. A sign has been added to this equation since the order of a and u is reversed.
Thus, there is the canonical function

0 = 6B®H‘(BSF): W"’B@H*(BSF; Zp).

Now let g'e H* (BSF; Z,) be the class defined by g;=¢~'#'¢(1). Then Peterson-
Toda show that H*(BSF; Z,) contains the free associative, commutative algebra on
the classes g; and Bg;, and it is implicit in their paper that this subalgebra is closed un-
der left and right A4 action. Further, B¢ (1)=0.

Now consider the subalgebra B®Z,[¢;]® E[Bq;] contained in BQ H* (BSF; Z,).
This clearly contains 1 and is closed under left 4-action. Further, it contains =18
=b®1 and §;=1Q®gq;, so f§;=1®pq;.

Now make use of the fact that #,®¢ is a Thom homomorphism; i.e. B H*
(MSF; Z,) is a BQ H*(BSF; Z,) module. One then has

uﬂ=(—1)dfmu(¢8®¢)_1)((ﬂ) (u-u,®¢(1)) .
=(— 1)dfm“ (P5®¢)7! {—Bu-u,@¢ (1) +(—1)"™* u(—B(u;®¢(1)))}
= (= 1) (= But (= 1) ub) = (= L™ (bu—pu).

and

“X('@i) = (¢B®¢)~1 ?i(“'ul ®¢(1))

=(23®¢)"" Y 27 u-(1®4))u; ® (1))

n

j=0
= ,ZO .@i—ju'.q—j-
J=

Thus BRZ,[q;]®E[Bq:] is closed under right 4 action. Since B®Z,[q;1® E[fq;]
is the free associative, commutative algebra on b, §;, and B¢, 6(W)=B®Z,[q;]®

®E[Byg;].
Thus, identifying U’ with 8 (W), U’ becomes an unstable left 4 algebra with unit
and a right 4 module. /

In addition, U’ is a connected coalgebra in which the diagonalmap 4: U’ —» U'QU’
isgivenby 4(b)=b®1+1®b, 4 (@)"""Z g:-;®4g; and 4 (ﬁq-i)=2ﬁq.i-—j®q-j +Z gi-;®
®pB4,. Under the Thom homomorphism, this corresponds to the usual coalgebra
structure in H*(MSF; Z,) induced by the Whitney sum of oriented spherical fibra-
tions, and the coalgebra structure on B given by 4(u,)=u; @u,, 4 (u,)=u,@u, +
+u,®u,. This coalgebra structure on B® H* (MSF; Z,) forms a coalgebra over the
Hopf algebra A.
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If one now considers the action v: 4 » BQ H* (MSF; Z,) given by v(a)=a(®;®¢)
(1), v is monic. To see this, Peterson-Toda have shown that ¥:4 - H*(MSF; Z,):a
—a¢ (1) has kernel precisely 4. Now v:AB—BQH*(MSF; Z,) sends af to
a(—bu;@¢(1))=(—1)*%**! (bu,®a¢ (1)) and is monic, for if v(aB)=0, ac 4B and
af=0. Then v induces a homomorphism

v:4/AB > BQH*(MSF; Z,)|B*@ H* (MSF; Z,)

which may be identified with ¥, so is monic. Thus v is monic.

By Theorem 4.4 of Milnor and Moore [5], B H*(MSF; Z,) is a free A module.
Applying the inverse of the Thom isomorphism, or working directly with9: 4 - U':a—
— 1x(a), one sees that U’ is a free right A module.

Let us summarize these facts.

LEMMA 7.7. If U’ is the free associative, commutative Z, algebra on b, g, B4;, U’
can be made into an unstable left algebra over A and a right A module with b=18, g;
=1y (P"). Further, as a right A module U’ is free, and the right A module structure
satisfies the identities

uf = (= D (b = fu), ux(P)= T (P )-d;.

In order to compare U’ with U, one must relate U’ with Poincaré algebras.
Unfortunately, U’ is expressed in terms of §; with all formulae involving y (#') while
Poincaré algebras are expressed in v; with formulae involving 2, First these must be
reconciled.

Denote by ¢ the class 1+4,+4,+--, and similarly, let v=1+0v,+v,+---,
P=14+P" +P*+.... Then y(P)=P "1, i.e. x(P)-P=P x(P)=1.

LEMMA 17.8. In U’ and in any Poincaré algebra the classes §=1y(2) and v=12
are related by

g:(Z2v)=1.

Proof. In a Poincaré algebra M, ¢\ (4 (Pv) x)=¢y(Z 1 (Pv-x))
=@y (P 1PV P Ix)=dy (v P 'x)= Py (PP 'x)=p (1-x) for all x, so §-(Pv)
=1.In U, (25®9P) (§:(#v))=(Pv) 4(Ps@¢) (1)=(Fv) P (25@¢(1))
=2 (v 9p®@¢(1))=2(271 (2504 (1)))=25Q¢(1), s0 ¢ (Pv)=1. *

LEMMA 7.9. In any Poincaré algebra

ug(#)= Y. (#7u)-g;.

j=0
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Proof. For any x,

ou( 2, @ 0-05)= ou( £, 1) (@) )

i

= ¢M<Z
j=0

= ¢M(Z
k=0
but Zj’=k%(-@j-k) Pikis 0if i—k>0,1 if i—k=0, so this is ¢M(u.x(gi) x). *

Now consider pairs (M, ) where M is a Poincaré algebra and f:U'-> M is a
homomorphism of algebras with unit and 4 modules with f(b)=>5.

éo (7" P}y (9 x)
.i;k

(P14 Py () x)

CLAIM. The following are equivalent:

2) £(d;)=d; for all i

b) f(v))=v, for all i.

¢) f is a homomorphism of right A modules.

Proof. b) implies a) for f(v)=v gives f(Pv)=Pv and f(§)=f(1/Pv)=1/f(Pv)
=1/#v=4q. a) implies c) for

rr@)=f( L, @ 4)= L 1 04=1 (2@
and
FCuB) = F((~ 1™ (b ) = (= 1 (b () B ()= (2) B

Finally c) implies b) for f(v,)=f(12)=f(1) #'=1P'=v,. =*

Now following Brown and Peterson [3] (Note: Part I of this series is restricted to
Z, but has the results needed, Part II covers Z, but does not apply here), one lets
I,(U’)" be the set of classes in (U’)’ sent to zero by every homomorphism f: U’ - M
of left 4 algebras with unit and right 4 modules where M is an n-dimensional Poincaré
algebra.

Let K(Z,, n—i) denote the Eilenberg-MacLane space and let ieH" (K (Z,,
n—i); Z,) denote the fundamental class. Being given any unstable left 4 algebra with
unit X and class xe X"/, there is a unique homomorphism ¢ (x): H* (K(Z,, n—i); Z,)
— X of left A algebras with unit for which ¢ (x) (i)=2x.

Let F{c{U'®H*(K(Z,, n—i); Z,)}" be the subspace spanned by all elements of
the forms fx—(b®1)-x, dimx=n—1, and #'x—(v;®1)-x, dimx=n-2j(p—1).

LEMMA 7.10. I,(U’)} is the set of classes ue(U')’ for which u®ieF.
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Proof. If u®ieF; and f:U’'— M is any appropriate homomorphism, then for
any xe M""%, one has a homomorphism of left 4 algebras with unit g=f-g(x):U’
QH*(K(Z,n—i); Z)» M:u'®z— f(u')0(x) (2). g(b®1)=f(b)=b and g(v;®1)
=f(v;)=v;, so g(F;)=0 and thus f(u) x=g(u®i)=0. Thus ¢, (f (u) x)=0 for all
xeM" " and f(u)=0. Thus uel"(U’)".

If u®i¢Fy, there is a homomorphism ¢:(U'®@H*(K(Z,, n—i); Z,)" - Z, with
¢ (F)=0and ¢ (u®i)+#0. As in section 6, there is an n-dimensional Poincaré algebra
M with an epimorphism n: U’'® H*(K(Z,, n—i); Z,) > M which isa homomorphism
of left A algebras so that ¢, (7 (x))=¢(x), and with 7 (b®1)=b, n(v;®1)=v;. Let
f:U' ->Mby f(u')=n(u’'®1). Then f is a homomorphism of left 4 algebras with
unit and f(b)=b, f(v;)=v; so a homomorphism of right 4 modules. Since
bu (f () 7 (1Q1))=dp (n(u@1) 7 (181)) = by (7 (u®1)) = ¢ (u®i) #0, f (1) #0.
Thus u¢l,(U’). =

Since U’ is a right 4 module and H*(K(Z,, n—i); Z,) is a left 4 module, one
may form their tensor product over 4, U'® H*(K(Z,, n—i); Z,), which is obtained
from the tensor product over Z, by dividing out the subspace spanned by all ua®@v—u
®av, ac A.

LEMMA 7.11. FE} is the kernel of the quotient homomorphism

¢:(U'QH* (K(Zp n~i); Z,))" = (U'®  H* (K(Z,, n—1); Z,))"

Proof. To see that kerqc F}, let ¢ :(U'®@H*(K(Z,,n—i); Z,))"—>Z, be any
homomorphism with ¢ (F7')=0 and form the associated Poincaré algebra M as in
section 6. Using the notation of the last lemma,

¢ (ua®v) =y (n (va®v))= by (n (ua®1) 7 (1Qv))
=bu (f (ua) 2 (180)) =y (f () a7 (180)) =y (f (1) 7 (a(1Q1)))
=¢u (2 (u®1) 7 (1Qav)) =y 7 (u@av)= ¢ (u@av).

Thus ua®v—u®aveker ¢. Since this holds for all ¢, ua®v—u@aveF;.
To see that Fi'ckerg, it suffices to show that a(u®v)—(la®1) (u®v)ekerq
where a=p or &/, for the u®v span U'@H*(K(Z,, n—i); Z,). Now

a(u®v) — (1a®1) (wv) = ¥ au® (— D)™ 4ma" g7y — (la-u @ v)
=Y (=14 dima (gly)a, @ v — (la'u) ®v  (modkerq)
={Y (= 1)¥mudima™ (gly) g! — la-u} @ v (mod ker q)
When a=$, this is

{(=1)° (Bu)+(—1)""*up—b-u}®v
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which is zero. When a=2/, it is

J . ,
{Z (P ) P+ - L@’-u} ®v.
k=0
Now in U’ one has

(25® ¢) (L(F' ") #) = L 1 (F) (& u- (2 @ 2 (1))}
=Y Y (PP Uy (7)) (2, @ B) (1)

k=0 s=0

and as in Lemma 7.9, this is
u’X('@j) (Ps®9) (1)=”'1'@j'(¢3®¢) (1)=(2:®9¢) (I?j'“)-

Thus Fi'ckerg. =*

LEMMA 7.12. If 2i<n, then I,(U’)'=0.
Proof. Consider the composite

U'SU'QH*(K(Z, n—i); Z,)>U'® H*(K(Z,, n—i); Z,)

where r (1) =u®i.

In dimensions less than 2(n—i), Z,@A4 - H*(K(Z,, n—i); Z,) sending (1, 0) to
1 and (0, @) to ai is an isomorphism of left 4 modules, where A4 acts trivially on Z,.
Thus U'®@ H*(K(Z,,n—i); Z,)2U’'/U'A*@®U’ in dimensions less than 2(n—i),
and under this identification, gr(#)=(0, u). In particular, gr is monic on (U’)’ if
Jj+(n—i)<2(n—i). Since 2i<n, i+(n—i)<2(n—i) and gr is monic on (U’)’, but
1,(U’)" is the kernel of gr. =

PROPOSITION 7.2. U is the free associative, commutative algebra over Z, on the
classes b, q;, and Bq;. Further, U is a free right A module and is a coalgebra with
A(b)=b®1+1®b, A(§;)=Y. 4;- ;®4,. With this coalgebra structure and the right A
action, U is a coalgebra over the Hopf algebra A.

Proof. 1t suffices to show that g: U’ — U is an isomorphism and a homomorphism
of left and right A modules, since U’ has the properties described.

Let f:U’'—> M be a homomorphism of left 4 algebras with unit and right 4
modules with M a Poincaré algebra. Then f(b)=b=1B=0y(c (b)), f(§;)=4,= 13 (%)
=03 (0 (4;)) and f(B4;)=PB4;=0) (o (B4;)). Since f and )0 are algebra homomorph.
isms agreeing on generators, f=0)y0. Thus, if ¢ (4')=0, f(¢")=0 for all such (M, f).
Since 1,(U')'=0 if n>2i, f(u')=0 for all such (M, f) implies «’=0, and thus o is
monic. Since ¢ was epic by Proposition 7.1, ¢ is an isomorphism.
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Now let xeU’, ae4, and suppose as(x)=a(y), yeU’. Then for all (M, f),
F(y=ax)=£(3)— af (x) =3 (0 (7)) abie (0 (x)) = O3 (o (¥)— a0 (x)) =03 (0)=0, and
so y=ax. Thus ao (x)=0 (ax).

If xeU’, acA and o(x)a=0(y),yeU’, then for all (M, f), f(y—xa)=1(»)
=/ (x) a=0y(0(y))—Ox(o(x)) a=03 (o (y)—0o(x) a)=04(0)=0 and so y=xa.
Thus 6(x) a=0(xa). =*

§8. Structure of Q%

In section 7, it was shown that U is a coalgebra. Since one wants to use this
structure heavily, let us review it briefly.

LEMMA 8.1. For each u in U there is a unique element Au=Y u,®u, in UQU
such that

Ore sar () = 2 Oner (1) ® O (1)

Jor all pairs M', M" of Poincaré algebras. The map A:U— UQ® U makes U into a Hopf
algebra, and for ac A

A(au) = X (= 1) e gl @ afu
A(ua) =¥ (= 1m0 simer uig! @ ulay.

Proof. (This is Adams’ Lemma 14). Make U® U into a left 4 algebra and right 4
module by using the diagonal in 4. One then has a function from W into UQ U.

No nonzero class in U’ goes to zero in all n dimensional Poincaré algebras if
n>2i, so there is an n-dimensional Poincaré algebra M’ with 8}, monic on U’ (To
see this let M, be any n dimensional Poincaré algebra. If 6),, (v)=0 choose M, with
03, (u)#0, then kerf), oa,<kerfy, properly. Since U’ is finite dimensional, this
process is finite, giving M '), and then 6. is monic in dimensions less than or equal to
i. 0y ®04:UQU—-M'® M’ is then monic in dimensions less than i.

If we W with ¢ (w)=0in U, then 05, ®03 (Ouou (W))=0ar-xa- (W) =03 x 1. (0 (W))
=0 and so Oygy(w)=0. Thus 0,gy induces a homomorphism 4:U— UQU of left
A algebras and right 4 modules. =

Note. This is the same coproduct as previously discussed for the rule for 4 (ua)
gives the previous formulae. '

The coproduct in U makes Hom(U; Z,) into an algebra and 4(U4A*)cUA4*
QU+ URUA™ so U/UA™ becomes a coalgebra with Hom (U/UA ™ ; Z,) a subalgebra
of Hom (U; Z,). The rule for 8-« ;- shows that y: 2} - Hom(U/UA*; Z,) is a ring
homomorphism.
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For any w=(i,, ..., i,), let S, be the polynomial expressing the symmetric function
3 #i*... t}r in terms of the elementary symmetric functions ¢; of the £’s:i.e. . ¢it... t}r
=S54(015..., 0y, ...). Let s,eU be the class 5,=S,(qy,..., Gy ...). Then s, =Y s,
®s,", the sum being over pairs @', ®” with o’ U ®”"=w. The classes s, form a base
for Z,[4.].

The classes s;€ U*'®~1 (corresponding to w=(i)) are primitive, and satisfy
Newton’s formula

Si—giSi—1+ +(=1) g5, -+ +(=1)"ig;=0.

Thus, if i#0 modp, Bs; is also a nonzero primitive, being congruent to —(—1)"ifq;
modulo decomposables. (If i=pj, s;=(s;)” and Bs;=p(s;)’ ' Bs;=0). This gives
nonzero primitives in each dimension 2i(p—1) and also 2i(p—1)+1 if i#0(p).

If i=0, be U is a nonzero primitive of dimension 2i(p—1)+1. If i=p%, j#0(p),

jPk—1(p=1) jp(p— 1) gpi(p—1)
P P P BS;

is a primitive of dimension 2i(p—1)+1. To see that it is nonzero, consider U as U’
and map into H*(BSF; Z,) by killing b. According to Peterson and Toda (proof of
Proposition 3.1) #'Bg.=(—1)' (*~ ") Bq., +decomposables. Thus, modulo decom-
posables, this class is (—1)/Px-1 P~ D+-+ie=D.(_1)/+1 jg4. which is nonzero.

In the following, let #’BS; denote the nonzero primitive element of dimension
2i(p—1)+1, understanding for i=0 that this is the class b.

Since #'s; is always indecomposable, the elements s, (#"'s;,)... (?"Bs;,)
(i <+ <i,) form a base for U. In Hom(U; Z,) let x;;¢,-1) and y,;,-1)+1 (i>0 and
i>0 respectively) be the elements of the dual base with s;(x;;,-1))=1 and
P'Bsj(¥2ip-1y+1)=1. Then for = (ky, ..., k),

Xoki(p—1) X2ks(p-1)V2i1(p-1)+1 - V20, (p—-1)+1

is the base element of Hom (U; Z,) dual to s,,(#"Bs;,)...(?"Bs,,).

PROPOSITION 8.1. Hom(U; Z,) is the free associative, commutative algebra
over Z, on the classes X5;,—1y (i>0) and y;;,-1y+1 (i=0).

Proof. The given free associative commutative algebra maps into Hom(U; Z,)
and the monomials forming its base are sent to a base of Hom (U; Z,). =

Now one follows Liulevicius [4] to determine the structure of Hom (U/UA*; Z,,).
Denote by U* the algebra Hom (U; Z,) and by A* the dual of the Steenrod algebra.

In addition to its algebra structure, U* has the structure of an 4* comodule.
Dualizing the right 4 action U®A — U gives this coaction U* —» U*@ A*.

Let H be the free associative commutative algebra over Z, on generators x3;(,-,
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and y%;,-1)+1 With i not of the form (p"—1)/(p—1). Let f:U* —> H be the algebra
homomorphism given by

[ %hipet i -Dip-1)
f(xzi(p-l))‘{()“ ) i=(@ -1D/(p-1)

_ y;,ip—l +1 i;é(p'—l)/(p—l,
f(J’zi(p—1)+1)—{0 °=D i=(p—1)/(p—-1).

Let g: U* > H® A* be defined by (f®1)op.

Giving H® A* the obvious algebra structure and the “free”” 4* comodule structure,
g is a homomorphism of algebras and A* comodules according to Proposition 2 of
Liulevicius.

As algebra, A* is the free associative commutative algebra on generators x5;(,— 1,
(i>0) and y5;,-1)+1 (i=0) where i is of the form (p"—1)/(p—1) dual to primitive
elements of dimensions 2(p"—1) and 2(p"—1)+1 in 4.

To prove that g is an isomorphism, it suffices to prove g is epic (since everything
is of finite type and has the same dimension as Z, vector space in each dimension).
For this, it suffices to show that g(x,;(,-1y) and g(2i,-1)+1) are indecomposable.
Since all generators have different dimensions, it is sufficient to show that

¢ U*SHRA* > HRA*/A* 2 HRZ,~H
and
¢,: U*SHRA* - H/H, QA*=Z, @ A* = A*

are epic.

Now ¢, is just the composite

U S Ur@A* S U*QZ,2U*L H
and 7oy is dual to U* - U*:u—1(u), 1€ A being the unit, so tou=1 and ¢, =1 is
epic. The map ¢, is just the composite

UrS U*@A4* > Z,0A* = 4*

and is dual to v:4 — U:a— a(1) which is monic, so ¢, =v* is epic.

Thus g: U* - H® A* is an isomorphism of algebras over 4*. Dually U= H*® 4
is an isomorphism of coalgebras over 4, and U/UA" is isomorphic to H* as coalgebra,
or Hom(U/UA™ ; Z,)= H as algebra. This gives:

PROPOSITION 8.2. Hom (U/UA" ; Z,)is the free associative, commutative algebra
over Z, on generators X5, 1y and ¥3ip-1y+1 With i#(p"—1)/(p—1).
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PROPOSITION 8.3. Qf is the associative commutative algebra over Z generated
by classes

Xq a#0 in Z,, of dimension zero, y, of dimension 4,

Xaip—1) AN V3ip—1y+1.J0r i#(p"—1)/(p—1) of dimension 2i(p—1) and 2i(p—1) +1
respectively.

The relations among these classes are:

xy=11is the unit. x _,= — X, X" Xp=Xgp.

2y,=0if p=1 (mod4) or 4y, =0, if p=3 (mod4).

X,¥a=Ys If a is a square. px3,-1y=0. PY2ip-1)+1=0. xaxlzi(p-—1)=ax'2i(p—1)-
XaYaip-1)+1 =ay,2i(p-—1)+1°

Proof. This has all been proved except for the rules x,x%;,—1,=ax3;,-1), and
similarly for y'. These follow at once from the fact that the characteristic numbers of
M, x M are precisely a times those of M. =

Note. The epimorphism U L H gives a monomorphism H* — U. The image of
H* has as basis the classes

5o (P Bs;,)... (P"Bs;.)

with w=(ky, ..., k;) where k, and i, are not of theform (p"—1)/(p—1). (Recall #!Bs,
has dimension 2i,(p—1)+ 1. Thus, these characteristic numbers suffice to detect the
p-torsion in Q.

§9. Image of Oriented Bordism

Being given a closed oriented n-dimensional differentiable manifold A", one may
assign to M its modp cohomology, H*(M; Z,), giving an n-dimensional Poincaré
algebra. This assignment induces a forgetful homomorphism

F:QY — Q%
where Q) denotes the oriented bordism ring studied by Wall [7].

PROPOSITION 9.1. The image of F:Q3 — Q% is the (polynomial) subalgebra
generated by the classes y, and Xx%;(,— 1.

Proof. According to Wall, the torsion subgroup of Q5 is a Z, vector space and
(in his notation) is generated as Qy module by the classes 0 (x,, ... X5, ), k;#25
which are odd dimensional. Since 2% has no odd dimensional 2-torsion, F annihilates
the torsion of Q3. Thus F induces F':Q3//Torsion - Q4. Now Q}/Torsion is the poly-
nomial ring over the integers on generators z, ;.
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Considering first just the 2 primary part (Q%/Torsion)®Z, is the Z, polynomial
ring on the complex projective spaces CP(2j), and hence the image of F in the 2
primary part of Q% is generated by the CP(2j). Since the middle dimensional pairing
in CP(2j) has P=1, N=0, CP(2j) hits (y,)’ in the 2 primary part of Q5.

Now looking at the p-primary part, let M be a closed oriented manifold and let
P.e H*(M; Z,) denote its i-th normal Pontrjagin class reduced modulo p. Let s,,(2)
denote the class S, (Z,,..., Z,,...).

If the total Pontrjagin class #=1+%, +- is written formally as IT(1+x})
(dimx;=2), then §=1+¢, +--- is given by II(1+x?*"). Thus 6): U~ H*(M; Z,)
sends s,, into s, (Z) where for w=(iy,..., i,), ®'=(i; (p—1)/2,..., i,(p—1)/2).

Since B into the top dimensional cohomology of M is zero, 0),(b)=0, and since
2, is the reduction of an integral class, 0), kills all Bocksteins.

Thus yo F' () is detected by the characteristic numbers s, where w=(iy,..., i,)
and no i, is of the form (p"—1)/(p—1).

Since there are oriented manifolds M *" with s, (%) [ M*"]#0 (modp) except when
2n+1=p*, there are manifolds M?'®~1 with ¢, (03(s;))#0 except when i(p—1)
+1=p*. One may then take some multiple (divisible by 4) of M?'?P~1) as a generator
X3ip—-1)- These classes generate yo F' (), which is then the subalgebra generated by
the X3;p-1y. *

Note. The invariant IF(M ) in Z,®Z, or Z, is easily seen to coincide with the
Hirzebruch index of M reduced mod2 or 4. Thus, the Hirzebruch index modulo 4 can
be computed from the Z, cohomology if p=3 mod 4.-Modulo 2, the Hirzebruch index
is just the Euler characteristic and may be computed with any coefficients.

Letting A’ = 4 denote the algebra of reduced powers, one may consider Poincaré
algebras over 4’, as studied by Adams, with corresponding bordism ring Q.F. Con-
sidering an A’ algebra as an A algebra with $=0 (i.e. 4’ is isomorphic to 4 mod the
two sided ideal generated by B) and considering an A4 algebra as an A’ algebra by
restriction gives algebra homomorphisms ¢: Q¥ — Q% and ¢:Q% — QF with go=1.
It is easy to compute Q7 using Adams’ results and one has

P~ Z[ye Xup-1 |1 # (0" = 1)/(p — 1)]
YT (PXip-1=0,29,=0(p=1) or 4y,=0(p=3)}’

It is immediate that F: QY — Q% has the same image as o, and that gF is epic.

It should be noted that there are classes in Q% which cannot be represented as
H*(M; Z,) for any oriented Poincaré duality space. For an oriented Poincaré duality
space M" of dimension n, p:H" '(M;Z,)>H"(M;Z,) is zero. Thus, if
n=2i(p—1)+1 with i#0 (modp), the characteristic number fs; must vanish, and
H*(M"; Z,) is decomposable in Q%.
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