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tJber den Satz von Wiener und lokalkompakte Gruppen

Herrn Prof, Dr. B. L. van der Waerden in dankbarer Erinnerung an das

Studienjahr 1947-48

Hans Reiter

Mûller-Rômer [10] und Leptin [5] haben ein bemerkenswertes Analogon des

Wienerschen Satzes fur gewisse zusammenhângende Liegruppen bewiesen, der erste
fur die ,,ax+Z>"-Gruppe, der andere fur die nilpotenten Gruppen der Klasse 2; ver-
gleiche auch Eymard [3] fur eine Verallgemeinerung des Ergebnisses von Mùller-
Rômer, der auch selbst mittels einer anderen Méthode seine Ergebnisse auf gçwisse

lokalkompakte Gruppen verallgemeinert hat (Mùller-Rômer [11, 12]).
Hier sollen in diesem Zusammenhang ebenfalls lokalkompakte Gruppen be-

trachtet werden. Das Programm lâBt sich im AnschluB an Leptins Arbeiten etwa so
formulieren. Sei G eine lokalkompakte Gruppe, L1 (G) die L*-Algebra bezûglich des

linken HaarmaBes.

(i) Ist jedes eigentliche Idéal1) von LX{G) in einem Maximalideal enthalten?

(ii) Bestimmung aller Maximalideale von L1 (G).

(iii) Untersuchung der Quotientenalgebren von L1 (G) nach den Maximalidealen.

(iv) Zusammenhang zwischen den Maximalidealen von L1 (G) und den irreduzi-
blen unitâren Darstellungen von G.

Fur Abelsche oder kompakte Gruppen ist dièses Programm erledigt. Die Schwierig-
keiten fur allgemeine lokalkompakte Gruppen hat schon 1950 Mackey [7, §14]
angedeutet.

In der vorliegenden Arbeit werden zuerst nilpotente Gruppen der Klasse 2 be-

handelt, die eine Verallgemeinerung der Heisenberggruppe bilden und den von
Leptin [5] untersuchten Gruppen entsprechen (§1). Dies fûhrt auf Betrachtungen,
die sich ganz allgemein auf lokalkompakte Gruppen beziehen (§§2, 3). In §4, Satz 1,

wird das endgiiltige Ergebnis fur die ,,Gruppen vom Heisenbergtyp" gebracht.
Zweitens werden halbdirekte Produkte lokalkompakter Abelscher Gruppen betrach-

tet, im AnschluB an Mûller-Rômer [10] und Eymard [3]; fur diesen Fall lassen sich

einige weitere Ergebnisse erzielen (§5, Satz 2).
Die beiden Klassen von Gruppen, die den Gegenstand dieser Arbeit bilden,

werden nach einer môglichst einheitlichen und einfachen Méthode behandelt, damit
sowohl die Zusammenhânge als auch die Unterschiede klar zutagetreten.2)

*) Idéale sind in dieser Arbeit immer zweiseitig und abgeschlossen.
2) Ober einige der Ergebnisse dieser Arbeit habe ich am Congrès Suisse de l'Analyse harmonique

(Mârz 1973) berichtet.
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§1. Gruppen vom Heisenbergtyp

1.1. Fiir die multiplikative Gruppe der Matrizen

Xi9 X2, X3EK

hat sich die Bezeichnung ,,Heisenberggruppe" eingebûrgert; fur eine nàhere Dis-
kussion dieser Gruppe und ihrer unitâren Darstellungen vgl. Cartier [2], Pukanszky
[13, S. 71]. Man kann auch Untergruppen betrachten, indem man z.B. xx - oder aile
drei Xj - auf Z beschrânkt (vgl. dazu das ,,Prinzip der Relativierung" in [14,
Kap. 4, §5]); man erhâlt so Gruppen mit einer analogen Struktur, die nun ganz
allgemein definiert werden soll.

Seien Xi9 Xl9 X3 lokalkompakte Abelsche Gruppen, additiv geschrieben. Sei

weiter eine Abbildung B:(xu x2)\-+B(xî9 x2) von Xx xX2 in X3 gegeben, die stetig
und ,,bilinear" (ûber Z) ist, d.h. fur xl9 yx in Xt und xl9 y2 in X2 gilt B(xx +yl9 x2)
=B(xl9x2)-\-B(yl9x2)9 B(xl9 x2+y2)= B(xl9 x2)+B(xl9y2). Wir setzen voraus,
daB B nicht identisch verschwindet.

Dann erhâlt man eine lokalkompakte Gruppe G wie folgt: G ist die Menge aller
geordneten Tripel

*=(*!, X2,X3), Xj€Xj9 (1)

mit der Produkttopologie und der Multiplikation

(*i, x29 x3) (yl9 y29 y3) (Xi +yu x2 +y29 x3 +y3 +B(xl9 y2)). (2)

Wir schreiben

G=(Xl9X29X3)B oder G=(Z1, Xl9 X3)

und nennen G eine Gruppe vom Heisenbergtyp, in Verallgemeinerung der obigen
Gruppe.

Die Untergruppe X3 {(1)9Q9x3)\x3eX3} ist zentral und GjX^X^X^, ist
Abelsch; also ist G nilpotent der Klasse 2.

1.2. BEISPIELE. (i) Der klassische Fall aus der Quantenmechanik ist (R\ Rv, R),
v> 1, wobei B das Skalarprodukt ist.

(ii) Man kann auch Untergruppen von Rv nehmen und z.B. (Zv, Rv, R) oder

(Z\ Zv, Z) - mit demselben B wie in (i) - betrachten, oder auch (Zv, Zv, R), insbe-

sondere fur v=l.
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(iii) Analog kann man (Z, R/Z, R/Z) mit B=x1x2 (xteZ, x2eR/Z) betrachten.

AUgemein kann man im AnschluB an Mackey [8, S. 305, Ex. 1] und Weil [16, S. 149]

(vgl. auch Mackey [9, §13]) fur eine beliebige lokalkompakte Abelsche Gruppe G9

mit dualer Gruppe ô, die Gruppe (G, ô, R/Z) betrachten, wo (in einer leicht ver-
stândlichen Schreibweise) B(xl9 x2) (xl9 x2} (xleG9x2eô) ist. Man kann dann
wieder - wie in (ii) - Untergruppen G1aG9G2aô nehmen und (Gl9 G2, R/Z)
betrachten, mit demselben B; dabei brauchen Gi9 G2 nicht abgeschlossen zu sein, man
kann z.B. die diskrete Topologie einfûhren.

(iv) Ebenso kann man im AnschluB an Weil [16, S. 180ff.] auch das Analogon
der Heisenberggruppe fur /?-adische oder allgemeiner fur lokale Kôrper betrachten;
man kann dann wieder Untergruppen nehmen (Grosser, Mosak, und Moskowitz
[4, §4]).

(v) Es gibt auch endliche Gruppen dieser Art, z.B. (Z/mZ, Z/mZ, Z/mZ),
m^2, mit B(xl9 x2) x1x2. Fur m 2 ergibt sich, wie man leicht sieht, die Quater-
nionengruppe (vgl. etwa van der Waerden [15, S. 91]), deren Darstellungen schon
bei Weyl [17, Kap. III, §16] betrachtet werden.

1.3. Einer Gruppe G vom Heisenbergtyp kann man eine lokalkompakte additive

Gruppe Gf zuordnen, deren topologischer Raum der von G ist, nâmlich die Menge
aller Tripel (1) mit der Produkttopologie, wâhrend die Addition durch

>i> y2, y3)=(

definiert ist.

BEMERKUNG. Es ist oft vorteilhaft, G selbst einfach als Raum mit zwei

Operationen zu betrachten; man kann dann auch von einer Addition ,,in G" sprechen

(,,abus de langage*').
Das HaarmaB auf Gf ist - mit einer bequemen Bezeichnung -
dx=dxx dx2 dx3. (3)

Dies ist auch das HaarmaB von G und zwar gilt sowohl d(ax) dx als auch d(xb)=dx,
wie man anhand von (2) nachrechnet, d.h. G ist unimodular:

d(axb)=dx, a,beG. (3a)

Wir wollen der spâteren Anwendungen wegen noch folgende Untergruppen von
G=(Xi9 Xl9 X3) einfûhren. Seien Hl9 H2 abgeschlossene Untergruppen von Xx bzw.

X2 ; dann sei

zeXz}. (4)
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H ist eine abgeschlossene Untergruppe von G; weiter ist H normal in G, weil ja die
dritte Koordinate £3 in X3 beliebig ist. Fur das HaarmaB d£ auf H gilt wieder

</« «! «2 «3, (5)

wo dÇl9 d£2 die HaarmaBe auf Hl9 H2 und dÇ3 dx3) das auf Z3 bedeutet. H ist
auch unimodular; es gilt weiter, wie man wieder anhand von (2) bestâtigt,

aeG (6)

und

j t, aeG, feJT(G) (7)

(vgl. dazu auch die obige Bemerkung).
Man kann naturlich in H ebenfalls eine Addition einfuhren, d.h. H als

Untergruppe von Gf betrachten. Es ist im folgenden bequem, nur die eine Bezeichnung H
fur (4) zu verwenden - ob H als Untergruppe von G oder von Gf gemeint ist, wird
eindeutig aus dem Zusammenhang hervorgehen.

H ist selbst eine Gruppe vom Heisenbergtyp, nâmlich H=(Hl9 H2, Xz\ mit
derselben Bilinearform B wie G; insbesondere ist das additive HaarmaB auf H auch
das multiplikative, nâmlich (5).

1.4. Wir betrachten nun L1 (G). Da das HaarmaB von G mit dem von Gf zu-
sammenfâllt (vgl. (3)), ist L1 (G) als Banachmwm dasselbe wie L1 (Gt). Wir wollen
nun den Zusammenhang zwischen den Idealen1) von L1 (G) und denen von L1 (Gf)
untersuchen (vgl. dazu Leptin [5, §111]). Zu diesem Zweck untersuchen wir die
Transformationen

x\-+axb, a,beG, (8)

und zwar fassen wir sie als Transformationen von Gf auf.

Wir betrachten zunâchst die Transformationen aa der Form

aax=axa~K (9)

In ,,Koordinaten" haben wir, wenn wir x=(xu x2, x3),a=(al9 a2f a3), x' (x'l9 x2, x3)
schreiben,

x'i=xu x2=-x2, x'3=x3+B(aux2)-B(xx,a2). (10)
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aa ist also eine (stetige) ,,Z-lineare" Transformation von G\ d.h.

weil B bilinear (und stetig) ist. Es gilt weiter

^& <V^ ^«, a,beG (11)

und sogar

Die Transformationen aa bilden eine Abelsche Gruppe von Automorphismen von
Gf (vgl. (11)); man kann dièse Gruppe als Analogon zur adjungierten Gruppe einer

Liegruppe auffassen.

1.5. Wir zeigen nun: Die Gruppe TG aller Transformationen (8) von G1 besteht aus
sâmtlichen ,,affinen" Transformationen

x' aax+b, a,beG. (12)

Beweis. Sei b (bl9b2, b3); man setze &' (0, b2, b3), b" (bu 0, 0). Dann ist

y+b=b'yb"(yeG). Also ist auch jede Transformation (12) in TG enthalten, weil ja
aa zu TG gehôrt. Umgekehrt gilt axb=yc mit y aax, c a~1b; ist hier c=(cu c2, c3)
und setzt man c (0, — c2, 0), so ist yc=a-y + c (vgl. (10)). Also ist axb G£a

1.6. Die Automorphismen oa von Gf haben den Haarschen Modul 1 (vgl. (3),
(3a)). Setzt man also

Maf{x)=f(aax), feLl(&),
so ist der Operator Ma ein Automorphismus der Banachalgebra Ll{Gfi)\ daB dies

auch ein Automorphismus der Banachalgebra L1 (G) ist, brauchen wir weiter nicht.3)

1.7. Der in §1.4 erwâhnte Zusammenhang ist also: Die Idéale von I}(G) fallen
mit denjenigen Idealen von L1 (Gf) zusammen, die unter sâmtlichen Automorphismen

Ma(aeG) invariant sind. Dies folgt wegen der bekannten Charakterisierung der Idéale

in ZZ-Algebren durch Verschiebungen aus §1.6 und §1.5.
Die Aufgabe, aile Maximalideale von L1 (G) zu bestimmen, ist also auf die Be-

stimmung der maximalen invarianten Idéale von L1(Gt) zuruckgefuhrt; dièses Pro-
blem lâBt sich mit der Fouriertransformation lôsen, wie nun gezeigt werden soll.

3) Der Operator Ma in £1(G!t) ist ein Analogon zum Operator Me in L1(R"); vgl. dazu [14,
Kap. 1, §§1.1, 1.6].
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1.8. Sei âa die zu <ra (vgl. (9)) ,,duale" Transformation in Ôf:

wo <jc, r> die Dualitàt zwischen Gf und Ôf realisiert. Dann gilt fîir/eL1(Gt):
(/0(7a)

A /°

{Mmf)A (t)=f(âj)9 teC*. (13)

Fur ein festes (aber beliebiges) Elément weôf setzen wir nun

Bahn (h>)={o"aH> | ae G}.

wi ôf braucht nicht abgeschlossen zu sein (wofûr gleich Beispiele angefuhrt
werden sollen); ihre abgeschlossene Hiille werde mit Bahn (w) bezeichnet.

Ist nun / ein invariantes Idéal von L1(Gt), so ist nach (13) cosp/ (vgl. dazu
[14, S. 124, FuBnote]) unter allen Transformationen ôa,aeG, invariant; aus

wecosp/folgt also Bahn(w)acosp/, da cosp/abgeschlossen ist. In der umgekehrten
Richtung haben wir: Sei weG* und

/w={/|/eL1(Gt),/(0=0 fur aile feBahn(w)}; (14)

dann ist Iw ein invariantes Idéal in L1 (Gf). Denn Bahn (w) ist unter allen
Transformationen âa, aeGy invariant, die ja eine Gruppe von topologischen Abbildungen
von & auf ôf bilden.

Wir wollen zeigen, daB die Iw9 we(5f, maximale invariante Idéale von //(G*)
sind und daB man so sàmtliche maximale invariante Idéale von Ll (Gf) erhâlt. Dazu
miissen wir die Automorphismen ùa nâher untersuchen.

Schreiben wir (x, /> in ,,Koordinaten" fur x=(xl9 x2, x3), t=(tu t2, t3), so ist
<x, ty~(xu t1}t(x2, t2y'(x$, f3>; ersetzen wir jetzt x durch <ra-ix, so haben wir
nach (9), (10), wenn wir dort a"1 statt a nehmen,

(-au x2), h>-(B(xu a2\

Hier kônnen wir nun

(B{xu
(B(al9

setzen, wo

Bt:X2:

^2),

die

xl3

Abbildungen

(-"?Aj, B2:)

(a2>

^1X

(15)
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Z-bilinear sind. Wir kônnen also den zu x1 — aax dualen Automorphismus t' ôat

in Koordinaten so schreiben:

?2>h)> tf2 h-B2{aut3\ t'3 t3. (16)

Schreibt man crax in der Form

wo der Automorphismus pa durch

Pax=(09 0, B(al9 x2)-B(xl9 a2))9 x=(xi9 xl9 x3), a (al9 al9 a3)

gegeben ist (vgl. (10)), so wird nach (16)

mit

fo=(Bx(a29t3)9 -B2(al9 t3)9 0), t (tl9tl9 t3)eÔ*. (17)

$a ist dual zu fia und beide Transformationen sind nilpotent von der Ordnung 2.

Wir kônnen jetzt fur w=(wu w2, w3) in ôf schreiben:

Bahn(w) w+j8Gw, fiGw {fiaw \ aeG). (18)

Hier ist nach (17) j§Gw offensichtlich eine Untergruppe von 6f; dièse braucht aber

nicht abgeschlossen zu sein, wie man sich an den Beispielen (Z, Z, Z) oder (Z, Z, R)
(vgl. § 1.2 (ii)) klar machen kann; im Falle der klassischen Heisenberggruppe (§1.2 (i))
ist dièse Untergruppe fur jedes w abgeschlossen.

Die abgeschlossene Huile der Untergruppe j§Gw in (18) wollen wir mit H^, be-

zeichnen, indem wir sie - aus spâter ersichtlichen Grunden - als orthogonale
Untergruppe zu einer abgeschlossenen Untergruppe Hw von Gf auffassen.

Die Untergruppe H^ von ôf kann man folgendermaBen beschreiben: Es sei

2, w3) | a2eX2}9 1

Wir definieren jetzt abgeschlossene Untergruppen von Hl und %2 :

Hit w ist die abgeschlossene Huile von Bt (X29 w3) in ^t, 1

H2t w ist die abgeschlossene Huile von B2 (Xt, w3) in %2.



340 HANS REITER

Dann ist (vgl. (17))

#w {(*i, s2, 0) | steHt,w9 s2eHiw). (21)

Die Untergruppen (20) sind orthogonal zu den folgenden abgeschlossenen Unter-

gruppen von Xx bzw. X2 :

û2), w3> l fur aile fl2el2}, j4^) l fur aile ^eX} J l ]

H^ ist also orthogonal zur abgeschlossenen Untergruppe

Hw {(Xi, x2, x3) | x^H^n, x2eH2w9 x3eX3} (23)

von G\

1.9. Wir fassen zusammen: Es gilt fur die abgeschlossene Huile der Bahn von

w=(wl9 w2, w3) in & unter den Transformationen &a, aeG:

(24)

wo H^cô* zu der durch (22), (23) definierten abgeschlossenen Untergruppe HwœG*
orthogonal ist. H^ ist durch (21) gegeben, also in der ,,Ebene" %x x %2 x {0} enthalten;
analog enthâlt Hw immer die ,,X3-Achse" {0} x {0} x X3.

Fur w=(w1, w2, w3), w' (wi, w2, wf3) in ôf gilt H^ H^, falls w'3 w3 ist, d.h.

H^ und Hw hàngen nur von der dritten Koordinate w3 von w ab.

Es ist eine nutzliche Ûbung, die Untergruppen H^, Hw in den Beispielen von
§1.2 zu bestimmen.

1.10. Wir kônnen nun die Définition von Iw (vgl. (14)) so formulieren:

=0}. (25)

Wie im AnschluB an (14) bemerkt, ist Iw invariant; wir kônnen jetzt zeigen: Iw ist ein

MAXIMALES invariantes Idéal von Ll (Gf).
Beim Beweis ist darauf Bedacht zu nehmen, daô die Bahn eines Punktes in ôf

unter den Transformationen ôa, aeG, nicht notwendig abgeschlossen ist. Wir gehen
daher so vor. Sei /' ein invariantes Idéal von L1 (G!t), das Iw enthâlt und von L1

verschieden ist. Aus IwczV folgt cosp/'ccosp/w, d.h. nach (25)

eosp/'c: w+i^. (26)
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Wegen I'^L1 (Gt) ist nach dem Satz von Wiener cosp/V0; sei w'ecosp/'. Dann ist
also w'ew+H^, d.h.

' w+t', mit t'eHÏ. (27)

Da /' nach Voraussetzung invariant ist, liegt auch Bahn (wf) in cosp/' (vgl. §1.8),
also nach (24)

w'+H^ŒcospI'. (28)

Nun folgt fur w' aus (27), wenn wir wieder w=(wu w2i w3), w' (w'u w2, w'3) schrei-
ben und (21 beachten : vv3 w3. Also ist nach § 1.9 H^ H£. und daher folgt - wieder
nach (27) -

(29)

Aus (26), (28), (29) ergibt sich jetzt

d.h. cosp/'=cosp7^. Nach der Définition (25) von Iw muB also auch /'c/w gelten,
d.h. /'=/w; also ist Iw ein maximales invariantes Idéal von L1

1.11. Es gilt nun weiter: Jedes invariante Idéal I von Lx(Gf), das von Ll
verschieden ist, ist in einem Idéal Iw enthalten. Dies folgt analog wie in § 1.10 aus dem
Satz von Wiener: Es gibt ein wecosp/, also liegt wegen der Invarianz von / auch

w+H£ in cosp/und daher gilt nach der Définition (25) /c/w. Daraus folgt weiter:
Jedes maximale invariante Idéal von Ll(G*) ist von der Form Iw (weôf). Es gilt
ùbrigens : Zwei Idéale Iw, !„> sind genau dann gleich, wenn

(30)

ist; denn aus (29) folgt umgekehrt (27) nach den Eigenschaften von H^ (vgl. §1.9).

1.12. Wir wollen jetzt von L1 (G*) zu Ll (G) ûbergehen und die Ergebnisse direkt
in L1 (G) formulieren. Zu diesem Zweck wollen wir die Idéale Iw nâher betrachten.

Setzen wir fur ô

Xw(x) <*>w>> xeG;

Xw ist natûrlich nicht ein Charakter von G, sondera von Gf. Fur feLi(G1f) gilt nun
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also kônnen wir (25) in folgender Forai schreiben:

Setzen wir

so kônnen wir also die Définition (25) so formulieren :

/w=Xw-/1(Gt,Hw). (31)

Das Idéal J1 (G\ Hw) von L1 (Gf) lâflt sich aber noch auf andere Weise charakteri-
sieren: J1 (G\ Hw) ist die abgeschlossene Huile in L1 (G*) der Menge aller /e JT (Gr)
fur die jHyvf(x + Ç) dÇ=O fur aile xeG1 gilt (vgl. dazu [14, Kap. 3, §4, und Kap. 4,

§4.3]). Hw ist aber auch eine Untergruppe von G und ist sogar normal in G (vgl. (4),
(23)); weiter fallt das additive HaarmaB dÇ auf Hw mit dem multiplikativen zusammen
und es gilt

J /(* + «)# J f(xt)dt, xeG, feX-(G)

(vgl. (7) und die anschliefîenden Bemerkungen). Daraus folgt sofort :

(32)

wobei das Idéal J1 (G, Hw) von L1 (G) wieder im Sinne von [14, Kap. 3, §4] definiert
ist.4)

1.13. Wir kônnen also schlieBlich die Définition (31) in der Form

I^X^JX{G9HW) (33)

schreiben. Es gilt nach §1.7 und §1.11: Fur jedes weô* ist Iw ein Maximalideal von
1} (G) und umgekehrt ist jedes Maximalideal von dieser Form; jedes eigentliche Idéal
von L1 (G) ist in einem Maximalideal enthalten.

Damit ist der Ûbergang zu L1 (G) vollzogen und wir kônnen zum nâchsten Ziel,
der Untersuchung der Quotientenalgebren L1 (G)/Iw, ûbergehen. Dies fûhrt auf die

Betrachtung von sogenannten ,,Multiplikatoren" und ,,verschrânkten Z^-Algebren".

4) Wir verwenden hier die Bezeichnung Hw, auch wenn Hw als Untergruppe von G aufgefaBt
wird; infolge der angefûhrten Eigenschaften ist dies gestattet (vgl. wieder die Bemerkungen im
AnschluB an Formel (7)).
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§2. Multiplikatoren und verschrânkte L^Algebren

2.1. Wir betrachten hier ganz allgemein eine lokalkompakte Gruppe G. Unter
einem Multiplikator (oder Kozyklus) fur G versteht man eine Funktion k auf GxG9
deren Werte komplexe Zahlen vom Absolutbetrag 1 sind und die folgende Bedingun-

gen erfùllt:
(i) k (e9 x) k (x, e) 1 fur aile xe G ;

(ii) k (xy9 z) k (x, y) K (x, yz) k (y, z) fur aile x9y9z in G.

Fur unsere Zwecke kônnen wir weiter voraussetzen:

(iii) k ist stetig auf GxG.
Fur eine allgemeinere Définition im Falle von Gruppen mit abzâhlbarer Basis, sowie
den Zusammenhang mit den sogenannten projektiven Darstellungen von G, sei auf
die Arbeiten von Mackey [8, § 1] und Auslander und Moore [1, Kap. I, §4] verwiesen.

2.2. Als Beispiel betrachten wir eine Gruppe G=(Xl9 Xl9 X3)B vom Heisenbergtyp
(§1.1); sei Gf=-GjX39 Z3 {(0,0, x3)\x3eX3}. Die Gruppe G' lâBt sich mit dem
Produkt Xt x X2 identifizieren:

G' {x' | x' (xu x2), x^X^ x2eX2}.

Sei *3*-><x3, w3> ein Charakter von X3 (w3e£3) und es sei k' auf G' x G' definiert
durch

9y2), w3}~\ x' (xl9x2), yt^{y1,y1).

Dann ist k' ein (stetiger) Multiplikator fur Gf.

2,3. Sei jetzt allgemein k ein Multiplikator fur eine lokalkompakte Gruppe G,
d.h. k erfulle die Eigenschaften (i), (ii), (iii) von §2.1. Dann kann man eine
^verschrânkte I}-Algebra" L1 (G9 k) definieren, indem man in L1 (G), als Lx-Raum auf-
gefaBt, eine ,,verschrânkte Faltung" definiert durch

wo dy das linke HaarmaB auf G ist, sowie eine Involution durch

L1 (G, k) ist dann eine involutive Banachalgebra mit der gewôhnlichen Z^-Norm; vgl.
Auslander und Moore [1, Kap. 1, §5], auch fur die folgenden §§, sowie fur diskrete

Gruppen Weyl [17, Kap. III, §16].
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2.4. Sei nun ij/ eine beliebige komplexwertige stetige Funktion auf G derart, daB

\l/(e) l und \i//(x)\ 1 fur aile xeG gilt; dann ist

ein sogenannter trivialer Multiplikator. In diesem Fall wird natiirlich L1 (G) durch

1 (la)

wo i^ die konjugiert-komplexe Funktion bedeutet, isomorph auf L1 (G, k^) abge-
bildet - isomorph im Sinne involutiver Banachalgebren. Triviale Multiplikatoren
liefern also hier nichts Neues; die Sachlage wird aber ganz anders, wenn man zu
Quotientengruppen ûbergeht, was wir jetzt tun wollen.

2.5. Sei k ein Multiplikator fur G; wir setzen

(x,O l fur aile xeG},
É« {Ç\ÇeG,K(Ç,x)=l fur aile xeG}.

Aus den Eigenschaften von k (§2.1 (i), (ii), (iii)) ergibt sich, daB HK und ËK abge-
schlossene Untergruppen von G sind; wir bezeichnen mit HK die grôBte in HK r\ËK
enthaltene normale Untergruppe von G, die natiirlich auch abgeschlossen ist. Dann
gilt also : HK ist die grôfite normale Untergruppe H von G derart, dafi

k(x, {) *(£, *) 1 fur aile £eif und aile xeG (2)

ist. (2) ist âquivalent zur Bedingung

k(Çx9 yrj)=K(x9 y) fur aile £, rj in H und aile x, y in G, (3)

wie sich aus §2.1 (i), (ii) ergibt. In (3) stehen £ und fj auf verschiedenen Seiten von
x bzw. y; da aber H definitionsgemâB normal ist, bedeutet (3) einfach, daB k auf den
Nebenklassen von H x H in G x G konstant ist, m.a.W.

K=Kon, (4)

wo k ein Multiplikator fur G/// ist und n die kanonische Abbildung G x G-*GjHx
x G/H bedeutet. Wir haben also: Sei k ein Multiplikatorfur G; dann ist HK die grôfite
normale Untergruppe H von G derart, dafi k von einem Multiplikator kfûr G/H ,,abge-

leitet" ist, d.h. dafi (4) gilt.

2.6. BEISPIEL. Sei wieder G=(Z1, X2, X3)B wie in §2.2. Sei w=(wu w29 w3) in
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ôf und Xw àcr zugehôrige Charakter von Gf, also

Xw(*) Oi> wt> (x2, w2) <x3, h>3>, x=(Xi, x2, x3). (5)

Dann kônnen wir schreiben

Xw (xy) Xw (x) Xw (y) [kw (*, J>)] "1, (6)

wo kw nur von der dritten Koordinate w3 von w abhângt:

y2)9w3y\ x=(xu x2,x3), y=(yi9y29y3). (7)

Nach (6) ist kw ein ,,trivialer" Multiplikator fur G. Die Untergruppe HK von §2.5 ist

fur k kw nach (7) gerade die Untergruppe Hw von § 1.8 (23). Der triviale Multiplikator
kw fur G ist also von einem Multiplikator kw fur G/Hw abgeleitet; dabei ist

*w(x,y) Kw(x9y)9 x nHw(x), y nHxv(y)9 (8)

mit 7tHw:G-> G/Hw. Im allgemeinen ist aber kw durchaus kein trivialer Multiplikator,
wie wir in §2.8 sehen werden.

2.7. Es gilt nun folgender Morphismussatz fur verschrànkte Z^-Algebren: Sei H
eine (beliebige) abgeschlossene normale Untergruppe der lokalkompakten Gruppe G

und k ein Multiplikator fur G von der Form (4). Dann ist die Abbildung TH,

ein Morphismus - im Sinne involutivner Banachalgebren - von L1 (G, k) auf
L1 (G/H, k), m.a.W.

L1 (G/H, k)ç*L1 (G, k)/J1 (G, H), (9)

wo J*(G, H) der Kern von TH ist und ,,s" einen Isomorphismus involutiver Banach-

algebren bedeutet (also auch Gleichheit der Normen und der Involutionen). Die
Quotientenalgebra rechts hat dabei die Quotientennorm und es wird vorausgesetzt,
daB die linken HaarmaBe auf G, H, G/H kanonisch zueinander passen, d.h. der
Weilschen Formel genugen.

Der Beweis ist ganz analog wie bei den ,,gewôhnlichen" L1-Algebren L1 (G) und

I}(G/H) (vgl. dazu [14, Kap. 3, §§4.1-4.7, 5.3]). Es sei nur darauf verwiesen, daB

infolgen der vorausgesetzten Stetigkeit der Multiplikatoren die Ràume Jf(G/H) und

Jf (G) auch (dichte) Unteralgebren von L1 (G/H, k) bzw. L1 (G, k) sind. Erwâhnens-

wert ist vielleicht noch der Umstand, daB die Abbildung TH von k unabhângig ist und
ihr Kern J1 (G, H) daher fur aile Multiplikatoren k der Form (4) ein bezûglich der
Involution in 1} (G, k) selbstadjungiertes Idéal von L1 (G, k) ist.
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2.8, Auf Grand des Morphismussatzes von §2.7 lâBt sich nun fur eine Grappe G

vom Heisenbergtyp die Quotientenalgebra von L1 (G) nach einem Maximalideal Iw

explizit bestimmen. Denn Ll{G) wird durch die Abbildung/*->/• £w isomorph (im
Sinne involutiver Banachalgebren) auf 1}{G, kw) abgebildet (vgl. (5), (7), (1), (la))
und vermittels der Abbildung THw gilt (9) mit H=Hk,k kw,k kw (vgl. §2.6).
Nach der Charakterisierung des Ideals /w in §1.13 gilt also

wo Hw durch §1.8 (23), kw durch (7), (8) definiert ist und „£" einen Isomorphismus
involutiver Banachalgebren bedeutet. Damit ist die gestellte Aufgabe gelôst.5)

Da /w ein Maximalideal ist, ist L1 (G/Hw, kw) natûrlich eine einfache Algebra.
Daher ist l}(GIHwy kw) fur aile weôf, fur die Hw nicht mit G zusammenfàllt, von
Ll{GjHw) wesentlich verschieden; insbesondere ist also dann der Multiplikator kw

nicht trivial.
Nach der expliziten Bestimmung der Quotientenalgebra L1 (G)/Iw wollen wir die

Maximalideale Iw jetzt mit den irreduziblen unitâren Darstellungen von G in Ver-
bindung bringen. Dabei sollen dièse Idéale auch in einen allgemeineren Zusammenhang
geriickt werden.

§3. Unitâre Funktionen und zugeordnete Idéale

3,1. Sei G eine lokalkompakte Gruppe.

DEFINITION 1. Eine komplexwertige stetige Funktion ^ auf G derart, daB

\j/(e)~ 1 und \ij/(x)\ 1 fur aile xeG gilt, wollen wir unitâre Funktion nennen.
Fur eine unitâre Funktion ^ setzen wir

fur aile xeG}, (1)
fur aile xeG}.

H* und Ê* sind abgeschlossene Untergruppen von G, wie leicht ersichtlich. Wir
definieren weiter:

H^ ist die grôBte in H* n ff* enthaltene normale 1 .-*
Untergruppe von G, m.a.W. H+ Oa(H+nÊ*)a-1. J ^

H+ ist ebenfalls abgeschlossen.

5) Wie in §1.2 (v) bemerkt, gibt es auch Gruppen vom Heisenbergtyp mit endlich vielen Elemen-
ten, deren kleinste die Quaternionengruppe ist; es sei nochmals auf die dort erwâhnten Darlegungen
bei H. Weyl [17] verwiesen, die sich hier einfùgen.
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3.2. Wenn H irgendeine abgeschlossene Untergruppe von G ist, so fallt bekannt-
lich der Kern J1 (G, H) der kanonischen Abbildung von L1 (G) auf L1 (G/H) mit
demjenigen abgeschlossenen linearen Unterraum von ^(G) zusammen, der von
sâmtlichen Funktionen der Form Anf—f{feCf{G\r\eH) aufgespannt wird, wo
Anf{x)=f{xr\) A{r\) ist; fur nâhere Einzelheiten vgl. etwa [14, Kap. 8, §2; Kap. 3,

§4].
Aus der zweiten Charakterisierung von J1 (G, H) folgt sofort: J1 (G, H) ist links-

invariant (d.h. invariant unter Linksverschiebungen) und, falls H normal ist, auch
rechtsinvariant:

LJ1 (G, H)=Jl (G, H) fur aile aeG, (3)

rj1 (G, H)=J1 (G, H) fur aile aeG, falls H normal ist. (4)

Hier sind die Operatoren La9 ra durch

LûF(x)=F(a-1x), raF(x) F(xa~l)9 aeG (5)

definiert. Wir zeigen nun:

PROPOSITION 1. Sei \j/ eine unitâre Funktion auf G (§3.1), H eine abgeschlossene

Untergruppe von G. Wenn H in H* enthalten ist, so ist ij/'J1 (G, H) ein abgeschlossener,

linksinvarianter Unterraum von L1 (G); liegt insbesondere H in H* n S* und ist H
normal in G, so ist ij/'J1 (G, H) auch rechtsinvariant, also ein Idéal von L1 (G).

DaB \lt-Jl(G9H) ein abgeschlossener linearer Unterraum von LX(G) ist, folgt
wegen ij/\p=l aus der entsprechenden Eigenschaft von Jl{G9 H). Um die Links-
invarianz zu zeigen, beweisen wir zuerst ein Lemma.

LEMMA. Sei H eine abgeschlossene Untergruppe von G; sei q>0 eine komplexe,

stetige Funktion auf G mit \q>0(x)\ l fur aile xeG. Wenn q>0 H-rechtsperiodisch ist,
d.h, wenn q>0 (xÇ) cp0 {x) fur aile xeG und aile Ce H gilt, so ist

Beweis des Lemmas. Es ist

<P.{Anf-f)=An{<p.f)-9.f, r,eH,feJf(G),

denn <p0 ist i/-rechtsperiodisch. Wegen der vorausgesetzten Stetigkeit von q>0 ist

(pof wieder in «2f (G), also folgt (pj1 (G fyaj1 (G, H). Wegen (poço^l folgt daraus

J1(G9H)czçéJ1(G9H) und weiter - da JX(G9 H)=Jl(G, H) ist - Jl(G,H)
c^Q-y^G, H\ sodaB (6) gilt.
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Beweis von Proposition 1. Sei jetzt H eine abgeschlossene Untergruppe von G,

die in H* enthalten ist. Wir setzen (pa=La\j//\l/, aeG. Dann ist cpa natûrlich gemâfî
(1) H^-rechtsperiodisch, insbesondere also #-rechtsperiodisch; es gilt also nach (3)
und dem obigen Lemma, wenn wir /=/1 (G, H) setzen,

L.GMMI,» L<J=W<pa) J=il/J, (7)

d.h. xf/J1 (G, H) ist linksinvariant.
Sei nun H in H* n H* enthalten und normal in G. Dann ist fur jedes aeG auch

der Quotient <Pa ra^l\jj (vgl. (5)) //-periodisch (fur normales H bedeutet ja ,,links-
periodisch" dasselbe wie ,,rechtsperiodisch" Wir erhalten dann - analog wie in
(7) - auf Grund von (4)

d.h. ij/J1 (G, H) ist auch rechtsinvariant. Damit ist Proposition 1 bewiesen.

3.3, Nach diesen Vorbereitungen kônnen wir nun folgende Définition geben.

DEFINITION 2. Sei \j/ eine unitâre Funktion auf G und H eine abgeschlossene

Untergruppe von G, die in H* enthalten ist (vgl. §3.1). Dann setzen wir

Ity, i/) {/|/6L1(G), rafeWx{G9 H) fur aile aeG}. (8)

Nach Proposition 1 gilt: /(^, H) ist das grôfite Idéal1) von L1 (G), das in ij/J1 (G,H)
enthalten ist.

Nach der Définition gilt weiters

HtzH^H*s>/(i/f, H)czl(il/, Ht). (9)

Von den Idealen /(^, H) sind fur die Anwendungen die folgenden wichtig, die

,,extremen" Untergruppen H entsprechen: Wir setzen

(10)

wo H* die zu xj/ gehôrige Untergruppe (1) ist, und

I^IfaHj, (11)

wo H+ durch (2) definiert ist; nach Proposition 1 gilt

I^Jl{G,H+). (12)
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Nach (9) ist stets

/*<=/?. (13)

Die Bedeutung der Idéale P und /^, die einer unitâren Funktion \jt zugeordnet
sind, wird sich in konkreten Fâllen (§§4, 5) ergeben; hier wollen wir noch ganz all-
gemein die Beziehungen zwischen den Idealen I(ij/, H) und den unitâren Darstellungen
von G erôrtern.

3.4. Sei Heine abgeschlossene Untergruppe von H* derart, daB auf dem Quotien-
tenraum GjH ein invariantes MaB existiert; dièse letztere Voraussetzung dient der
Einfachheit der Darstellung - in den Anwendungen (§§4, 5) wird H sogar normal
sein. Wir kônnen dann zu einer gegebenen unitâren Funktion \jj auf G eine unitâre
Darstellung xv-+Ux von G in L2 (G/H) folgendermaBen definieren:

VW^^Vl^^VWW, FeL2(G!H)onH. (14)

Hier bedeutet die Schreibweise ,,FeL2(G/H)onHii einfach: F=F°tih, wo f eine

komplexe, quadratisch integrierbare Funktion auf G/H und nH die kanonische Ab-
bildung von G auf G/H ist. Man beachte, daB y^-*^(x~1y)/\l/(y) eine stetige, H-
rechtsperiodische Funktion auf G mit Werten vom Absolutbetrag 1 ist; also ist die
rechte Seite von (14) als Funktion von yeG in L2(G/H)onH und der Operator Ux in
L2(G/H) unitàr, fur jedes xeG.

Wir wollen im folgenden besonders den in L2 (G/H) dichten linearen Unterraum
Jf(G/H) und entsprechend jr(G/#)°7iH betrachten; fur FeCt{GjH)onH gilt dann
auch UxFeJf(G/H)onH. Der unitâren Darstellung xt-*Ux von G in L2(G/H) ent-

spricht eine Darstellung/h> U(f) von L1 (G) in L2(G/H), und zwar ist fûr/eL1 (G)

U(f)F(y) j f(x)F(x~iy)tilf(x-iy)!il,(y)}dx9 FeX{G\H)onH. (15)

Die Einschrànkung von U(f) aufJf(G/H)onH ist aus praktischen Grùndennûtzlich;
U(f) ist dadurch bereits eindeutig bestimmt. Falls/in X*(G) liegt, ist fur ein der-

artiges F natùrlich auch U(f)F wieder in JT(G/H)onH.
Wir wollen nun den Kern dieser Darstellung von LX(G) bestimmen; zu diesem

Zweck ist es bequemer, den adjungierten Operator U(f)* U(f*) zu betrachten,
der durch

dx9 FeX{GjH)onH, (16)

G

bestimmt ist. Dk rechte Seite von (16) ist eine stetige (#-rechtsperiodische) Funktion



350 HANS REITER

von j>gG; also bedeutet £/(/)*=0, daB dièse Funktion auf G verschwindet, was wir
auch

J f(xy-1)F(x)ilf(x)dx=O fur aile yeG

schreiben kônnen. Ist dx das invariante MaB auf G/H und F=F°nH, so bedeutet dies
also

F(x)
G/H H

Da te$T(GIH) beliebig ist, bedeutet dies wiederum TH{{ryf)" -^) 0 oder

Tii((r,/)p)«0 fiiralle >>eG, (17)

wo TH die kanonische Abbildung von L1 (G) auf X1 (G/H) ist (vgl. [14, Kap. 8, §2],
mit #=1). Die Bedingung (17) besagt also einfach

TyfexIfJ^G^H) fur aile yeG,

wo /*(G, H) der Kern von TH ist, und umgekehrt ist fur jedes solche feLi(G)
auch £/(/)*=0.

3.5. Wir haben also fur eine beliebige unitâre Funktion \j/ folgendes Ergebnis
erhalten:

PROPOSITION 2. Sei HcH* derart, dafi auf G/H ein invariantes Mafi existiert.
Dann ist das Idéal I(\j/, H) von §3.3, Définition 2, der Kern der Darstellung (15) von
L1 (G) in L2 (G/H); insbesondere ist also /(^, H) selbstadjungiert bezùglich der In-
volution von L1 (G).

Es kann iibrigens vorkommen, daB I(\l/9 H) keine Funktion in Jf*(G) auBer 0

enthâlt, aber # (0) ist (vgl. §5.11).

3.6. Es sei noch bemerkt, daB man im Fall der Idéale /^ (vgl. (11)) die Quotienten-
algebra Lx (G)//^ explizit angeben kann. Dazu betrachtet man den trivialen Multi-
plikator k=k:^ von §2.4. Die in §2.5 definierte Untergruppe HK fallt dann natiirlich
mit der Untergruppe H+ von §3.1 zusammen und der Multiplikator k^ fur G ist von
einem Multiplikator k+ fur G/H+ abgeleitet. Man zeigt dann analog wie in §2.8,
daB der Isomorphismus - im Sinne involutiver Banachalgebren -
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besteht; die Fâlle H^~G oder H^=={e} sind natûrlich trivial. Es sei noch darauf hin-
gewiesen, daB /^ beziiglich der Involution von L1 (G) selbstadjungiert ist (vgl. dazu

§3.5, Proposition 2).

§4. Erste Anwendung: Gruppen vom Heisenbergtyp

4.1. Das Ergebnis, zu dem wir auf Grund der bisherigen Vorarbeiten gelangen
werden, sei gleich an die Spitze gestellt.

SATZ 1. Sei G eine Gruppe vom Heisenbergtyp, Gt die zugehôrige Abelsche

Gruppe mit dualer Gruppe ôf. Fur weôf sei

^w(x)^Xw(x) <x, w>, xeG,

sodafi also \j/w eine unitâre Funktion auf G im Sinne von §3.1 ist. Dann gilt fur die

zugeordneten Idéale 7*w, 7^w (§3.3) von Lx (G)

7*w=/,w=/w fùrjedes weû\ (1)

wo Iw das in §1.13 (33) definierte Idéal ist.1)

Fùrjedes weô* ist Iw sowohl ein Maximalideal von L1 (G) als auch der Kern einer

IRREDUZIBLENDarstellung von L1 (G). Zwei Idéale Iw, I^fallen genau dann zusammen,
wenn die Relation §1.11 (30) gilt.

Die Idéale Iw, weô*, sind SÂMTLICHE Maximalideale von L1 (G) undjedes eigent-
liche Idéal von L1 (G) ist in einem Maximalideal enthalten. Die Quotientenalgebren
I}(G)/IW lassen sich als verschrânkte l}-Algebren (§2) auf Quotientengruppen G/Hw
darstellen undzwar gilt die Relation §2.8 (10).

4.2. Beweis. Die in §3.1 eingefûhrten Untergruppen lassen sich im vorliegenden
Fall, wo G=(XU Xl9 X3)B, ^ ^w=£w ist, leicht bestimmen, wenn man §2.6 (6), (7)
berucksichtigt; man erhâlt

.,{36*3}, (2)

wo die Untergruppen HlwczXlf H2fWczX2 durch §1.8 (22) definiert sind. Die
Untergruppen H*w9 Ë*™ sind beide normal in G, also ist hier nach §3.1 (2)

Die rechte Seite ist nun gerade Hw9 nach der Définition §1.8 (23), also gilt
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Es giltdaherweiterauf Grundvon§3.3 (12): 7^w=^w/1 (G, Hw). Nunist ^J1 (G,Hw)
gerade das Maximalideal Iw von ^(G), nach §1.13 (es ist ja $w=xw\)\ andererseits

gilt Jfwc/*w (vgl. §3.3 (13)). Da /^^^(G) ist - dies gilt ganz allgemein nach der
Définition 2 in §3.3 - folgt also (1).

Die Relation (1) beinhaltet ûbrigens (vgl. §3.3 (9), (10), (11)): Fur jede abge-
schlossene Untergruppe H von G, die die Bedingung

Hw) (3)

erfûllt, gilt

Nach §3.5, Proposition 2, ist also Iw der Kern einer Darstellung von ^(G) in
L2 (G/H) fur jede abgeschlossene Untergruppe H, die (3) erfûllt (man beachte, daB H
dann sogar normal in G ist!). Wir wollen noch einen einfachen Beweis dafur geben,
daB im ,,Extremfall" H=H*™ die entsprechende unitâre Darstellung §3.4 (14) von G

irreduzibel ist.

4.3. Die erwâhnte unitâre Darstellung von G (Xl9 X2, X3)B làBt sich so be-

schreiben. Die Funktionen auf G, die bezûglich H^w periodisch sind, sind hier von der

Form (xî9 x2, x3)\->F(x2), wo F eine Funktion auf X2IH2iW und x2\-^x2 die kano-
nische Abbildung von X2 a.ufX2/H2tW ist (vgl. (2)). Weiter gilt fur w (wu w2, w3) in
Ôf und a=(au a29 a3) in G nach §2.6 (6), (7):

Also ist nach §1.8 (15)

ZwC^-^/XwW-XwfO <*2> B2(au w3)>". (4)

Nun ist £2(*i> ^3) in H2tW (vgl. §1.8 (19), (20)), der dualen Gruppe von X2/H2tW;
wir haben daher

<x2, B2(au w3)> #B2o7r2(x2), [n2:X2->X2/H2>w], (5)

wo %Bl ein Charakter von X2/H2tW ist.

Die allgemeine Darstellung §3.4 (14) von G in L2 (G/H) lâBt sich also fur H=H*~
(vgl. (2)) als Darstellung in L2(X2/H2tW) auffassen, und zwar hat sie die besonders

einfache Form

X«(a-1nBMS> FeL2(X2/H2tW), (6)

wo a=(au a2, a3) in G, B2=B1(ax, w3) in (X2/H2tWY und à2=n2(a2) in X2jH2iW ist
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(vgl. (4), (5)). Nun ist à2 in X2/H2w beliebig, weil ja aeG beliebig ist, und aus dem-
selben Grund ist B2(al9 vv3) ein beliebiges Elément der Menge B2(XU w3), die ja in
H2>w (X2/H2tWY dicht ist (vgl. §1.8 (20)). Daher sindfùr F^O die Linearkombi-
nationen der Funktionen UaF, aeG, dicht in L2(X2/H2w); also ist die Darstellung (6)
von G irreduzibel. Der Vollstândigkeit halber sei noch ein kurzer Beweis jener be-

kannten Tatsache angefûhrt.

4.4. Es ist zu zeigen: Sei X eine lokalkompakte Abelsche Gruppe. Ist FeL2(X),
i, dann kannfùr $eL2{X) die Beziehung

tLxF$ 0 fur aile xeX und aile tet (7)

(oder fur aile x bzw. aile t aus einer dichten Teilmenge von X bzw. £), wo Xt
durch t definierte Charakter von X ist, nur stattfinden, wenn <P 0 ist.

Beweis. Die linke Seite von (7) ist eine stetige Funktion von xeX bzw.
also kônnen wir einfach von der Voraussetzung (7) ausgehen. Das Produkt LXF- $
ist (fur festes xeX) in L1 (X); da laut (7) die Fouriertransformierte dièses Produktes
auf % verschwindet, folgt

LXF- $ 0 (in I}(X)) fùrjedesxe^. (8)

Es gilt nun (sogar fur beliebige lokalkompakte Gruppen XI): Wenn FeL2(X) und
<PeL2 (X) die Relation (8) erfùllen undF^O ist, sofolgt 0 0, wie man folgendermafien
sieht. Man setze/= \F\2, g= \<P\2 und betrachte in L1 (X) die Faltung g*/* (Involu-
tion in Ll{X)\). Wegen (8) ist auch g*/*=0 (in LX{X)\ daher \xg-\xf*^ da

lxf* \\F\\\>0 ist, folgt Jxg=O, d.h. ||#||2=0, also <^ 0 in L2(X).

4.5. Damit ist der Beweis von Satz 1 (§4.1) vollstândig, denn die Behauptungen
iiber Maximalideale im letzten Teil des Satzes wurden bereits in §1, diejenigen iiber
Quotientenalgebren in §2 bewiesen.

Im Zusammenhang mit Satz 1 sei auf Theorem 2 von Leptin [5] verwiesen, das der

Ausgangspunkt fur diesen Satz war.

§5. Zweite Anwendung: Halbdirekte Produkte Abelscher Gruppen

5.1. Sei G eine lokalkompakte Gruppe, die zwei abgeschlossene Untergruppen
N, Gi enthâlt, wobei N normal ist und folgendes gilt:

(i) G=i\r-G1( G1-iNT),ArnG1 {e};
(ii) die Topologie von G ist diejenige des Produktes NxGt (bzw. Gt x N).
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Dann heifit G bekanntlich halbdirektes Produkt von N und Gx. Im folgenden
werden sowohl N als auch G immer als Abelsch vorausgesetzt.

Wir gehen hier direkt von G aus; dies ist fur die weiteren Entwicklungen am ein-
fachsten. Da N und Gt also als Untergruppen von G gegeben sind, verwenden wir
auch fur N und Gt multiplikative Schreibweise.

Fur das linke HaarmaB auf G gilt (vgl. z.B. [14, S. 161, (ii)])

ff(t)dt=fdgff(gn)dn9 fel}(G). (1)

G Gx N

Man beachte redits die Reihenfolge gn\
Wir setzen noch

(2)

Dies ist also ein Automorphismus von N.

5.2. In der Praxis ist der Ausgangspunkt aber oft umgekehrt wie in §5.1. Zunâchst
sind (Abelsche) lokalkompakte Gruppen N und Gt gegeben; N wird additiv, Gt
multiplikativ geschrieben, mit neutralem Elément 0 bzw. 1. Weiter ist ein (alge-
braischer) Homomorphismus a~+aa von Gx in die Gruppe der (topologischen)
Automorphismen von N gegeben derart, daB die Abbildung (x, à)h-+aax von NxGt
in N stetig ist. G wird dann als die Menge aller Paare (x, a) definiert, mit der Produkt-
topologie und der Multiplikation

(x,a)(y,b)-(x+a.y,ab) (3)

(auch die ,,entgegengesetzte" Multiplikation kommt hier vor, vgl. z.B. Mûller-
Rômer [10]). Die Untergruppe aller (x, 1) bzw. aller (0, a) ist dann isomorph zu
N bzw. Gt und G ist halbdirektes Produkt von N und Gt ; dabei entspricht aa dem

Automorphismus (2). Man schreibt

(4)

Die Formel (1) wird in ,,Koordinaten" (x, a), bei Verwendung von (3)

J /(x, a) d(x9 a)=J da J /fox, a) dx, feL1 (G).
G Gi N

Fur die allgemeinen Beweise, die im folgenden zu geben sind, ist es aber einfacher,
die ,,koordinatenfreie" Formel (1) zu verwenden.
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BEISPIELE. (i) N= Rv ; Gt R* (multiplikative Gruppe aller reellen Zahlen ^0),

a^ax(*eRv, aeR*), r= 1, 2,....
(ii) Analogon zu (i) fur einen beliebigen lokalen Kôrper K.
(iii) N wie in (ii), G1 eine abgeschlossene Untergruppe von K* mit K*/^ kom-

pakt, z.B. G1 (K*)m, m^2; <ra analog wie in (i).
(iv) Analogon zu (ii) oder (iii) fur endliche KÔrper.
(v) N=AZ, wo A eine endliche Abelsche Gruppe ist; Az ist definiert als die

additive Gruppe aller Folgen x=(xn)neZ, xneA, mit der Produkttopologie (also ist
Az kompakt). Gt Z und aax=(x'n)n e z mit xr xn+a ; man kann statt cra auch o-JJ1 ama

(m eine feste natiirliche Zahl) nehmen.

(vi) Sei Az wie in (v) definiert; fur n"^0 sei Kn. die kompakte Untergruppe aller
x=(xn)neZ mit xn=0 fur aile n<—ri. Dann setze man iV=ind.limn^0 Kn. (vgl.
[14, Kap. 4, §1.5]). Gi und <rfl werden wie in (v) definiert. Hier ist ûbrigens N selbst-

dual.

(vii) Eine Gruppe vom Heisenbergtyp, G (XU Z3, Z3)B, làBt sich als halb-
direktes Produkt auffassen, indem man z.B. N={(xl90, x3)\xieXl9 x3eX3},
Gx {(09 x2, 0) | x2eX2} wàhlt.

5.3. Die Gruppe Gt wirkt auf N mittels der Automorphismen ag (vgl. (2)).

DEFINITION 1. Wir sagen, daB die Wirkung a von Gx auf N die Kompressions-
eigenschaft hat, wenn es fur jede kompakte Menge KaNxxnâ jede Umgebung 17 von
eeN ein geGx gibt derart, daB agK in t/ liegt.6) In den Beispielen von §5.2 haben

(i), (ii), (iii) und (vi) die Kompressionseigenschaft, die ûbrigen nicht (was insbe-
sondere fur die Gruppen vom Heisenbergtyp von Bedeutung ist).

Die Kompressionsbedingung ist natùrlich auch fur nicht-Abelsches (Gx und) N
sinnvoll; in diesem Zusammenhang gilt: Wenn a die Kompressionseigenschaft hat,
dann hat N die Eigenschaft Pt. Der Beweis ist genau derselbe wie im klassischen

Spezialfall §5.2, Beispiel (i), wie schon Mùller-Rômer [11, 12] bemerkt hat.
Sei nun âg der zu ag duale (topologische) Automorphismus der dualen Gruppe fit,

definiert durch

(ag-tn,ny {n,âgny fur aile neN. (5)

Wir setzen

ûeft (6)

und bezeichnen die abgeschlossene Huile mit Bahn (A).

8) Dièse Bedingung ist explizit von Eymard [3, S. 100-101] und von Mûller-Rômer [11, 12]
unabhângig voneinander formuliert worden.
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DEFINITION 2. Wir sagen, dafi die Wirkung â von Gx auf die duale Gruppe ff
die Injektionsbedingung erfullt, wenn fur jedes «#é gilt: fur g¥=gf in Gt ist auch

âgfi^âg.n. Dies bedeutet also, daB g\-*ùgn fur jedes n^ê'mf) eine (stetige) Injektion
von Gt in # ist.

Fur die Beispiele (i)-(vi) in §5.2 ist die Injektionsbedingung erfullt, aber nicht
fur die Gruppen vom Heisenbergtyp (Beispiel (vii)), wie man leicht sieht.

5.4. Wir kônnen jedem halbdirekten Produkt G=NG1 G1N (vgl. §5.1) eine

Abelsche Gruppe G* zuordnen, nâmlich das (gewôhnliche) Produkt

Die Abbildung gn\-+(g, n) von G auf G:t ist dann topologisch.
Jeder Funktion/auf G entspricht also eine Funktion/f auf G!t vermittels der

Zuordnung

fHg,»)~f(gn). (7)

Die Integralformel (1) besagt nun: (7) definiert einen Isomorphismus von LX{G)
und 1} (Gf), als Banachrawme aufgefaBt. Jeder Funktion/eL1 (G) kônnen wir daher
eine ,,Fouriertransformierte"/t, die Fouriertransformierte von/f, zuordnen:

N

Nach diesen Vorbereitungen zeigen wir nun:

5.5. SATZ 2. Sei die lokalkompakte Gruppe G ein halbdirektes Produkt der
Abelschen Untergruppen N und Gu wobei N normal ist (§5.1). Sei G* GxxN die

zugeordnete Abelsche Gruppe. Sei

Wir setzen

l9 neN. (9)

Also ist \j/w eine unitâre Funktion auf G (vgl. §3.1); seien /^w, J^w die zugeordneten
Idéale von L1 (G) (vgl §3.3).

1. Liegt w auf der ô^-Achse, d.h. ist w (gw, ê), wo gweôu ê das neutrale Elément

von fî ist, dann ist ^w natùrlich ein Charakter von G und daher gilt:

I*~=I^=Iiw, w=(gw,ê),
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wo /g den Kern des Morphismus

f(gn)dn, geÔt (10)J

von L1 (G) aufC bezeichnet. Fur jedes geôl ist 1% ein maximales Idéal von L1 (G) und
der Kern einer eindimensionalen, also irreduziblen Darstellung von l}{G): fur g^g' in
ôj ist I^h- Es&b nun: Wenn die Wirkung a (vgi (2)) von Gt aufNdie Kompressions-
eigenschaft (§5.3, Définition 1) hat, so sind die Idéale Iê,geô, bereits SÂMTLICHE
Maximalideale von L1 (G) undjedes eigentliche Idéal von L1 (G) ist in einem Maximal-
idéal enthalten.

2. Liegt weô* nicht aufder ô^Achse, d.h. ist w (gw, nw)9 n^ê, so gilttfalls die

Wirkung & von Gt auf die duale Gruppe Ê (vgl. (5)) die Injektionsbedingung (§5.3,
Définition 2) erfùllt:

a) Das Idéal /^w besteht aus allen Funktionen f in L1 (G), deren Fouriertransfor-

mierte /f (vgl. §5.4) auf ôt x Bahn(«w) verschwindet.

b) J*w ist der Kern einer IRREDUZIBLEN Darstellung von L1 (G).
c) Falls weiters die Wirkung a von Gt auf N die Kompressionseigenschaft hat, so

besteht das Idéal 7^w aus allen denjenigen Funktionen f in L1 (G), deren Fouriertrans-

formierte f* auf ù^ x Gr (Bahn («w)) verschwindet.1) Insbesondere gilt:

ist eine Gruppe [w (gw, ûw), nw^ë]. (11)

5.6. Beweis von Teil 1. Jedem Idéal le L1 (G) entspricht unter dem ïsomorphismus
(7) wieder ein Idéal IyczL1{G^\ denn fur die Abbildung/h->/t gilt: Die Funktion
gn\-*f(g'gnn') auf G geht ûber in die Funktion (g, n)h->f*(g'g, nn') auf Gf(g'eGi9
rieN). Also folgt die Behauptung aus der Âquivalenz von Idealen und translations-
invarianten abgeschlossenen Unterrâumen.

Ein Idéal ^cl1^), das einem Idéal 7c:L1(G!) entspricht, ist auch invariant
unter dem Automorphismus (g, n)t-+(g, acn) von G*, fur jedes ceGt, wobei a durch (2)
definiert ist. Es ist nâmlich egne'1 =gcnc~1, also gilt fur die Abbildung/h->/t :

Die Funktion gnv-+f(cgnc~~l) geht ùber in (g,n)y-*f*(g,<rcn). (12)

Man beachte aber, daB hier keine vollstândige Charakterisierung derjenigen
Idéale 7f von L1 (G:t), die Idealen 7 von L1 (G) entsprechen, gegeben wird, zum Unter-
schied von Gruppen G vom Heisenbergtyp (vgl. §1.7), doch geniigt die hier aufge-
stellte notwendige Invarianzbedingung fur die Idéale 7f von L1 (Gf) fur den weiteren
Beweis.

7) Tir {A) bezeichnet die von A in N erzeugte abgeschlossene Untergruppe.
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Sei nun / ein eigentliches Idéal von L1 (G); dann ist /f ein eigentliches Idéal von
1} (Gf), also gibt es nach dem Satz von Wiener ein w=(gw, Aw)eô* mit/1 (gw, nw)=0
fur alle/te/t, d.h. nach (8)

/• /•

J dg(g,gwy \ f(gn)(n,ûwydn O fur aile fel.
G\ N

Daher ist sogar/wr jedes ceG1 (vgl. (12))

J dg(g, gwy j f{gcnc~l) (n, ûwy dn^O fur aile fel,
Gx N

also weiter

f i r f ^/ n—=t
J dg <g, gw> J / (gn) <c ne, #w> dn=0,

Da ceGi beliebig war, folgt wegen der vorausgesetzten Kompressionseigenschaft der

Wirkung von G± auf N sofort

/2=0 fur aile /e/5
Gi JV

d.h. /c/|w (vgl. (10)). Damit ist Teil 1 des Satzes bewiesen.8)

5.7. Beweis von Teil 2a). Fur die durch (9) definierte unitàre Funktion \\fw auf G

ist H*™ (vgl. §3.1) gerade die normale Untergruppe N von G, wenn die Wirkung â

von Gt auf die duale Gruppe fi die Injektionsbedingung erfûllt. DaB Nez H*™ gilt,
ist trivial. Sei nun umgekehrt xoeH*™ und sei xo=(gpo«o (goeGl5 noeN); dann ist also
auch goeH*™. Die Relation

^w (*&>) *Aw 00 &w ^o) fur aile x6 G

reduziert sich im Falle (9), wenn man x=gn(geGuneN) setzt, so dafi xgo
=ggo(gôin£o) wird, auf

(gôlng<» ^w> <w> ^w> fur aile neN. (13)

(13) bedeutet einfach &gonw~fiw, woraus wegen nw^ê nach der Injektionsbedingung
fur Ô folgt: go=e. Also gilt If^cN, d.h. H*"=N.

8) Vgl. dazu den Beweis bei Mûller-Rômer [10]; durch eine andere Méthode hat Mûller-
Rômer [11, 12] dann eine weit grôBere Allgemeinheit erzielt.
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/*w besteht also hier gemâfî (9) oben und §3.3 aus allenfeL1(G), die folgender
Bedingung genûgen: Fur jedes (feste) ceG verschwindet die Funktion

g^ <g, gw> j <«, K>f(gnc-1) dn, (14)

die auf Gt (fast ûberall definiert und) integrierbar ist, fast ùberall auf Gt. Hier kann
man den Faktor <g, gw} natùrlich weglassen und c auf Gx beschrânken (denn wenn
(14) fur c0 fast ûberall verschwindet, dann gilt dies auch fur cono,noeN); die
Bedingung ist also âquivalent mit folgender: Fur jedes (feste) ceG1 gilt

<n, ûwy f {gcnc~i)dn=O fast ûberall fur geGx
N

Dabei haben wir links noch gc statt g geschrieben, was fur ceGx offensichtlich erlaubt
ist. Die obige Bedingung ist wiederum âquivalent mit folgender: Fur jedes (feste)

ceGt ist

J dg{^J> jOhWfigcnc'^dn^O fur aile geÙ,.

Substituiert man hier n\-^c~1nc9 so bedeutet dies also (vgl. (5), (6)):

/t(#5Mw)=0 fur aile geÔt und jedes ceGx. (15)

Wegen der Stetigkeit von/f erhâlt man dann die Behauptung 2a) (§5.5), denn aus

(15) folgt ja umgekehrt, dafi die Funktion (14) fast ûberall auf Gx verschwindet.

5.8. Beweis von Teil 2b). DaB im vorliegenden Fall die Darstellung §3.4 (14) von
G in L2 (G/H) fur H=N irreduzibel ist, kann man ganz einfach zeigen.9)

Wir betrachten die zur Darstellung §3.4 (14) adjungierte Darstellung U*=Ux-i
und erhalten, indem wir x=g'n', y=gn mit g', g in Gt und n', n in N setzen und mit
nN die Projektion gn\-+g von G auf Gx s GjN bezeichnen,

U^F(gn)^F(gWgn) *w(g'n'gn)Ww(gn)9 FeL2(Gt)onN. (16)

Es ist also hier F=Fokn, FeL2(G1). Schreibt man in (16) g'n'gn=g'g(g~infg) n und
setzt fur \j/w den Ausdruck (9) ein, so kann man die Darstellung direkt in L2(G!1)

9) Im ,,separablen" Fall enthâlt bekanntlich die Mackeysche Théorie viel weitergehende Ergeb-
nisse; vgl. z.B. die schône, einfûhrende Ûbersicht von Mackey [9], insbesondere §8. In dieser Arbeit
ist auch die entsprechende Literatur angegeben; der folgende Beweis ist von dieser Literatur unab-
hângig.
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beschreiben:

u;H.f(g) f(g'g) <g\gw> (g-'n'g, nw}.

Die Irreduzibilitât ergibt sich nun aus dem folgenden Lemma.

5.9. LEMMA. Sei FeL2(Gl)9 nw in f}9 nw nicht das neutrale Elément von Ê; sei
& die durch (5) definierte Wirkung von Gx auf fi. Fur g'eGurieN sei Ag>tn>F in
L2(GX) definiert durch

Ag,>n,F(g) F(g'g) <«', âgnw}9 geGt.

Wenn â die Injektionsbedingung (§5.3, Définition 2) erfùllt, so spannen die Funktionen

Agffn'F(g'eG1, n'eN) den ganzen Raum L2(Gt) auf, sofern F#0 ist.
Beweis. Es ist zu zeigen: Fur ÔeL2(G1) folgt aus der Bedingung

J f(gg)<n',âgÛwy¥(g)dg 0 fur aile g'eGun'eN, (17)

Um dies zu zeigen, bemerken wir zunâchst, daB wir ein beschrànktes Mafi \i auf
fi erhalten, indem wir

(18)

setzen; es ist ja g*-+ôgnw eine stetige Abbildung von Gt in N. Das MaB \i hângt
natûrlich auch von g'eG1 (und von F und <P in L2 (G^) ab.

Sei jetzt K eine beliebige kompakte Menge in G± und K' das Bild von K bei dieser

Abbildung; sei cpr die charakteristische Funktion der kompakten Menge K' auf #
und cpK diejenige von K auf Gv Die Funktion <p' ist also n-integrierbar. Weiter gilt
auf Grund der Injektionsbedingung:

fur aile geGx.

Also gilt auch (vgl. (18))

W (19)

Die Bedingung (17) besagt nun einfach, fur festes g'eGt:

<«',/*> 4i(tf)=0 fûralle n'eN,
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d.h. fur die Fouriertransformierte (l gilt: fl 0; also ist ju=O. Daher gilt nach (19)
auch fur jede kompakte Menge

09 g'eGt.

Daraus folgt weiter nach der Integrationstheorie, da6 fur jedes g'eG1 die Funktion

fast ùberall auf Gt verschwindet; man beachte noch, daB dièse Funktion in L1^)
liegt.

Da nun das Elément gfeGî beliebig war, folgt weiter: <P 0 in L2(Gi) (vgl. §4.4).
Damit ist das Lemma bewiesen und der Beweis von Teil 2b) des Satzes fertig.

5.10. Beweis von Teil 2c). Wir wissen bereits, daB H*W N ist (§5.7), also gilt
auch H^cN, nach der Définition von H^ (§3.1). Nun besteht fur ÇeH^ auch die

Relation ^w(^x) \j/w(i) il/w(x), fur aile xeG; im vorliegenden Falle bedeutet dies

- nach der Définition (9) von \l/w -, daB fur £ «oei/^w gilt:

<g~1nog,nw> (no9nw> fur aile geG±. (20)

Man beachte den Unterschied gegenûber (13)!
Falls nun die Wirkung a von Gx auf N die Kompressionseigenschaft hat, so folgt

aus (20)

<no,nw> l fur aile noeH^. (21)

Sei nun

Hw {n\neN,<n,nwy l}. (22)

Hw ist eine abgeschlossene Untergruppe von N. Relation (21 bedeutet also : H^c Hw ;

definitionsgemâB ist weiters H^ normal in G. Es gilt nun einfach: i/^w ist die grôfite
in Hw enthaltene normale Untergruppe von G, denn fur jedes Elément n dieser letzteren

Untergruppe gilt trivialerweise (20), also ist sie in Ë*™ (vgl. §3.1) enthalten, anderer-
seits liegt sie in H*W=N. Wir haben also in der Bezeichnung (2)

h,w= n *,»*. (23)
geGi

Jetzt kônnen wir auch das Idéal /^w ^w/1 (G, H^J) (vgl. §3.3) bestimmen.
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Zunâchst gilt - analog wie in §1.12 (32) -
^(G.H+J-Jii&.HiJ, (24)

wobei H^w einmal als Untergruppe von G, das andere Mal als Untergruppe von Gf

aufgefaBt wird; beide Seiten von (24) sind ja die abgeschlossene Huile - im Banach-

raum L1 (G) - aller/eX (G\ fur die

\ f(gnh)dh=0 fur aile geGuneN,

gilt (vgl. §5.4). Es ist also /'(G, H) die Menge aller feL1 fur die /f auf der

orthogonalen Gruppe von H^ in ôf verschwindet (vgl. dazu [14, Kap. 4, §4.3]).
Dièse orthogonale Untergruppe ist nun, da ja G* GtxN ist und H^ in N liegt,
einfach

ôiXH^, (25)

wobei H#w die zu H^cN orthogonale Untergruppe von # bedeutet. Da nun \j/w nach

(9) gerade der durch w definierte Charakter von G!t ist und w in der Untergruppe (25)
enthalten ist (vgl. (21)), gilt weiter

iM1 (G\ H+J-J1 (G\ H+J. (26)

Also haben wir:

Die Untergruppe H^ von ft ist nun nach (23) einfach die von sâmtlichen Gruppen
Hy,)1, geGl9 erzeugte abgeschlossene Untergruppe. Nun ist

Hier gilt (in der Bezeichnung von FuBnote7) H^ Gr(nw), wie man sofort gemâB (22)
nachpruft. Die von sâmtlichen Untergruppen &g-i(H^)9geGu erzeugte abgeschlossene

Untergruppe von ft ist nun gerade Gr(Bahn(«w)), wie man ebenfalls sofort
nachpruft (man beachte dabei, daB letztere Untergruppe dg-invariant ist, fur jedes

geGi). Die Behauptung (11) folgt unmittelbar. Also ist auch 2c) bewiesen. Damit
ist der Beweis von Satz 2 (§5.5) beendet.

5.11. Zur Veranschaulichung von Satz 2 sei auf die Beispiele in §5.2 verwiesen;
insbesondere kann man fur (11) das Beispiel (i) in §5.2 heranziehen.



Ûber den Satz von Wiener und lokalkompakte Gruppen 363

Weiter ist ein Vergleich der Sàtze 1 (§4) und 2 - und ihrer Beweise - wohl emp-
fehlenswert. Man beachte noch, daB im Falle von Satz 2 die Quotientenalgebra
L1 (G)//,w nichts Neues liefert, weil ja hier /^w=/1 (G, H+J ist (vgl. (24), (26)); der
triviale Multiplikator k^w fur G ist hier von einem trivialen Multiplikator abgeleitet,
zum Unterschied gegenûber den Gruppen vom Heisenbergtyp (§§2.8, 3.6).

Bezùglich der Idéale J^w sei darauf hingewiesen, daB sich der Durchschnitt von
7*w mit Jf(G) auf die konstante Funktion Null reduzieren kann (auch fur /^w^(0)),
wie man etwa im Falle von §5.2, Beispiel (iii), fur N=R, G1 (R*)29 sofort zeigt.

5.12. Aus Teil 2a) von Satz 2 ergibt sich ubrigens in Verbindung mit Teil 1 :

Wenn fur a die Kompressionseigenschaft und fur â die Injektionsbedingung gilt,
so ist 7^w in sàmtîichen Maximalidealen von L1 (G) enthalten, sofern w nicht auf der

(ji-Achse liegt. Dies steht im Kontrast zum Falle kompakter Gruppen, wo der Kern
einer irreduziblen Darsiellung von L1 (G) stets ein Maximalideal ist.10)
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