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Classification Theorems for Quadratic Forms over Fields

RICHARD ELMAN!) and T. Y. Lam?)

1. Introduction

In the study of quadratic form theory, the Classification Problem has always oc-
cupied a unique and central role. Namely, given a field F3), what are the basic invari-
ants which classify (the isometry classes of) quadratic forms over F? The question in
this generality has so far defied an answer, as no one has been able to exhibit a com-
plete set of natural invariants which work for all fields. However, for specific classes
of fields, the Classification Problem has been solved in various specific ways. Thus,
one way to treat the Classification Problem is to ask the following slightly different
question: which are the fields whose quadratic forms are classified by a prescribed set
of invariants? Let us record from the literature some known answers to this alternative
question, in order to lead up to and motivate the main result in this note.

CLASSIFICATION THEOREM 1’ (Triviality). Quadratic forms over F are
classified by ““dim” iff F is quadratically closed, iff IF=0.
Here, IF denotes the ideal of even dimensional forms in the Witt ring, W (F).

CLASSIFICATION THEOREM 1 (Sylvester-Pfister Law). Quadratic forms
over F are classified by “dim” and the total signature (i.e. the totality of signatures
with respect to all orderings of F) iff F is pythagorean, iff IF is torsion-free.

The following is also easy to see:

CLASSIFICATION THEOREM 2'. The following are equivalent:

(1) Quadratic forms over F are classified by ““dim” and *“‘det”.

(2) I*F=0.

(3) All F-quaternion algebras split.

(4) If an F-quaternion algebra splits over a quadratic extension of F, then it splits

over F.
(5) All binary forms {1, ay (acF) are universal.

EXAMPLES (for which the above statements hold): finite fields; algebraic ex-
tensions of C(x); the power series field C((x)).

1) Supported in part by NSF Grant GP-37508X.
2) Supported in part by NSF Grant GP-20532 and the Alfred P. Sloan Foundation.
3) All fields have characteristic different from 2 in this paper.
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CLASSIFICATION THEOREM 2. The following are equivalent:

(1) Quadratic forms over F are classified by “dim”, “‘det” and the total signature.

(2) I*F is torsion-free.

(3) If an F-quaternion algebra splits in every real closure of F, then it splits over F.

(4) If an F-quaternion algebra splits over some F (\/ w) where w is totally positive,
then it splits over F.

(5) All binary forms {1, a) represent all totally positive elements of F.

Proofs of these equivalences are covered by [2, Cor. 2.9] and [6, Theorem E].
The latter contains also further statements equivalent to each of the above.

EXAMPLES. Algebraic extensions of R(x); any formally real field with square
classes {+1, +2}.

CLASSIFICATION THEOREM 3’ [5, Theorem 3.11]. The following are equiv-
alent:

(1) Quadratic forms over F are classified by ““dim™, ‘‘det” and the Hasse invariant.

(2) I*F=0.

(3) All F-Cayley algebras split.

(4) If an F-Cayley algebra splits over a quadratic extension of F, then it splits over F.

(5) All quaternionic norm forms {1, a, b, ab) (a, be F) are universal.

EXAMPLES. Algebraic extensions of C(x, y); p-adic fields; non-formally real
global fields; C((t,)) ((2,)).

Note that Theorems 1’, 2’ are implicitly addressed to non-formally real fields,
while Theorems 1, 2 are respectively their generalizations to arbitrary fields. This
strikes a resonant note to the papers [ 3, 4, 6], where it is demonstrated that many things
said about non-real fields can be appropriately generalized to arbitrary fields. In this
perspective, one is naturally led to conjecture that Theorem 3’ can be superceded by the
following much broader statement:

CLASSIFICATION THEOREM 3. The following are equivalent:

(1) Quadratic forms over F are classified by “dim”, *““det”, Hasse invariant and the
total signature.

(2) I’F is torsion-free. _

(3) If an F-Cayley algebra splits in every real closure of F, then it splits over F.

(4) If an F-Cayley algebra splits over some F (\/ w) where w is totally positive, then
it splits over F.

(5) All quaternionic norm forms {1, a, b, ab) (a, be F) represent all totally positive
elements of F.
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EXAMPLES. Algebraic extensions of R(x, y); global fields.

The purpose of this note is to render a proof of Theorem 3. Though we restrict
ourselves to fields throughout the paper, it seems reasonable to expect that the same
theorem works essentially over semi-local rings. This observation is supported by the
work of Mandelberg [9], where the non-dyadic semi-local analog of Theorem 3" has
already been obtained (under mild restrictions). On the other hand, Sah [12, Theorem
3] has established the analog of Theorem 3’ for fields of characteristic 2.

A word about notations. For a field F, write F=F—{0}, and ¢ (F)=the set of
totally positive elements (=non-zero sums of squares, by Artin-Schreier). For g,e F,
{ay,..., a,y denotes the “n-fold Pfister form” ®;., {1, a;>. The ideal power I"F is
additively generated by all n-fold Pfister forms in W(F). If a Pfister form ¢ lies in
W,(F), we say that ¢ is a torsion Pfister form. Standard facts about quadratic forms
can be found in [8].

2, Auxiliary Results

For convenience of the reader, we shall recall here a few results from our earlier
work [2, 3, 5], to be used in the sequel.

PROPOSITION 1 [5, Section 3]. Let K=F(\/a) be a quadratic extension of F.
Let s: K~ F be the F-linear functional defined by s(1)=0, s(\/a)=1. Let s,: W(K)—
— W (F) be the transfer map induced by s, andr*: W(F) — W (K) be the functorial map.
Then,

(1) We have a zero sequence

0= ¢ —ay-I" 'FoI"FSIKSIF for all n>0.

(By definition, I 'F=I°F=W(F).)
(2) The above sequence is exact for n=0, 1, 2.
(3) The above sequence is exact for n=3, except possibly at the term I°K.
(4) If yeI*K is 8-dimensional and s,(y)=0, then there exists qeI>F such that

r*(q)=y.

PROPOSITION 2 [3, Cor. 2.3]. Suppose ¢ is a 2n-dimensional form such that
20=0e W (F). Then o= L}_, {a;y {—w.) for suitable a;cF, and w, which are sums
of two squares.

COROLLARY 1. Ifo is a Pfister form, then 20 =0 iff 6= —w,...) where wis a
sum of two squares.
Proof. “If” is clear. Assuming 20 =0, we have 0={a) {1, —w) L..., where ae F
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and w=>»?+c¢?#0. Using standard facts about Pfister forms, o= {(a>-o2{1, —w,...>
~¢—w,..y. QED.J).

PROPOSITION 3 [2, Theorem 2.8]. Every element in I*Fn W,(F) is a sum of
forms {a, —w), where ac F and wea (F).
We shall now prove some lemmas.

LEMMA 1. Let n>1. Suppose there are no anisotropic n-fold Pfister form ¢ satis-
fying 29 =0€ W (F). Then there are no anisotropic torsion m-fold Pfister form for any
mz2n.

Proof. Suppose y is an m-fold Pfister form (m>n) such that 2°*1y=0 but 2y #0.
Consider the (m +¢)-fold Pfister form 2‘y which is killed by 2. According to Corollary
1,22 =W, Xg5 ey Xpar) (W=0>+?#0, x;€ F ). But by hypothesis { —w, x5, ..., X,.)
=0 since it is killed by 2. Thus 2*y=0, a contradiction.

COROLLARY 2 (Pfister: see [8, p. 300]). Let r=1. If any r-fold Pfister form
represents any non-zero sum of 2 squares, then any r-fold Pfister form represents all of
o(F).

Proof. Apply Lemma 1 with n=m=r+1, using again Corollary 1.

COROLLARY 3. In Theorem 3, we have (3)<>(4)<>(5)<:
(A) There are no anisotropic torsion 3-fold Pfister forms (over F).

Proof. A Cayley algebra splits iff its 3-fold Pfister norm form is hyperbolic
[7, p. 371]. Thus, (3)<>(A) follows from Pfister’s Local-Global Principle [11]. By
Corollary 1 and Lemma 1, we have (A)<>(5). Considering the form {a, b, —w)
(weo (F)), we get (4)<(5).

LEMMA 2. Let K=F(\/a) be a quadratic extension of F. Then I*K coincides with
the F-module J in W (K) generated by {e, z where ecF, zeK.

Proof. Let x, yeK and be F. From the equation xb, y)=<b> {x, ¥y +{~b, y»
e W(K), it follows that {x, y)eJ={xb, yyeJ. Thus, we need only show that
p={c+\/a, d—./ayel, where c,deF. If c=—d, ¢ is hyperbolic. If c# —d,
p={c+d, (c++/a) (d—\Ja)yeJ. Q.E.D.5).

LEMMA 3. Let K=F(\/w) be a quadratic extension of F, where wea (F). Assume
that Property (A) (see Corollary 3) holds for F. Then it also holds for K.

4) Here is a proof which avoids Prop. 2. Write o = (1) ] o’. Since 6=~ <{— 1) o, o represents — 1,
and hence ¢’ represents some — w = — (b2 + ¢2) # 0. We then have o>~«—w,...».

5) As observed by Mandelberg, this Lemma together with Frobenius reciprocity yields a quick
inductive proof of the inclusion s, (/*K) < I*F asserted in Prop. 1(1).
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Proof. Let y={x, y, —z, where x, yeK and z is a sum of 2 squares in K. It
suffices to show that y must be hyperbolic. Let 7*, s, be asin Proposition 1 (witha=w).

Step 1. We claim that s, (y)=0e W(F). Since s,: W(K)— W(F) is a F-module
homomorphism (by Frobenius reciprocity), we may assume that xe F, by Lemma 2.
Consequently, s, (y)=s54&x, ¥, —2)=&x) 54 (¥, —z»). The latter lies in {x)*
(I*F~ W,(F)), which is zero in view of Proposition 3 and the hypothesis on F.

Step 2. Since s, (y)=0, there exists an anisotropic form ge I*F such that r*(q)=y
(Proposition 1 (4)). In the following, assume that y is anisotropic. We may then write
q=f1 {—w)-g, where f, g are forms over F, dim =8 (see [8, p. 200]). If dimg=1,
then dimg=10, and geI*F=>q is isotropic [11, Case 5 on p. 123], a contradiction.
If dimg>2, {—w)-g contains a subform <{b)> { —w, ¢), which is universal by
hypothesis and hence ¢ is isotropic, again a contradiction. Consequently, g is the zero
form, and dimg=8. This means that g=<b,) b,, bs, b,y whereb;e F [11, Case 4 on
p.123].

Step 3. Our hypothesis for F implies that { —wY-I?F=0. By Proposition 1 (3),
it follows that r*:73F— I’K is injective. Since r*(g)=7y is torsion, ¢ must be torsion
too. But then €b,, b;, b,) is an anisotropic torsion Pfister form — a final contradiction.

Q.E.D.

3. Proof of Theorem 3

We are now ready to complete the proof of Theorem 3. In view of Corollary 3,
we need only show (1)=>(A)=(2)=(1).

(1)=(A). Consider {a, b, —w) (weo(F)) and (1,1, —1). These both have
dimension 8, determinant 1, trivial Hasse invariant, and zero total signature. Hence
(1) implies that €a, b, —w) is hyperbolic.

(A)=(2). Suppose F satisfies (A), but there exists a nonzero anisotropic form
ocel*F with 26 =0. We may suppose F to have been chosen such that dimo =2n is as
small as possible. By Proposition 2, o= L}_;<{a;> {—w.>, a;eF, w;ec(F). Let
K=F(\/w,). This field also satisfies (A), by Lemma 3. Since the anisotropic part of ¢
over K is <2n, the form ¢ must become hyperbolic over K, by the choice of n. Accord-
ing to Proposition 1 (3) and the Property (A), we get e —w, ) I?F=0, a contra-
diction.

Now that we know (A)<>(2), we may restate Lemma 3 as:

COROLLARY 4. Let K=F(\/w), wea(F). Then, I°F is torsion-free=>I°K is
torsion-free.

Remark. The same implication, of course, holds for 72, The proof is immediate
from the I*-exact sequence in Proposition 1 (2).

It still remains to ascertain one last implication: (2)=> (1), for the conclusion of
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the proof of Theorem 3. To do this, we first make some observations about invariants.
For a regular quadratic form g over F, the Clifford invariant, I'(q), is given by the
class of the Clifford algebra of ¢ in the Brauer-Wall group BW (F) (see [8, p. 115]).
It is well-known that I"(¢) contains exactly the same information as the aggregate of
“dim.mod.2”, “det” and the Hasse invariant [8, p. 120-123]. Thus, we have nothing
to lose in working with I'. On the other hand, the single invariant I" is much nicer to
work with, because it is well-defined on W(F), and is a homomorphism into BW (F).
Working with I' in general avoids many unpleasant calculations. We shall now prove

PROPOSITION 4. Suppose I*F is torsion-free, and q is a form such that qe W,(F).
Then I' (q)=1=>q is hyperbolic.

Proof. Assume that I'(g)=1, but g is non-hyperbolic. Since ker(I': W(F)—
— BW(F))<I?F, we have qe]*’FnW,(F), so we can write ¢=) j-,{a;, —w;),
a,e F, w,es (F). We may suppose F, g to have been chosen such that # is as small as
possible. Let K=F(/w,). Since g=Y 7. ,€a;, —w;y in W(K), and I*Kis still torsion-
free (Corollary 4!), ¢ must become hyperbolic over K, by the choice of n. According
to Proposition 1 (2), g=¢—w,Y{by,..., b,,ye W(F), for suitable b;eF. Thus,

q=<by) K =wy, bib, 1D+ +<b,> K —wy, b,b,.»
=€—=wi, bib, Y+ +L—wy, b,by,»
=¢€—wy, (—1)*1 by ... b,y (modI®F).

Since I'(q)=1 and I'(I?F)=1 (see [8, p. 117]), we see that I'({ —w;, (—1)"*1 b,
... by,)=1. This means that { —w,, (—1)"*1 b, ... b,,)) is hyperbolic (see [8, p. 116]).
Thus, geI’F. But then geI3Fn W,(F)=0, a contradiction. Q.E.D.

Using Pfister’s Local-Global Principle, we obtain:

COROLLARY 5. Suppose I*F is torsion-free. Let s,: W(F)— W (F,)=Z be the
“signature maps”’, where {F,} are a complete family of real closures of F. Then

(I, I1: 5): W(F)—> BW(F)®[ . W(F,)

is a monomorphism. In particular, quadratic forms over F are classified by “dim”, the
Clifford invariant and the total signature.

Since “dim’, ““det” and the Hasse invariant together determine I' as observed
before, Corollary 5 provides the implication (2)=>(1) in Theorem 3. The proof of
Theorem 3 is now complete.

We shall now make some remarks about Theorem 3.

Remark 1. The statements (1) to (5) in Theorem 3 are also equivalent to each of
the following: (6) Quadratic forms over F are classified by “dim” and Milnor’s total
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Stiefel-Whitney class w in [10]. (7) Quadratic forms over F are classified by “‘dim” and
Delzant’s total Stiefel-Whitney class w in [1]. (Note: w takes its value in the algebraic
k-groups of Milnor, while w takes its value in the Galois cohomology of F). In fact,
(6)<>(2) has been shown in [2, Theorem 2.15]. (7)=>(6) is trivial since W is a “special-
ization” of w. To see that (1)=>(7), suppose ¢ and ¢ have the same “dim” and the
same W= (W;). For i=1, 2, this says that ¢ and ¢ have the same “det” and the same
Hasse invariant. But they also have the same total signature, since ¢ —o€ W,(F) by
[13, Cor. 6.2]. Therefore, p =0 by (1).

Remark 2. Suppose F, F' are fields for which there exists a ring isomorphism
g:W(F)= W(F’). Then, if the statements in Theorem 3 apply to F, they will likewise
apply to F’. This is because IF is the unique maximal ideal in W (F) containing 2,
which implies that g(I*F)=IF'.

Remark 3. The “hereditary” property in Corollary 4 is peculiar to quadratic ex-
tensions of the type F(,/w)>F (wea (F)). In fact, let F; be a pythagorean field which
has a non-pythagorean algebraic extension E; = F; («). Let F, =F, ((x)), F3=F,((»)),
and E;=F;(x). Then, for i=1, 2, 3, F; satisfies Theorem i, but E; does not. (If F, is
formally real pythagorean, then so are F, and F; and they even satisfy Theorem 1.)

Remark 4. A number of other properties also share the “hereditary” feature of
Corollary 4, under quadratic extensions of the type K= F(\/w) (weo (F)). For exam-
ple, it can be shown that, if every totally positive element of F is a sum of 2" squares,
then the same holds for K. If a field satisfies the statements of Theorem 3, then, in
particular, weo (F)=>{1, 1, —w)) is hyperbolic =w is a sum of four squares. However,
this latter property (though “hereditary’ in the above sense) does not imply the state-
ments in Theorem 3. For example, every totally positive element in L=Q((¢)) is a
sum of four squares (see [8, p. 315]), but I°L is not torsion-free (e.g. 1, —3, t) is
an anisotropic torsion Pfister form over L).

Appendix: Similarity Factors and a Theorem of Dieudonné

For a quadratic form g of dimension n over F, let d, (¢) denote (—1)"®*~1/2-det(q)
(the “‘signed determinant’), and let s(g) denote the Hasse invariant of ¢. Also, let
D(q) denote the nonzero values of F represented by ¢, and let G(g) denote the group
of similarity factors of ¢ (i.e. G(q)= {aeF:a-q=q}).

LEMMA 4. If dimg=n=2r, and acF, then s(a-q)=s(q) iff ae D1, —d. (q)).
In particular, G(q)= D{1, —d. (q)).

Proof. From [8, p. 140, Ex. 8], s(a-q) and s(q) differ by a quaternion algebra
(a, (—1)»=D/2.gn=1/F), where d=det(g). Since n=2r, this quaternion algebra is
(a, d (q)/F), which splits iff ae D{1, —d. (q)). Q.E.D.

In general, be D{1, —d. (q)) need not imply be G (g). For b to be in G(q), there
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exists at least one other obvious necessary condition, namely, b must be positive in
every ordering of F at which g is non-hyperbolic. Thus, if we write G’ (¢) for the group

{beD(1, —d; (q)>:5>0 in every ordering of F at which q is non-hyperbolic},

we have an inclusion G(q)=G’(q), for all even dimensional forms g.

THEOREM. The conditions (1) through (5) in Classification Theorem 3 are also
equivalent to each of the following:

(8) G(q9)=G"(q) for all even dimensional forms q over F.
(9) G(q9)=G'(q) for all torsion 2-fold Pfister forms q over F.

(10) Torsion 2-fold Pfister forms over F are universal.

Proof. (1)=>(8). If be G’ (q), then, g and b-q have the same “dim’’, “det’’, Hasse
invariant (by Lemma 4), and the same total signature (by inspection). Thus, b-g=~g
by (1).

(8)=(9) is obvious.

(9)=>(10). If g is a torsion 2-fold Pfister form, the group G’ (g) clearly coindides
with F. Thus, (9) implies that G(q)=F, i.e., ¢ is universal.

To complete the proof, we shall show that (10) implies the Condition (A) in
Corollary 3. By Lemma 1, it is sufficient to show that any 3-fold Pfister form ¢
satisfying 29 =0€ W (F) is isotropic. By Corollary 1, p~{—w, x, y), where w is a
sum of two squares, and x, yeF. By (10), { —w, x)) is universal, so ¢ is isotropic.

Q.E.D.

Since global fields satisfy the condition (1) (by the Hasse-Minkowski Theorem),

we obtain:

COROLLARY 6. If F is a global field, then G(q)=G'(q) for any even dimensional
form q.

This result is a theorem of Dieudonné [14, Théoréme 3]. However, our proof
((1)=>(8) above) is a drastic simplification of Dieudonné’s long arguments in [14]
(which, incidentally, also use the Hasse-Minkowski Theorem). Actually, Dieudonné’s
proof in [14] seems to contain a gap (in the middle of p. 402), as pointed out by
Dan Shapiro. We would like to thank Dan Shapiro who called our attention to
Dieudonné’s paper [14], and collaborated in this appendix.
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