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Uber den Satz von Wiener und lokalkompakte Gruppen

Herrn Prof. Dr. B. L. van der Waerden in dankbarer Erinnerung an das
Studienjahr 1947-48

HANS REITER

Miiller-Romer [10] und Leptin [5] haben ein bemerkenswertes Analogon des
Wienerschen Satzes fiir gewisse zusammenhingende Liegruppen bewiesen, der erste
fiir die ,,ax+b*“-Gruppe, der andere fiir die nilpotenten Gruppen der Klasse 2; ver-
gleiche auch Eymard [3] fiir eine Verallgemeinerung des Ergebnisses von Miiller-
Roémer, der auch selbst mittels einer anderen Methode seine Ergebnisse auf gewisse
lokalkompakte Gruppen verallgemeinert hat (Miiller-Rémer [11, 12]).

Hier sollen in diesem Zusammenhang ebenfalls lokalkompakte Gruppen be-
trachtet werden. Das Programm 148t sich im AnschluB an Leptins Arbeiten etwa so
formulieren. Sei G eine lokalkompakte Gruppe, L' (G) die L'-Algebra beziiglich des
linken Haarma@es.

(i) Ist jedes eigentliche Ideal') von L!'(G) in einem Maximalideal enthalten?

(ii) Bestimmung aller Maximalideale von L! (G).

(iii) Untersuchung der Quotientenalgebren von L' (G) nach den Maximalidealen.

(iv) Zusammenhang zwischen den Maximalidealen von L' (G) und den irreduzi-
blen unitdren Darstellungen von G.

Fiir Abelsche oder kompakte Gruppenist dieses Programm erledigt. Die Schwierig-
keiten fiir allgemeine lokalkompakte Gruppen hat schon 1950 Mackey [7, §14]
angedeutet.

In der vorliegenden Arbeit werden zuerst nilpotente Gruppen der Klasse 2 be-
handelt, die eine Verallgemeinerung der Heisenberggruppe bilden und den von
Leptin [5] untersuchten Gruppen entsprechen (§1). Dies fiihrt auf Betrachtungen,
die sich ganz allgemein auf lokalkompakte Gruppen beziehen (§§2, 3). In §4, Satz 1,
wird das endgiiltige Ergebnis fiir die ,,Gruppen vom Heisenbergtyp gebracht.
Zweitens werden halbdirekte Produkte lokalkompakter Abelscher Gruppen betrach-
tet, im AnschluB an Miiller-Rémer [10] und Eymard [3]; fiir diesen Fall lassen sich
einige weitere Ergebnisse erzielen (§5, Satz 2).

Die beiden Klassen von Gruppen, die den Gegenstand dieser Arbeit bilden,
werden nach einer moglichst einheitlichen und einfachen Methode behandelt, damit
sowohl die Zusammenhénge als auch die Unterschiede klar zutagetreten. 2)

1) Ideale sind in dieser Arbeit immer zweiseitig und abgeschlossen.
2) Uber einige der Ergebnisse dieser Arbeit habe ich am Congreés Suisse de 1’Analyse harmonique
(Mirz 1973) berichtet.
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§1. Gruppen vom Heisenbergtyp

1.1. Fiir die multiplikative Gruppe der Matrizen

1 X1 X3
0 1 x,), x,x,x3€6R
0 0 1

hat sich die Bezeichnung ,,Heisenberggruppe“ eingebiirgert; fiir eine ndhere Dis-
kussion dieser Gruppe und ihrer unitiren Darstellungen vgl. Cartier [2], Pukanszky
[13, S. 71]. Man kann auch Untergruppen betrachten, indem man z.B. x; — oder alle
drei x; - auf Z beschrankt (vgl. dazu das ,,Prinzip der Relativierung® in [14,
Kap. 4, §5]); man erhélt so Gruppen mit einer analogen Struktur, die nun ganz
allgemein definiert werden soll.

Seien X, X,, X; lokalkompakte Abelsche Gruppen, additiv geschrieben. Sei
weiter eine Abbildung B:(x,, x,) B(x;, x,) von X, x X, in X; gegeben, die stetig
und ,,bilinear* (iiber Z) ist, d.h. fiir x;, y, in X; und x,, y, in X, gilt B(x, +y;, x,)=
=B(xy, x3) +B(¥y, X3), B(xy, x,+y,)= B(xy, x,)+B(xy,y,). Wir setzen voraus,
daB B nicht identisch verschwindet.

Dann erhilt man eine lokalkompakte Gruppe G wie folgt: G ist die Menge aller
geordneten Tripel

x=(xy, X2, X3), X;€X;, (1)
mit der Produkttopologie und der Multiplikation

(%15 X2, X3) (V15 Y25 ¥3)= (%1 +V1, X2+, X3 +y3+B(x3, ¥5))- (2)
Wir schreiben

G=(X;, X,, X3)p oder G=(X;, X,, X3)

und nennen G eine Gruppe vom Heisenbergtyp, in Verallgemeinerung der obigen
Gruppe.

Die Untergruppe X;={(0,0, x;) | x;€X,} ist zentral und G/X;=X,xX, ist
Abelsch; also ist G nilpotent der Klasse 2.

1.2. BEISPIELE. (i) Der klassische Fall aus der Quantenmechanik ist (R, R*, R),
v=1, wobei B das Skalarprodukt ist.

(ii) Man kann auch Untergruppen von R” nehmen und z.B. (Z', R, R) oder
(', 2’, Z) - mit demselben B wie in (i) — betrachten, oder auch (Z', Z', R), insbe-
sondere fiir v=1.
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(iii) Analog kann man (Z, R/Z, R/Z) mit B=x,x, (x,€Z, x,€R/Z) betrachten.
Allgemein kann man im AnschluB an Mackey [8, S. 305, Ex. 1] und Weil [16, S. 149]
(vgl. auch Mackey [9, §13]) fiir eine beliebige lokalkompakte Abelsche Gruppe G,
mit dualer Gruppe G, die Gruppe (G, G, R/Z) betrachten, wo (in einer leicht ver-
stindlichen Schreibweise) B(x;, x,)={x;, X, (x,€G, x,€G) ist. Man kann dann
wieder — wie in (i) — Untergruppen G, <G, G, <G nehmen und (G4, G5, R/Z) be-
trachten, mit demselben B; dabei brauchen G,, G, nicht abgeschlossen zu sein, man
kann z.B. die diskrete Topologie einfiihren.

(iv) Ebenso kann man im AnschluB an Weil [16, S. 180ff.] auch das Analogon
der Heisenberggruppe fiir p-adische oder allgemeiner fiir lokale Koérper betrachten;
man kann dann wieder Untergruppen nehmen (Grosser, Mosak, und Moskowitz
[4, §4]).

(v) Es gibt auch endliche Gruppen dieser Art, z.B. (Z/mZ, Z/mZ, Z/mZ),
m>2, mit B(x;, x,)=x,x,. Fiir m=2 ergibt sich, wie man leicht sieht, die Quater-
nionengruppe (vgl. etwa van der Waerden [15, S. 91]), deren Darstellungen schon
bei Weyl [17, Kap. III, §16] betrachtet werden.

1.3. Einer Gruppe G vom Heisenbergtyp kann man eine lokalkompakte additive
Gruppe G' zuordnen, deren topologischer Raum der von G ist, nimlich die Menge
aller Tripel (1) mit der Produkttopologie, wihrend die Addition durch

(xb JC2, X3)+(y1, Y2, y3)= (xl +y1’ x2 +y2’ X3 +y3)

definiert ist.

BEMERKUNG. Es ist oft vorteilhaft, G selbst einfach als Raum mit zwei
Operationen zu betrachten; man kann dann auch von einer Addition ,,in G*‘ sprechen
(,,abus de langage*).

Das HaarmaB auf G' ist — mit einer bequemen Bezeichnung —

dx=dx, dx, dx;. (3)

Dies ist auch das HaarmaB von G und zwar gilt sowohl d(ax)=dx als auch d(xb) =dx,
wie man anhand von (2) nachrechnet, d.h. G ist unimodular:

d(axb)=dx, a,beG. (3a)

Wir wollen der spiteren Anwendungen wegen noch folgende Untergruppen von
G=(X;, X,, X;) einfithren. Seien H;, H, abgeschlossene Untergruppen von X, bzw.
X, ; dann sei

H= {f I €=(§1’ 62’ 63)9 fern szHz, 536X3}' (4)
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H ist eine abgeschlossene Untergruppe von G; weiter ist H normal in G, weil ja die
dritte Koordinate £, in X7 beliebig ist. Fiir das HaarmaB d¢ auf H gilt wieder

df=df1 déz dfsy (5)

wo d¢,, d¢, die Haarmalle auf H,, H, und d¢; (=dx;) das auf X; bedeutet. H ist
auch unimodular; es gilt weiter, wie man wieder anhand von (2) bestitigt,

d(ata™')=d¢, aeG (6)
und
[r@ae=[r@roa. acc, sex (o ™

(vgl. dazu auch die obige Bemerkung).

Man kann natiirlich in H ebenfalls eine Addition einfithren, d.h. H als Unter-
gruppe von G' betrachten. Es ist im folgenden bequem, nur die eine Bezeichnung H
fiir (4) zu verwenden — ob H als Untergruppe von G oder von G' gemeint ist, wird
eindeutig aus dem Zusammenhang hervorgehen.

H ist selbst eine Gruppe vom Heisenbergtyp, namlich H=(H,, H,, X;), mit
derselben Bilinearform B wie G; insbesondere ist das additive HaarmaB3 auf H auch
das multiplikative, namlich (5).

1.4. Wir betrachten nun L'(G). Da das HaarmaB von G mit dem von G' zu-
sammenfallt (vgl. (3)), ist L' (G) als Banachraum dasselbe wie L'(G'). Wir wollen
nun den Zusammenhang zwischen den Idealen’) von L'(G) und denen von L'(G')
untersuchen (vgl. dazu Leptin [5, §III]). Zu diesem Zweck untersuchen wir die
Transformationen

x—axb, a,beG, ()

und zwar fassen wir sie als Transformationen von G' auf.
Wir betrachten zunéchst die Transformationen o, der Form

o.x=axa 1. : 9)

In,,Koordinaten* haben wir, wenn wir x =(x;, x,, X3), a=(ay, a,, a3), x' =(x1, x3, x3)
schreiben,

Xi=xy, X3=Xx, x'3=x3+B(a1, xz)—B(xla a). (10)
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o, ist also eine (stetige) ,,Z-lineare* Transformation von G', d.h.
0, (X+y)=0,x+0,,
weil B bilinear (und stetig) ist. Es gilt weiter
Oup=0,0,=0,,, a,beG (11)
und sogar
Oa+b=0ap-

Die Transformationen g, bilden eine Abelsche Gruppe von Automorphismen von
G' (vgl. (11)); man kann diese Gruppe als Analogon zur adjungierten Gruppe einer
Liegruppe auffassen.

1.5. Wir zeigen nun: Die Gruppe T aller Transformationen (8) von G* besteht aus
sdamtlichen ,,affinen‘’ Transformationen

'=o,x+b, a,beg. (12)

Beweis. Sei b=(by, b,, b3); man setze b'=(0, b,, b3), b"=(b,, 0,0). Dann ist
y+b=>b'yb" (yeG). Also ist auch jede Transformation (12) in T; enthalten, weil ja
o, zu T gehort. Umgekehrt gilt axb=yc mit y=0,x, c=a"'b; ist hier c=(c,, ¢;, ¢3)
und setzt man é=(0, —c,, 0), so ist yc=azy+c (vgl. (10)). Also ist axb=az,x+c.

1.6. Die Automorphismen ¢, von G' haben den Haarschen Modul 1 (vgl. (3),
(3a)). Setzt man also

M, f (x)=f (o), feL'(G'),

so ist der Operator M, ein Automorphismus der Banachalgebra L!(G'); daB dies
auch ein Automorphismus der Banachalgebra L' (G) ist, brauchen wir weiter nicht.3)

1.7. Der in §1.4 erwihnte Zusammenhang ist also: Die Ideale von L'(G) fallen
mit denjenigen Idealen von L'(G') zusammen, die unter simtlichen Automorphismen
M ,(aeG) invariant sind. Dies folgt wegen der bekannten Charakterisierung der Ideale
in L*-Algebren durch Verschiebungen aus §1.6 und §1.5.

Die Aufgabe, alle Maximalideale von L'(G) zu bestimmen, ist also auf die Be-
stimmung der maximalen invarianten Ideale von L'(G') zuriickgefiihrt; dieses Pro-
blem 148t sich mit der Fouriertransformation 16sen, wie nun gezeigt werden soll.

3) Der Operator M, in L1(G?) ist ein Analogon zum Operator M, in L'(R*); vgl. dazu [14,
Kap. 1, §§1.1, 1.6].
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1.8. Sei 8, die zu o, (vgl. (9)) ,,duale* Transformation in G':
<aa'1x’ t>=<x’ 6at>, IEGTa

wo {x,t) die Dualitit zwischen G' und G' realisiert. Dann gilt fiir feL!(G'):
(fo0,)" = fo8, oder

(M.f)" ()=F(8t), teG'. (13)

Fiir ein festes (aber beliebiges) Element weG' setzen wir nun
Bahn (w)={o,w | aeG}.

Eine Bahn in G' braucht nicht abgeschlossen zu sein (wofiir gleich Beispiele angefiihrt

werden sollen); ihre abgeschlossene Hiille werde mit Bahn (w) bezeichnet.
Ist nun I ein invariantes Ideal von L'(G"), so ist nach (13) cospl (vgl. dazu
[14, S. 124, FuBnote]) unter allen Transformationen &,, aeG, invariant; aus

wecosp/ folgt also Bahn (w)<cospl, da cosp abgeschlossen ist. In der umgekehrten
Richtung haben wir: Sei weG' und

I,={f|feL*(G").f(t)=0 fiir alle teBahn(w)}; (14)

dann ist I, ein invariantes Ideal in L'(G'). Denn Bahn (w) ist unter allen Trans-
formationen &, aeG, invariant, die ja eine Gruppe von topologischen Abbildungen
von G' auf G' bilden.

Wir wollen zeigen, daB die I,, weG', maximale invariante Ideale von L!'(G')
sind und daB man so simtliche maximale invariante Ideale von L' (G') erhilt. Dazu
miissen wir die Automorphismen &, naher untersuchen.

Schreiben wir {x, ¢) in , Koordinaten* fir x=(x, x, x3), t=(ty, t,, t3), so ist
{x, t)={x1, t;) (X3, t;)+{x3, t3); ersetzen wir jetzt x durch a,-.x, so haben wir
nach (9), (10), wenn wir dort a~! statt @ nehmen,

{Oa-1%, 1D =Xy, 11 ) (X3, 1) (X3, t3) - {B(—ay, X;), 13> {B(xy, a3), t3).

Hier kénnen wir nun

(B(xy, a3), t3)=<{xy, By(az, t3)), .
(B(ay, x3), t3) =<{x3, B, (ay, t3)) (15)

setzen, wo die Abbildungen

BI:X2XX3—)X1, BZ:XIXX3—"22
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Z-bilinear sind. Wir k6nnen also den zu x’'=0,x dualen Automorphismus ¢’'=8,
in Koordinaten so schreiben:

ti=t,+B;(ay t3), ty=t,—B,(ayt3), ty=t;. (16)
Schreibt man o,x in der Form
g, x=x+p.x,
wo der Automorphismus §, durch
Bx=(0,0, B(ay, x,)— B(xy, @;)),  x=(xy1, X3, X3), a=(ay, a;, a3)
gegeben ist (vgl. (10)), so wird nach (16)
s r=t+p.t,
mit
Bit=(B;(ay t3),—B,(ay, t3),0), t=(t;,1t,, t;)eCG". (17)

B, ist dual zu B, und beide Transformationen sind nilpotent von der Ordnung 2.
Wir konnen jetzt fiir w=(w;, w,, w;) in G' schreiben:

Bahn(w)=w+Bew, Bew={B.w|acG}. (18)

Hier ist nach (17) Bgw offensichtlich eine Untergruppe von G'; diese braucht aber
nicht abgeschlossen zu sein, wie man sich an den Beispielen (Z, Z, Z) oder (Z, Z, R)
(vgl. §1.2 (ii)) klar machen kann; im Falle der klassischen Heisenberggruppe (§1.2 (i))
ist diese Untergruppe fiir jedes w abgeschlossen.

Die abgeschlossene Hiille der Untergruppe Bgw in (18) wollen wir mit H, be-
zeichnen, indem wir sie — aus spiter ersichtlichen Griinden - als orthogonale Unter-
gruppe zu einer abgeschlossenen Untergruppe H,, von G' auffassen.

Die Untergruppe H; von G' kann man folgendermaBen beschreiben: Es sei

w=(wy, wy, w3)eG',

By (X3, w3)={By (a3, w3) | a;€X,}, } (19)
B, (X1, ws)={B;(ay, w3) I a;€X,}.
Wir definieren jetzt abgeschlossene Untergruppen von X, und X,:

Hi , ist die abgeschlossene Hiille von B, (X, w;) in X,

20
Hj |, ist die abgeschlossene Hiille von B, (X;, w;) in X,. } (20)
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Dann ist (vgl. (17))
H;vL={(SlaS2a 0) |S16HiL,ws SZEHQL,W}' (21)

Die Untergruppen (20) sind orthogonal zu den folgenden abgeschlossenen Unter-
gruppen von X; bzw. X,:

Hy, w={x, I x1€ X1, <B(xy, a5), w3p=1 fiir alle a,eX,}, (22)
H, ,={x, | x,€ Xy, {B(ay, x,), wsp=1 fiir alle a,eX;}.

Hj ist also orthogonal zur abgeschlossenen Untergruppe
H,={(xy, x5, X3) | x€H, ,,x,€H, ,, x3€X3} (23)
von G'.

1.9. Wir fassen zusammen: Es gilt fiir die abgeschlossene Hiille der Bahn von
w=(wy, Wy, w3) in G' unter den Transformationen 6, acG:

Bahn(w)=w+H,,, (24)

wo Hy cG' zu der durch (22), (23) definierten abgeschlossenen Untergruppe H, < G*
orthogonal ist. H,, ist durch (21) gegeben, also in der ,,Ebene‘* X, x X, x {0} enthalten;
analog enthdlt H, immer die ,,X5-Achse* {0} x {0} x Xj.

Fiir w=(wy, wy, w3), W' =W, wy, w3) in G' gilt Hy =H,, falls wy=w, ist, d.h.
H und H,, hiingen nur von der dritten Koordinate w, von w ab.

Es ist eine niitzliche Ubung, die Untergruppen H,, H, in den Beispielen von
§1.2 zu bestimmen.

1.10. Wir konnen nun die Definition von 7, (vgl. (14)) so formulieren:

L={f|feL (G")./ (w+H,)=0}. (25)

Wie im AnschluB an (14) bemerkt, ist /,, invariant; wir kénnen jetzt zeigen: I,, ist ein
MAXIMALES invariantes Ideal von L' (G").

Beim Beweis ist darauf Bedacht zy nehmen, daB die Bahn eines Punktes in G'
unter den Transformationen &,, ae G, nicht notwendig abgeschlossen ist. Wir gehen
daher so vor. Sei I’ ein invariantes Ideal von L' (G'), das I, enthilt und von L' (G')
verschieden ist. Aus I,,< I’ folgt cospI’ =cospl,, d.h. nach (25)

cospl'cw+H_. (26)



Uber den Satz von Wiener und lokalkompakte Gruppen 341

Wegen I' # L' (G*) ist nach dem Satz von Wiener cospI’#0; sei w’'ecosp’. Dann ist
also w'ew+H, d.h.

w=w+t', mit t'eHj. (27)

Da I’ nach Voraussetzung invariant ist, liegt auch Bahn (w') in cospI’ (vgl. §1.8),
also nach (24)

w' + H,. ccospl’. (28)

Nun folgt fiir w’ aus (27), wenn wir wieder w=(w;, w,, w3), w’' = (w}, wj, w}) schrei-
ben und (21) beachten: w} =wj;. Also ist nach §1.9 Hy. = H.. und daher folgt - wieder
nach (27) -

w+HL=w+Hz:. (29)
Aus (26), (28), (29) ergibt sich jetzt
cospl'=w+H,

d.h. cospl’=cospI,. Nach der Definition (25) von I,, muB also auch I' <1, gelten,
d.h. I'=1,; also ist I,, ein maximales invariantes Ideal von L' (G?').

1.11. Es gilt nun weiter: Jedes invariante Ideal I von L'(G'), das von L'(G")
verschieden ist, ist in einem Ideal I, enthalten. Dies folgt analog wie in §1.10 aus dem
Satz von Wiener: Es gibt ein wecospl, also liegt wegen der Invarianz von 7 auch
w+H; in cospl und daher gilt nach der Definition (25) /<1, Daraus folgt weiter:
Jedes maximale invariante Ideal von L'(G") ist von der Form I, (weG'). Es gilt
iibrigens: Zwei Ideale 1, I, sind genau dann gleich, wenn

wew+H, (30)

ist; denn aus (29) folgt umgekehrt (27) nach den Eigenschaften von H;, (vgl. §1.9).

1.12. Wir wollen jetzt von L' (G') zu L' (G) iibergehen und die Ergebnisse direkt
in L'(G) formulieren. Zu diesem Zweck wollen wir die Ideale I, nidher betrachten.
Setzen wir fiir we G!

Iw(X)={x,w), xeG;
X ist natiirlich nicht ein Charakter von G, sondern von G'. Fiir feL!(G") gilt nun

(' f)" (O)=F (t-w), teG',
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also koénnen wir (25) in folgender Form schreiben:

Lye={xwf, | f,e[*(G), [, (H;)=0}.

Setzen wir
JUG", H,)={f, | f,eL' (G"). £, (H,)=0},
so konnen wir also die Definition (25) so formulieren:
I,=y,-J'(G'", H,). (31)

Das Ideal J*(G', H,) von L'(G") 1aBt sich aber noch auf andere Weise charakteri-
sieren: J* (G', H,,) ist die abgeschlossene Hiille in L' (G') der Menge aller fe " (G)
fiir die [, f (x +¢&) dE=0 fiir alle xeG" gilt (vgl. dazu [14, Kap. 3, §4, und Kap. 4,
§4.3]). H,, ist aber auch eine Untergruppe von G und ist sogar normal in G (vgl. (4),
(23)); weiter fallt das additive HaarmaB d¢ auf H,, mit dem multiplikativen zusammen
und es gilt

f f(x+5)d€=f f(x&)dé, xeG, fei (G)
H,, H

(vgl. (7) und die anschlieBenden Bemerkungen). Daraus folgt sofort:
JY(G', H,)=J'(G, H,), (32)

wobei das Ideal J! (G, H,,) von L' (G) wieder im Sinne von [14, Kap. 3, §4] definiert
ist.4)

1.13. Wir konnen also schlieBlich die Definition (31) in der Form
I,=x,J'(G, H,) (33)

schreiben. Es gilt nach §1.7 und §1.11: Fiir jedes weG' ist I, ein Maximalideal von
L' (G) und umgekehrt ist jedes Maximalideal von dieser Form; jedes eigentliche Ideal
von L' (G) ist in einem Maximalideal enthalten.

Damit ist der Ubergang zu L!(G) vollzogen und wir kénnen zum nichsten Ziel,
der Untersuchung der Quotientenalgebren L' (G)/I,, iibergehen. Dies fiihrt auf die
Betrachtung von sogenannten ,,Multiplikatoren* und ,,verschrinkten L!-Algebren.

4) Wir verwenden hier die Bezeichnung Hw, auch wenn Hy als Untergruppe von G aufgefaBt
wird; infolge der angefithrten Eigenschaften ist dies gestattet (vgl. wieder die Bemerkungen im
AnschluB an Formel (7)).
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§2. Multiplikatoren und verschriinkte L'-Algebren

2.1. Wir betrachten hier ganz allgemein eine lokalkompakte Gruppe G. Unter
einem Multiplikator (oder Kozyklus) fiir G versteht man eine Funktion x auf G x G,
deren Werte komplexe Zahlen vom Absolutbetrag 1 sind und die folgende Bedingun-
gen erfiillt:

(i) x(e, x)=x(x,e)=1 firalle xeG;
(i) k(xy, z) k(x, y)=K(x,yz) k(y,z) firalle x,y,zinG.
Fiir unsere Zwecke kOnnen wir weiter voraussetzen:

(iii) x ist stetig auf G x G.

Fiir eine allgemeinere Definition im Falle von Gruppen mit abzdhlbarer Basis, sowie
den Zusammenhang mit den sogenannten projektiven Darstellungen von G, sei auf
die Arbeiten von Mackey [8, §1] und Auslander und Moore [1, Kap. I, §4] verwiesen.

2.2. Als Beispiel betrachten wir eine Gruppe G=(X;, X,, X3)z vom Heisenbergtyp
(§1.1); sei G'=G/X3, X3={(0, 0, x) | x3€X;3}. Die Gruppe G’ 1iBt sich mit dem
Produkt X, x X, identifizieren:

G’-_—{x’ I x'=(x1, xz), Xy EXI, xZEXz}.

Sei x;>{x3, w;) ein Charakter von X; (w;eX;) und es sei k" auf G’ x G’ definiert
durch

K (%, y)=C{B(x1, 2), 3>, x'=(xy,x3), ¥ =1, 22)-

Dann ist ¥’ ein (stetiger) Multiplikator fiir G'.

2.3. Sei jetzt allgemein x ein Multiplikator fiir eine lokalkompakte Gruppe G,
d.h. k erfiille die Eigenschaften (i), (ii), (iii) von §2.1. Dann kann man eine ,,ver-
schrinkte L'-Algebra‘“ L' (G, x) definieren, indem man in L' (G), als L'-Raum auf-
gefaBt, eine ,,verschrinkte Faltung* definiert durch

faeg(x)= f FO) e ) k(3 ¥ x) dy,

wo dy das linke HaarmaB auf G ist, sowie eine Involution durch

fr@)=fG") A" r(x x7).

L' (G, x) ist dann eine involutive Banachalgebra mit der gewShnlichen L'-Norm; vgl.
Auslander und Moore [1, Kap. 1, §5], auch fiir die folgenden §§, sowie fiir diskrete
Gruppen Weyl [17, Kap. III, §16].



344 HANS REITER

2.4. Sei nun ¥ eine beliebige komplexwertige stetige Funktion auf G derart, daB
Y (e)=1 und |y (x)|=1 fiir alle xeG gilt; dann ist

YV (x)¥(»)
%)= 2

ein sogenannter trivialer Multiplikator. In diesem Fall wird natiirlich L' (G) durch

fefd, fel'(G), (1a)

wo ¥ die konjugiert-komplexe Funktion bedeutet, isomorph auf L!(G, x,) abge-
bildet — isomorph im Sinne involutiver Banachalgebren. Triviale Multiplikatoren
liefern also hier nichts Neues; die Sachlage wird aber ganz anders, wenn man zu
Quotientengruppen iibergeht, was wir jetzt tun wollen.

2.5. Sei k ein Multiplikator fiir G; wir setzen

H*={¢|eG, k(x, &)=1 firalle xeG},
A*={¢|teG, k(¢ x)=1 fiiralle xeG}.

Aus den Eigenschaften von x (§2.1 (i), (ii), (iii)) ergibt sich, daB H* und A* abge-
schlossene Untergruppen von G sind; wir bezeichnen mit H, die groBte in H* n H*
enthaltene normale Untergruppe von G, die natiirlich auch abgeschlossen ist. Dann
gilt also: H, ist die grofite normale Untergruppe H von G derart, daf

k(x, &)=k(¢ x)=1 firalle éeH undalle xeG (2)
ist. (2) ist aquivalent zur Bedingung
k(éx, yn)=x(x,y) furalle & nin Hund alle x,y in G, (3)

wie sich aus §2.1 (i), (ii) ergibt. In (3) stehen ¢ und # auf verschiedenen Seiten von
x bzw. y; da aber H definitionsgemaB normal ist, bedeutet (3) einfach, daB x auf den
Nebenklassen von H x H in G x G konstant ist, m.a.W.

K=Kom, 4

wo K ein Multiplikator fiir G/H ist und 7 die kanonische Abbildung G x G— G/H x
x G[H bedeutet. Wir haben also: Sei k ein Multiplikator fiir G; dann ist H, die grofite
normale Untergruppe H von G derart, daf} x von einem Multiplikator x fiir G/H ,,abge-
leitet** ist, d.h. dap (4) gilt.

2.6. BEISPIEL. Sei wieder G=(X;, X,, X3)p wie in §2.2. Sei w=(w;, w,, w;) in
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G' und y,, der zugehérige Charakter von G', also

Xow () =y, Wi xp, wo) (X3, W3, x=(x1, X2, X3). (5)

Dann konnen wir schreiben

X (X9) = 10 (%) 1w (¥) [0 (5, )17, (6)

wo k,, nur von der dritten Koordinate w; von w abhingt:

KW(xay)=<B(x1’y2)’ W3>~1, x=(x1’ X2, X3), y=(y1’ y2’y3)' (7)

Nach (6) ist k,, ein ,,trivialer* Multiplikator fiir G. Die Untergruppe H, von §2.5 ist
fiir k=x,, nach (7) gerade die Untergruppe H,, von §1.8 (23). Der triviale Multiplikator
k,, fiir G ist also von einem Multiplikator &,, fiir G/H,, abgeleitet; dabei ist

’%w(xa J.’):Kw(x’y)’ J'C=1tHw(JC), J.’=7tHw(y)’ (8)

mit ny :G— G/H,. Im allgemeinen ist aber k,, durchaus kein trivialer Multiplikator,
wie wir in §2.8 sehen werden.

2.7. Es gilt nun folgender Morphismussatz fiir verschrinkte L'-Algebren: Sei H
eine (beliebige) abgeschlossene normale Untergruppe der lokalkompakten Gruppe G
und k ein Multiplikator fiir G von der Form (4). Dann ist die Abbildung Ty,

THf(x)=ff(xf)dé, i=ng(x), feI'(G),

ein Morphismus — im Sinne involutivner Banachalgebren - von L!'(G, k) auf
L'(G/H, #), m.a.W.

L' (G/H, ®)= L' (G, x)/J* (G, H), )

wo J' (G, H) der Kern von Ty ist und ,,= einen Isomorphismus involutiver Banach-
algebren bedeutet (also auch Gleichheit der Normen und der Involutionen). Die
Quotientenalgebra rechts hat dabei die Quotientennorm und es wird vorausgesetzt,
daB die linken HaarmaBle auf G, H, G/H kanonisch zueinander passen, d.h. der
Weilschen Formel geniigen.

Der Beweis ist ganz analog wie bei den ,,gewdhnlichen* L'-Algebren L' (G) und
L'(G/H) (vgl. dazu [14, Kap. 3, §§4.1-4.7, 5.3]). Es sei nur darauf verwiesen, daBl
infolgen der vorausgesetzten Stetigkeit der Multiplikatoren die Riume ¢ (G/H) und
X (G) auch (dichte) Unteralgebren von L' (G/H, &) bzw. L! (G, k) sind. Erwihnens-
wert ist vielleicht noch der Umstand, daB die Abbildung 7% von x unabhéngig ist und
ihr Kern J* (G, H) daher fiir alle Multiplikatoren x der Form (4) ein beziiglich der
Involution in L' (G, ) selbstadjungiertes Ideal von L! (G, x) ist.
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2.8. Auf Grund des Morphismussatzes von §2.7 1aBt sich nun fiir eine Gruppe G
vom Heisenbergtyp die Quotientenalgebra von L' (G) nach einem Maximalideal 7,
explizit bestimmen. Denn L'(G) wird durch die Abbildung f+s f-J,, isomorph (im
Sinne involutiver Banachalgebren) auf L!(G, x,,) abgebildet (vgl. (5), (7), (1), (1a))
und vermittels der Abbildung Ty  gilt (9) mit H=H,, k=k,, K=k, (vgl. §2.6).
Nach der Charakterisierung des Ideals 7, in §1.13 gilt also

L'(G)/I,=L" (G/H,, &), (10)

wo H,, durch §1.8 (23), &,, durch (7), (8) definiert ist und ,,~* einen Isomorphismus
involutiver Banachalgebren bedeutet. Damit ist die gestellte Aufgabe geldst.5)

Da I, ein Maximalideal ist, ist L'(G/H,, k,,) natiirlich eine einfache Algebra.
Daher ist L!'(G/H,, &,,) fiir alle weG*, fiir die H,, nicht mit G zusammenfillt, von
L'(G/H,,) wesentlich verschieden; insbesondere ist also dann der Multiplikator &,
nicht trivial.

Nach der expliziten Bestimmung der Quotientenalgebra L' (G)/I,, wollen wir die
Maximalideale 7, jetzt mit den irreduziblen unitdren Darstellungen von G in Ver-
bindung bringen. Dabei sollen diese Ideale auch in einen allgemeineren Zusammenhang
geriickt werden.

§3. Unitéire Funktionen und zugeordnete Ideale
3.1. Sei G eine lokalkompakte Gruppe.

DEFINITION 1. Eine komplexwertige stetige Funktion y auf G derart, daB
Y (e)=1 und |y (x)|=1 fiir alle xeG gilt, wollen wir unitdre Funktion nennen.
Fiir eine unitdre Funktion y setzen wir

HY={¢|teG, Y (xt)=y(x) Y (&) firalle xeG}, (1)
AY={¢|¢eG, Y (&x)=y (&) Y (x) firralle xeG}.

HY und AV sind abgeschlossene Untergruppen von G, wie leicht ersichtlich. Wir
definieren weiter:

)

H, ist die groBte in HY n AY enthaltene normale
Untergruppe von G, m.a.W. H, = Na(H¥*nHY)a™'.
aeG

H), ist ebenfalls abgeschlossen.

5) Wie in §1.2 (v) bemerkt, gibt es auch Gruppen vom Heisenbergtyp mit endlich vielen Elemen-
ten, deren kleinste die Quaternionengruppe ist; es sei nochmals auf die dort erwdhnten Darlegungen
bei H. Weyl [17] verwiesen, die sich hier einfiigen.
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3.2. Wenn H irgendeine abgeschlossene Untergruppe von G ist, so fallt bekannt-
lich der Kern J'(G, H) der kanonischen Abbildung von L!(G) auf L'(G/H) mit
demjenigen abgeschlossenen linearen Unterraum von L'(G) zusammen, der von
samtlichen Funktionen der Form A4, f—f(fe X (G), ne H) aufgespannt wird, wo
A, f(x)=f(xn) 4(n) ist; fiir ndhere Einzelheiten vgl. etwa [14, Kap. 8, §2; Kap. 3,
§4].

Aus der zweiten Charakterisierung von J* (G, H) folgt sofort: J* (G, H) ist links-
invariant (d.h. invariant unter Linksverschiebungen) und, falls H normal ist, auch
rechtsinvariant:

LJ'(G,H)=J'(G, H) fiir alle aeG, (3)
rJ' (G, H)=J'(G, H) fiir alle aeG, falls H normal ist. 4)

Hier sind die Operatoren L,, r, durch
LF(x)=F(a"'x), r,F(x)=F(xa™'), aeG (5)
definiert. Wir zeigen nun:

PROPOSITION 1. Sei y eine unitdre Funktion auf G (§3.1), H eine abgeschlossene
Untergruppe von G. Wenn H in H" enthalten ist, so ist - J* (G, H) ein abgeschlossener,
linksinvarianter Unterraum von L'(G); liegt insbesondere H in HY " BY und ist H
normal in G, so ist Yy-J' (G, H) auch rechtsinvariant, also ein Ideal von L' (G).

DaB y-J'(G, H) ein abgeschlossener linearer Unterraum von L'(G) ist, folgt
wegen Y=1 aus der entsprechenden Eigenschaft von J'(G, H). Um die Links-
invarianz zu zeigen, beweisen wir zuerst ein Lemma.

LEMMA. Sei H eine abgeschlossene Untergruppe von G; sei ¢, eine komplexe,
stetige Funktion auf G mit |@,(x)|=1 fiir alle xeG. Wenn ¢, H-rechtsperiodisch ist,
d.h. wenn ¢,(xE)=¢,(x) fiir alle xe G und alle £€ H gilt, so ist

@, J* (G, H)=J'(G, H). 6)
Beweis des Lemmas. Es ist

@, (Ay f=f)=A4,(0.f)—0.f, neH, feX (G),

denn ¢, ist H-rechtsperiodisch. Wegen der vorausgesetzten Stetigkeit von ¢, ist
o, f wieder in X" (G), also folgt ¢,J* (G H)=J* (G, H). Wegen ¢,p,=1 folgt daraus
JY(G, H)c$,J* (G, H) und weiter — da J'(G, H)=J'(G, H) ist - J'(G, H)c
<@y J (G, H), sodaB (6) gilt.
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Beweis von Proposition 1. Sei jetzt H eine abgeschlossene Untergruppe von G,
die in HY enthalten ist. Wir setzen ¢,= L/, acG. Dann ist ¢, natiirlich gemiB
(1) HY-rechtsperiodisch, insbesondere also H-rechtsperiodisch; es gilt also nach (3)
und dem obigen Lemma, wenn wir J=J'(G, H) setzen,

L, (‘//J)= (La!/’) LJ= (l//(pa) J=yJ, (7)

d.h. yJ! (G, H) ist linksinvariant.

Sei nun H in HY N HY enthalten und normal in G. Dann ist fiir jedes ae G auch
der Quotient ¢,=r /Y (vgl. (5)) H-periodisch (fiir normales H bedeutet ja ,,links-
periodisch‘‘ dasselbe wie ,,rechtsperiodisch‘‘!). Wir erhalten dann - analog wie in
(7) - auf Grund von (4)

ra(W)=(ra) roJ = (o) J=yJ,

d.h. YJ* (G, H) ist auch rechtsinvariant. Damit ist Proposition 1 bewiesen.
3.3. Nach diesen Vorbereitungen kénnen wir nun folgende Definition geben.

DEFINITION 2. Sei ¢ eine unitire Funktion auf G und H eine abgeschlossene
Untergruppe von G, die in HY enthalten ist (vgl. §3.1). Dann setzen wir

I(y, H)={f|feL*(G), r, feyJ' (G, H) fiir alle aeG}. (8)
Nach Proposition 1 gilt: I(, H) ist das grifte Ideall) von L' (G), das in yJ* (G, H)
enthalten ist.

Nach der Definition gilt weiters

HcHycHY = Iy, H)<I(¥, H}). ©)

Von den Idealen I(y, H) sind fiir die Anwendungen die folgenden wichtig, die
»extremen‘‘ Untergruppen H entsprechen: Wir setzen

IY=I(y, HY), (10)
wo HY die zu  gehorige Untergruppe (1) ist, und

L=, Hy), | (11)
wo H, durch (2) definiert ist; nach Proposition 1 gilt

I,=yJ' (G, H,). (12)
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Nach (9) ist stets
Il (13)

Die Bedeutung der Ideale ¥ und I, die einer unitiren Funktion y zugeordnet
sind, wird sich in konkreten Féllen (§§4, 5) ergeben; hier wollen wir noch ganz all-
gemein die Beziehungen zwischen den Idealen I(y, H) und den unitiren Darstellungen
von G erdrtern.

3.4. Sei H eine abgeschlossene Untergruppe von HY derart, daB auf dem Quotien-
tenraum G/H ein invariantes Mal existiert; diese letztere Voraussetzung dient der
Einfachheit der Darstellung — in den Anwendungen (§§4, 5) wird H sogar normal
sein. Wir konnen dann zu einer gegebenen unitiren Funktion y auf G eine unitére
Darstellung x— U, von G in L?(G/H) folgendermaBen definieren:

UF(2)=F(x""p)d (x9N (y), FeL?(G/H)omy. (14)

Hier bedeutet die Schreibweise ,,FeL?(G/H)ony* einfach: F=Fony, wo F eine
komplexe, quadratisch integrierbare Funktion auf G/H und ny die kanonische Ab-
bildung von G auf G/H ist. Man beachte, daB y—y (x~1p)/y(p) eine stetige, H-
rechtsperiodische Funktion auf G mit Werten vom Absolutbetrag 1 ist; also ist die
rechte Seite von (14) als Funktion von yeG in L?(G/H)ony und der Operator U, in
L?*(G/H) unitir, fiir jedes xeG.

Wir wollen im folgenden besonders den in L?(G/H) dichten linearen Unterraum
A" (G/H) und entsprechend X" (G/H)ony betrachten; fiir Fe # (G/H)ony gilt dann
auch U,Fe X (G/H)ony. Der unitiren Darstellung x— U, von G in L*(G/H) ent-
spricht eine Darstellung f'+ U(f) von L' (G) in L?*(G/H), und zwar ist fiir fe L' (G)

U(f) F(y)= f FO)F( ) [ ()W ()] dx, Fed (GH)omz. (15)

Die Einschriankung von U( f') auf " (G/H)ony ist aus praktischen Griinden niitzlich;
U(f) ist dadurch bereits eindeutig bestimmt. Falls fin o (G) liegt, ist fiir ein der-
artiges F natiirlich auch U(f) F wieder in " (G/H)ony.

Wir wollen nun den Kern dieser Darstellung von L' (G) bestimmen; zu diesem
Zweck ist es bequemer, den adjungierten Operator U( f)*=U(f*) zu betrachten,
der durch

U(f)* F(y)= f FGFG) [ )W ()] dx, FeX (GH)emy,  (16)

bestimmt ist. Die rechte Seite von (16) ist eine stetige (H-rechtsperiodische) Funktion
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von y €G; also bedeutet U( f)*=0, daB diese Funktion auf G verschwindet, was wir
auch

ff(xy‘l)F(x)t//(x)dx=O firalle yeG

schreiben kénnen. Ist dx das invariante MaB auf G/H und F=F ony, so bedeutet dies
also

fF(x)f GEr ) ¥ (x8) dédi=0,  yeG.

G/H
Da Fe X (G/H) beliebig ist, bedeutet dies wiederum Ty ((r,f )™ ¥)=0 oder
Ta((r,f)¥)=0 firalle yeG, (17)

wo Ty die kanonische Abbildung von L'(G) auf L'(G/H) ist (vgl. [14, Kap. 8, §2],
mit g=1). Die Bedingung (17) besagt also einfach

r,feyJ' (G, H) firalle yeG,

wo J'(G, H) der Kern von Ty ist, und umgekehrt ist fiir jedes solche feL!(G)
auch U(f)*=0

3.5. Wir haben also fiir eine beliébige unitire Funktion ¥ folgendes Ergebnis
erhalten:

PROPOSITION 2. Sei Hc= H" derart, da auf G|H ein invariantes Map existiert.
Dann ist das Ideal I(y, H) von §3.3, Definition 2, der Kern der Darstellung (15) von
L'(G) in L*(G/H); insbesondere ist also I(Y, H) selbstadjungiert beziiglich der In-
volution von L' (G).

Es kann iibrigens vorkommen, daB I(y, H) keine Funktion in % (G) auBer 0
enthilt, aber # (0) ist (vgl. §5.11).

3.6. Es sei noch bemerkt, daB man im Fall der Ideale 7, (vgl. (11)) die Quotienten-
algebra L'(G)/I, explizit angeben kann. Dazu betrachtet man den trivialen Multi-
plikator k =k, von §2.4. Die in §2.5 definierte Untergruppe H, fillt dann natiirlich
mit der Untergruppe H, von §3.1 zusammen und der Multiplikator x, fiir G ist von
einem Multiplikator £, fiir G/H, abgeleitet. Man zeigt dann analog wie in §2.8,
daB der Isomorphismus — im Sinne involutiver Banachalgebren —

L' (G/H,, k,)=L' (G)/1,
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besteht; die Fille H, =G oder H,={e} sind natiirlich trivial. Es sei noch darauf hin-
gewiesen, daB I, beziiglich der Involution von L!(G) selbstadjungiert ist (vgl. dazu
§3.5, Proposition 2).

§4. Erste Anwendung: Gruppen vom Heisenbergtyp

4.1. Das Ergebnis, zu dem wir auf Grund der bisherigen Vorarbeiten gelangen
werden, sei gleich an die Spitze gestellt.

SATZ 1. Sei G eine Gruppe vom Heisenbergtyp, G' die zugehiorige Abelsche
Gruppe mit dualer Gruppe G*. Fiir weG' sei

Y (X)=xn(x)=<{x, w), x€G,

sodap also ,, eine unitdre Funktion auf G im Sinne von §3.1 ist. Dann gilt fiir die
zugeordneten Ideale 1", 1, (§3.3) von L' (G)

M=, =I, firjedes weG?', ()
wo 1,, das in §1.13 (33) definierte Ideal ist.')

Fiir jedes weG? ist I, sowohl ein Maximalideal von L' (G) als auch der Kern einer
IRREDUZIBLEN Darstellung von L' (G). Zwei Ideale 1,, I, fallen genau dann zusammen,
wenn die Relation §1.11 (30) gilt.

Die Ideale I,,, weG', sind SAMTLICHE Maximalideale von L' (G) und jedes eigent-
liche Ideal von L'(G) ist in einem Maximalideal enthalten. Die Quotientenalgebren
L' (G)/1,, lassen sich als verschrinkte L'-Algebren (§2) auf Quotientengruppen G/H,,
darstellen und zwar gilt die Relation §2.8 (10).

4.2. Beweis. Die in §3.1 eingefiihrten Untergruppen lassen sich im vorliegenden
Fall, wo G=(X, X3, X3), ¥ =V,,=1,, ist, leicht bestimmen, wenn man §2.6 (6), (7)
beriicksichtigt; man erhilt

H*w={(€13 25 &3) I ¢eXy, &€H, , E3eXG), (2)
H¢w={(51, &2, &3) I $1€H,y,,, £2€X,, L3 €XG),

wo die Untergruppen H, ,<X,, H, , <X, durch §1.8 (22) definiert sind. Die Unter-
gruppen H¥*, A% sind beide normal in G, also ist hier nach §3.1 (2)

wa=H¢wnwa.
Die rechte Seite ist nun gerade H,,, nach der Definition §1.8 (23), also gilt

H* =HW'

w
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Es gilt daher weiter auf Grund von §3.3 (12): I, =v,,J' (G, H,,). Nunist y,J* (G, H,,)
gerade das Maximalideal I, von L' (G), nach §1.13 (es ist ja ¥, =y,,!); andererseits
gilt I, =1 (vgl. §3.3 (13)). Da I¥*# L' (G) ist — dies gilt ganz allgemein nach der
Definition 2 in §3.3 - folgt also (1).

Die Relation (1) beinhaltet iibrigens (vgl. §3.3 (9), (10), (11)): Fiir jede abge-
schlossene Untergruppe H von G, die die Bedingung

H¥>SH>H, (=H,) 3)
erfiillt, gilt

I(‘/’wa H)=Iw-

Nach §3.5, Proposition 2, ist also I,, der Kern einer Darstellung von L'(G) in
L?(G/H) fiir jede abgeschlossene Untergruppe H, die (3) erfiillt (man beachte, daB H
dann sogar normal in G ist!). Wir wollen noch einen einfachen Beweis dafiir geben,
daB im ,,Extremfall*‘ H= H"" die entsprechende unitire Darstellung §3.4 (14) von G
irreduzibel ist.

4.3. Die erwihnte unitire Darstellung von G=(X;, X,, X;); 1aBt sich so be-
schreiben. Die Funktionen auf G, die beziiglich H Yw periodisch sind, sind hier von der
Form (x;, X,, x3)—F (X,), wo F eine Funktion auf X,/H, ,, und x,— x, die kano-
nische Abbildung von X, auf X,/H, ,, ist (vgl. (2)). Weiter gilt fir w=(w;, w,, w;) in
G' und a=(a,, a,, a;) in G nach §2.6 (6), (7):

Xw(a—lx)/XW(x)=XW(a~l) <_B(a1, xz), W3> .
Also ist nach §1.8 (15)

Xw (@71 %) 10 (X) =0 (@71) <x2, By (a1, w3)) ™. 4)

Nun ist B, (a,, w;) in Hj ,, (vgl. §1.8 (19), (20)), der dualen Gruppe von X,/H, ,,;
wir haben daher

(%3, By(a;, w3))=1p,°T, (x2), [m2:X,—>X,/H, ], (%)

wo ), €in Charakter von X,/H, ,, ist.

Die allgemeine Darstellung §3.4 (14) von G in L?(G/H) 148t sich also fiir H= H**
(vgl. (2)) als Darstellung in L?(X,/H, ) auffassen, und zwar hat sie die besonders
einfache Form

UaF=XW(a-1)iBzL&2Fs FELZ(XZ/HZ,W)’ (6)

wo a=(a1, a, a3) in G, Bz =B2 (al, W3) in (Xz/Hz’w)A und d2=n2 (az) in XZ/HZ,W ist
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(vgl. (4), (5)). Nun ist d, in X,/H, ,, beliebig, weil ja ae G beliebig ist, und aus dem-
selben Grund ist B, (a,, w;) ein beliebiges Element der Menge B, (X;, w,), die ja in
H; ,=(X,/H, )" dicht ist (vgl. §1.8 (20)). Daher sind fiir F#0 die Linearkombi-
nationen der Funktionen U,F, acG, dicht in L*(X,/H, ,,); also ist die Darstellung (6)
von G irreduzibel. Der Vollstandigkeit halber sei noch ein kurzer Beweis jener be-
kannten Tatsache angefiihrt. '

4.4. Es ist zu zeigen: Sei X eine lokalkompakte Abelsche Gruppe. Ist Fe L*(X),
F#0, dann kann fiir ®€ L*(X) die Beziehung

f)?,-LxF-d—5=0 firalle xeX undalle teX (7

X

(oder fiir alle x bzw. alle ¢ aus einer dichten Teilmenge von X bzw. X), wo yx, der
durch t definierte Charakter von X ist, nur stattfinden, wenn ® =0 ist.

Beweis. Die linke Seite von (7) ist eine stetige Funktion von xeX bzw. teX,
also koénnen wir einfach von der Voraussetzung (7) ausgehen. Das Produkt L F- &
ist (fiir festes xeX) in L' (X); da laut (7) die Fouriertransformierte dieses Produktes
auf X verschwindet, folgt

L.F-&=0 (in L' (X)) fir jedes xeX. (8)

Es gilt nun (sogar fiir beliebige lokalkompakte Gruppen X!): Wenn FeL*(X) und
®eL?(X) die Relation (8) erfiillen und F+#0 ist, so folgt =0, wie man folgendermafBen
sieht. Man setze f =|F|?, g=|®|* und betrachte in L' (X) die Faltung g* f* (Involu-
tion in L' (X)!). Wegen (8) ist auch g* f*=0 (in L' (X)), daher [y g*[xf*=0; da
[xf*=|F|3>0ist, folgt [x g=0, d.h. |®[;=0, also =0 in L*(X).

4.5. Damit ist der Beweis von Satz 1 (§4.1) volistindig, denn die Behauptungen
iiber Maximalideale im letzten Teil des Satzes wurden bereits in §1, diejenigen iiber
Quotientenalgebren in §2 bewiesen.

Im Zusammenhang mit Satz 1 sei auf Theorem 2 von Leptin [5] verwiesen, das der
Ausgangspunkt fiir diesen Satz war.

§5. Zweite Anwendung: Halbdirekte Produkte Abelscher Gruppen

5.1. Sei G eine lokalkompakte Gruppe, die zwei abgeschlossene Untergruppen
N, G, enthilt, wobei N normal ist und folgendes gilt:

(i) G=N-G;(=G,"N), NnG,={e};

(ii) die Topologie von G ist diejenige des Produktes Nx G, (bzw. G; x N).
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Dann hei8t G bekanntlich halbdirektes Produkt von N und G,. Im folgenden
werden sowohl N als auch G immer als Abelsch vorausgesetzt.

Wir gehen hier direkt von G aus; dies ist fiir die weiteren Entwicklungen am ein-
fachsten. Da N und G, also als Untergruppen von G gegeben sind, verwenden wir
auch fiir N und G, multiplikative Schreibweise.

Fiir das linke HaarmaB auf G gilt (vgl. z.B. [14, S. 161, (ii)])

[roa=[a|r@nan rez@). (1)

Gy

Man beachte rechts die Reihenfolge gn!
Wir setzen noch

an=gng”', geG. )

Dies ist also ein Automorphismus von N.

5.2. In der Praxis ist der Ausgangspunkt aber oft umgekehrt wie in §5.1. Zunéchst
sind (Abelsche) lokalkompakte Gruppen N und G; gegeben; N wird additiv, G,
multiplikativ geschrieben, mit neutralem Element 0 bzw. 1. Weiter ist ein (alge-
braischer) Homomorphismus a— o, von G; in die Gruppe der (topologischen)
Automorphismen von N gegeben derart, da die Abbildung (x, @) 0g,x von Nx G,
in N stetig ist. G wird dann als die Menge aller Paare (x, a) definiert, mit der Produkt-
topologie und der Multiplikation

(x, a) (, b)=(x+a,y, ab) (3)

(auch die ,,entgegengesetzte Multiplikation kommt hier vor, vgl. z.B. Miiller-
Roémer [10]). Die Untergruppe aller (x, 1) bzw. aller (0, a) ist dann isomorph zu
N bzw. G, und G ist halbdirektes Produkt von N und G,; dabei entspricht o, dem
Automorphismus (2). Man schreibt

G=Nx,G;. (4)

Die Formel (1) wird in ,,Koordinaten* (x, @), bei Verwendung von (3)
ff(x, a)d(x, a)-_-f da f f(ox, a)dx, feL(G).
G G1 N

Fiir die allgemeinen Beweise, die im folgenden zu geben sind, ist es aber einfacher,
die ,,koordinatenfreie** Formel (1) zu verwenden.
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BEISPIELE. (i) N=R"; G, =R* (multiplikative Gruppe aller reellen Zahlen #0),
o x=ax (xeR’, aeR*), r=1,2,....

(ii) Analogon zu (i) fiir einen beliebigen lokalen Korper K.

(iii) N wie in (ii), G, eine abgeschlossene Untergruppe von K* mit K*/G, kom-
pakt, zB. G, =(K*)™, m>2; ¢, analog wie in (i).

(iv) Analogon zu (ii) oder (iii) fiir endliche K&rper.

(v) N=A4% wo A eine endliche Abelsche Gruppe ist; A% ist definiert als die
additive Gruppe aller Folgen x=(x,),. z, X,€4, mit der Produkttopologie (also ist
A% kompakt). G; =Z und 6,x=(x}), . z Mit x’ =X, , ,; man kann statt ¢, auch ¢™=g0,,
(m eine feste natiirliche Zahl) nehmen.

(vi) Sei A% wie in (v) definiert; fiir >0 sei K, die kompakte Untergruppe aller
x=(X,)nez Mit x,=0 fiir alle n<—n’. Dann setze man N=ind.lim,.;, K, (vgl
[14, Kap. 4, §1.5]). G, und o, werden wie in (v) definiert. Hier ist {ibrigens N selbst-
dual.

(vii) Eine Gruppe vom Heisenbergtyp, G=(X;, X3, X3)5, 14Bt sich als halb-
direktes Produkt auffassen, indem man z.B. N={(x,, 0, x3) | x1€Xy, x3€X3},
G, ={(0, x,, 0) | x,€X,} wihit.

5.3. Die Gruppe G, wirkt auf N mittels der Automorphismen o, (vgl. (2)).

DEFINITION 1. Wir sagen, daB die Wirkung ¢ von G, auf N die Kompressions-
eigenschaft hat, wenn es fiir jede kompakte Menge K= N und jede Umgebung U von
ecN ein geG, gibt derart, daB ¢,K in U liegt.®) In den Beispielen von §5.2 haben
(i), (ii), (iii) und (vi) die Kompressionseigenschaft, die iibrigen nicht (was insbe-
sondere fiir die Gruppen vom Heisenbergtyp von Bedeutung ist).

Die Kompressionsbedingung ist natiirlich auch fiir nicht-Abelsches (G; und) N
sinnvoll; in diesem Zusammenhang gilt: Wenn o die Kompressionseigenschaft hat,
dann hat N die Eigenschaft P;. Der Beweis ist genau derselbe wie im klassischen
Spezialfall §5.2, Beispiel (i), wie schon Miiller-Rémer [11, 12] bemerkt hat.

Sei nun &, der zu g, duale (topologische) Automorphismus der dualen Gruppe N,
definiert durch

(O,-1n, Ai)y={_n, 8,7y firalle neN. (5)
Wir setzen
Bahn(fi)={6, | geG,}, 7AeN (6)

und bezeichnen die abgeschlossene Hiille mit Bahn (7).

6) Diese Bedingung ist explizit von Eymard [3, S. 100-101]) und von Miiller-Romer [11, 12]
unabhingig voneinander formuliert worden.
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DEFINITION 2. Wir sagen, daB die Wirkung & von G, auf die duale Gruppe N
die Injektionsbedingung erfiillt, wenn fiir jedes /i#é gilt: fir g+#g’ in G, ist auch
8,Ai#8,A. Dies bedeutet also, daB g 6,7 fiir jedes 7i#¢é in N eine (stetige) Injektion
von G, in N ist.

Fiir die Beispiele (i)-(vi) in §5.2 ist die Injektionsbedingung erfiillt, aber nicht
fiir die Gruppen vom Heisenbergtyp (Beispiel (vii)), wie man leicht sieht.

5.4. Wir konnen jedem halbdirekten Produkt G=N-G,=G,N (vgl. §5.1) eine
Abelsche Gruppe G' zuordnen, namlich das (gewShnliche) Produkt

G'=G,xN.

Die Abbildung gn— (g, n) von G auf G' ist dann topologisch.
Jeder Funktion f auf G entspricht also eine Funktion f' auf G' vermittels der
Zuordnung

f1 (g, n)=1(gn). (7)

Die Integralformel (1) besagt nun: (7) definiert einen Isomorphismus von L!'(G)
und L' (G"), als Banachrdume aufgefaBt. Jeder Funktion fe L' (G) kdnnen wir daher
eine ,,Fouriertransformierte* f*, die Fouriertransformierte von f't, zuordnen:

1 )= f e Ge. &> f 7 (en) Ty B dn. (8)
Gy N

Nach diesen Vorbereitungen zeigen wir nun:

5.5. SATZ 2. Sei die lokalkompakte Gruppe G ein halbdirektes Produkt der
Abelschen Untergruppen N und G,, wobei N normal ist (§5.1). Sei G'=G,x N die
zugeordnete Abelsche Gruppe. Sei

w=(g,,h,)eG' =G, x N,.
Wir setzen
V. (gn)=<g, &> {n,A,), geGy, neN. )

Also ist ,, eine unitire Funktion auf G (vgl. §3.1); seien IV, 1, die zugeordneten
Ideale von L' (G) (vgl. §3.3).

1. Liegt w auf der G-Achse, d.h. ist w=(g,, €), wo §,,€G,, é das neutrale Element
von N ist, dann ist \,, natiirlich ein Charakter von G und daher gilt:

I*W=I*W=I§w’ w:(g‘w’ é),
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wo I, den Kern des Morphismus
o[ 4% [ r@nyn, g6, (10)
G N

von L' (G) auf C bezeichnet. Fiir jedes §€G, ist I, ein maximales Ideal von L! (G) und
der Kern einer eindimensionalen, also irreduziblen Darstellung von L' (G): fiir §#¢' in
G, ist I #I;.. Es gilt nun: Wenn die Wirkung o (vgl. (2)) von G, auf N die Kompressions-
eigenschaft (§5.3, Definition 1) hat, so sind die Ideale I, g€G, bereits SAMTLICHE
Maximalideale von L' (G) und jedes eigentliche Ideal von L' (G) ist in einem Maximal-
ideal enthalten.

2. Liegt weG" nicht auf der G,-Achse, d.h. ist w=(g,, ), A, #&, so gilt, falls die
Wirkung & von G, auf die duale Gruppe N (vgl. (5)) die Injektionsbedingung (§5.3,
Definition 2) erfiillt:

a) Das Ideal 1" besteht aus allen Funktionen f in L' (G), deren Fouriertransfor-
mierte f1 (vgl. §5.4) auf G, x Bahn (,,) verschwindet.

b) IY* ist der Kern einer IRREDUZIBLEN Darstellung von L' (G).

c) Falls weiters die Wirkung o von G| auf N die Kompressionseigenschaft hat, so
besteht das Ideal 1, aus allen denjenigen Funktionen f in L'(G), deren Fouriertrans-

formierte f1 auf G, x Gr(Bahn (#,,)) verschwindet.?) Insbesondere gilt:
I¥»=I, «Bahn(h,) ist eine Gruppe [w=(8,, #,), A, #€]. (11)

5.6. Beweis von Teil 1. Jedem Ideal I« L' (G) entspricht unter dem Isomorphismus
(7) wieder ein Ideal I'< L' (G"), denn fiir die Abbildung f+ 1! gilt: Die Funktion
gn— f(g'gnn’) auf G geht iiber in die Funktion (g, n) f'(g'g, nn’) auf G'(g'eG,,
n’eN). Also folgt die Behauptung aus der Aquivalenz von Idealen und translations-
invarianten abgeschlossenen Unterrdumen.

Ein Ideal I'<L!'(G'), das einem Ideal /< L'(G) entspricht, ist auch invariant
unter dem Automorphismus (g, n)— (g, o.n) von G*, fiir jedes ce G,, wobei ¢ durch (2)
definiert ist. Es ist namlich cgnc™! =gcnc™, also gilt fiir die Abbildung f— f1:

Die Funktion gn f(cgnc™') geht iiber in (g, n)—f1(g, o.n). (12)

Man beachte aber, daB hier keine vollstindige Charakterisierung derjenigen
Ideale I' von L' (G'), die Idealen I von L' (G) entsprechen, gegeben wird, zum Unter-
schied von Gruppen G vom Heisenbergtyp (vgl. §1.7), doch geniigt die hier aufge-
stellte notwendige Invarianzbedingung fiir die Ideale It von L' (G') fiir den weiteren
Beweis.

7) Gr (A) bezeichnet die von A4 in N erzeugte abgeschiossene Untergruppe.
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Sei nun 7 ein eigentliches Ideal von L' (G); dann ist I' ein eigentliches Ideal von
L'(G"), also gibt es nach dem Satz von Wiener ein w=(8,,, 4,,)eG' mit *(g,, 7,)=0
fiir alle f'eI', d.h. nach (8)

f dg{g, 8,> f f(gn){n,n,>dn=0 firalle fel.
Gy N

Dabher ist sogar fiir jedes ce G, (vgl. (12))

f dg<g, §w> ff(gcnc—l) {(mh,>dn=0 firalle fel,
G1 N

also weiter
f dg e ) f F(gn) e, Ay dn=0,  fel.
Gy N

Da ceG, beliebig war, folgt wegen der vorausgesetzten Kompressionseigenschaft der
Wirkung von G, auf N sofort

f dg{g, £,.> ff(gn) dn=0 firalle fel,
Gy N

d.h. IcI;  (vgl (10)). Damit ist Teil 1 des Satzes bewiesen.8)

5.7. Beweis von Teil 2a). Fiir die durch (9) definierte unitare Funktion ¥, auf G
ist H¥* (vgl. §3.1) gerade die normale Untergruppe N von G, wenn die Wirkung ¢
von G, auf die duale Gruppe N die Injektionsbedingung erfiillt. DaB N HY> gilt,
ist trivial. Sei nun umgekehrt x,e H** und sei x,=g,n, (g,€G1, n,eN); dann ist also
auch g,e H*. Die Relation

Vw(xg,) =V, (x) ¥, (g) firalle xeG

reduziert sich im Falle (9), wenn man x=gn(geGy, neN) setzt, so daB xg,=
=gg,(g, 'ng,) wird, auf

(g, 'ng,, h,y=<n, h,) firalle neN. (13)

(13) bedeutet einfach &, A, =4#,, woraus wegen A, #¢é nach der Injektionsbedingung
fiir & folgt: g, =e. Also gilt H¥*<N, d.h. H¥*=N.

8) Vgl. dazu den Beweis bei Miiller-Romer [10]; durch eine andere Methode hat Miiller-
Rémer [11, 12] dann eine weit groBere Allgemeinheit erzielt.
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I~ besteht also hier gemiB (9) oben und §3.3 aus allen fe L' (G), die folgender
Bedingung geniigen: Fiir jedes (feste) ce G verschwindet die Funktion

g8 8 f iy f (gne™") dn, (14)
N .

die auf G, (fast iiberall definiert und) integrierbar ist, fast iiberall auf G,. Hier kann
man den Faktor (g, §,) natiirlich weglassen und ¢ auf G, beschrianken (denn wenn
(14) fiir c, fast iiberall verschwindet, dann gilt dies auch fiir c,n,, n,e N); die Be-
dingung ist also dquivalent mit folgender: Fiir jedes (feste) ce G, gilt

f {n,A,> f(genc™')dn=0 fast iiberall fir geG,
N

Dabei haben wir links noch gc statt g geschrieben, was fiir ce G, offensichtlich erlaubt
ist. Die obige Bedingung ist wiederum aquivalent mit folgender: Fiir jedes (feste)
ceG, ist

fdg(g, &> f {(n, A,y f(genc™')dn=0 firalle geG,.
Gy N

Substituiert man hier n>c!nc, so bedeutet dies also (vgl. (5), (6)):
ft(, 6.4,)=0 firalle geG, undjedes ceG,. (15)

Wegen der Stetigkeit von f! erhilt man dann die Behauptung 2a) (§5.5), denn aus
(15) folgt ja umgekehrt, daB die Funktion (14) fast iiberall auf G, verschwindet.

5.8. Beweis von Teil 2b). DaB im vorliegenden Fall die Darstellung §3.4 (14) von
G in L*(G/H) fir H=N irreduzibel ist, kann man ganz einfach zeigen.?)
Wir betrachten die zur Darstellung §3.4 (14) adjungierte Darstellung U} = U, -,
und erhalten, indem wir x=g'n’, y=gn mit g’, g in G, und »’, n in N setzen und mit
ny die Projektion gn+—g von G auf G, = G/N bezeichnen,

U} F(gn)=F(g'n'gn) Y, (g'n'gn)\,(gn), FeL?(Gy)omy. (16)

Es ist also hier F=Fony, FeL?(G,). Schreibt man in (16) g'n'gn=g'g(g 'n’g) n und
setzt fiir i, den Ausdruck (9) ein, so kann man die Darstellung direkt in L?(G,)

9) Im ,,separablen‘‘ Fall enthilt bekanntlich die Mackeysche Theorie viel weitergehende Ergeb-
nisse; vgl. z.B. die schone, einfithrende Ubersicht von Mackey [9], insbesondere §8. In dieser Arbeit
ist auch die entsprechende Literatur angegeben; der folgende Beweis ist von dieser Literatur unab-
hingig.



360 HANS REITER

beschreiben:
Ug"’:n’F(g)=F(g,g) <gla gw) <g_1n,ga ﬁw> .

Die Irreduzibilitdt ergibt sich nun aus dem folgenden Lemma.

5.9. LEMMA. Sei FeL?*(G,), A, in N, #,, nicht das neutrale Element von N; sei
& die durch (5) definierte Wirkung von G, auf N. Fiir g'eG;,n'eN sei A, ,F in
L?*(G,) definiert durch

Ag'n"’F(g)=F(glg) <n” 6gﬁw>g gEGl.

Wenn & die Injektionsbedingung (§5.3, Definition 2) erfiillt, so spannen die Funktionen
A, o F(g'€Gy, n'eN) den ganzen Raum L*(G,) auf, sofern F #0 ist.
Beweis. Es ist zu zeigen: Fiir deL?(G,) folgt aus der Bedingung

f F(g'g)<n', 6,0, ®(g)dg=0 fiiralle g'eG,,n'eN, (17)
Gy

daB ¢=0 in L?(G,) gilt.
Um dies zu zeigen, bemerken wir zunéchst, daB wir ein beschrinktes Maf u auf
N erhalten, indem wir

u(f)= f £ @A) E(ee) 8@ dg, [ (R) (18)

setzen; es ist ja g 8,7, eine stetige Abbildung von G; in N. Das MaB u hingt
natiirlich auch von g’e G, (und von F und & in L?(G,)) ab.

Sei jetzt K eine beliebige kompakte Menge in G, und K’ das Bild von K bei dieser
Abbildung; sei ¢’ die charakteristische Funktion der kompakten Menge K’ auf N
und ¢y diejenige von K auf G,. Die Funktion ¢’ ist also u-integrierbar. Weiter gilt
auf Grund der Injektionsbedingung:

@' (8.4,)=0x(g) firalle geG,.
Also gilt auch (vgl. (18))

p ((P')‘—‘f ok (8) F(g'2) B (g) dg. (19)

Die Bedingung (17) besagt nun einfach, fiir festes g'e G| :

f {n',#) du(A)=0 fiiralle n'eN,
N
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d.h. fiir die Fouriertransformierte 2 gilt: 4=0; also ist u=0. Daher gilt nach (19)
auch fiir jede kompakte Menge K< G,

f o (2) F(¢'8) B(g) dg=0, g'€Gy.

Gy

Daraus folgt weiter nach der Integrationstheorie, daB fiir jedes g'e G; die Funktion

g—F(g's) 3(2)

fast iiberall auf G, verschwindet; man beachte noch, daB diese Funktion in L'(G,)
liegt.

Da nun das Element g’e G, beliebig war, folgt weiter: d=0 in L*(G,) (vgl. §4.4).
Damit ist das Lemma bewiesen und der Beweis von Teil 2b) des Satzes fertig.

5.10. Beweis von Teil 2c). Wir wissen bereits, daB HY*=N ist (§5.7), also gilt
auch H, <N, nach der Definition von H,, (§3.1). Nun besteht fiir e H,, , auch die
Relation ¥, (¢x)=y,, () ¥,,(x), fir alle xeG; im vorliegenden Falle bedeutet dies
— nach der Definition (9) von ¥, —, daB fiir {=n,eH,, gilt:

(g7 n,g A, >={(n, A, firalle geG,. (20)

Man beachte den Unterschied gegeniiber (13)!
Falls nun die Wirkung ¢ von G, auf N die Kompressionseigenschaft hat, so folgt
aus (20)

{n,, A,y=1 fiiralle n,eH,,. (21)
Sei nun
H,={n|neN, {(n,A,>=1}. (22)

H,, ist eine abgeschlossene Untergruppe von N. Relation (21) bedeutet also: H, = H,,;
definitionsgema ist weiters H, normal in G. Es gilt nun einfach: H,  ist die grdfite
in H,, enthaltene normale Untergruppe von G, denn fiir jedes Element » dieser letzteren
Untergruppe gilt trivialerweise (20), also ist sie in A%~ (vgl. §3.1) enthalten, anderer-
seits liegt sie in HY*=N. Wir haben also in der Bezeichnung (2)

Hy,= (N o,H,. (23)

geGy

Jetzt kénnen wir auch das Ideal I, =y, J' (G, H,,) (vgl. §3.3) bestimmen.
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Zunichst gilt — analog wie in §1.12 (32) -
Jl (G’ wa) =J1 (GT’ H‘Pw)’ (24)

wobei H, , einmal als Untergruppe von G, das andere Mal als Untergruppe von G'
aufgefaBt wird; beide Seiten von (24) sind ja die abgeschlossene Hiille — im Banach-
raum L' (G) — aller fe ¢ (G), fiir die

ff(gnh)dh=0 firalle geGy, neN,

H'Ilw

gilt (vgl. §5.4). Es ist also J' (G, H) die Menge aller feL'(G), fir die f1 auf der
orthogonalen Gruppe von H, in G' verschwindet (vgl. dazu [14, Kap. 4, §4.3]).
Diese orthogonale Untergruppe ist nun, da ja G'=G, x N ist und H,  in N liegt,
einfach

G, x H,, (25)

wobei H,,f‘w die zu H, < N orthogonale Untergruppe von N bedeutet. Da nun ,, nach
(9) gerade der durch w definierte Charakter von G ist und w in der Untergruppe (25)
enthalten ist (vgl. (21)), gilt weiter

v,J' (G, H,)=T" (G", H,,). (26)
Also haben wir:
I, ={f|feL'(G), /(G x Hj,)=0}.

Die Untergruppe ij von N ist nun nach (23) einfach die von simtlichen Gruppen
(o.H,)", geG,, erzeugte abgeschlossene Untergruppe. Nun ist

(0 H,) =8,-1(Hy).

Hier gilt (in der Bezeichnung von FuBnote?) H.=Gr (#,,), wie man sofort gemaB (22)
nachpriift. Die von simtlichen Untergruppen &,-:(H +), g€ G4, erzeugte abgeschlos-
sene Untergruppe von N ist nun gerade Gr(Bahn (A,)), wie man ebenfalls sofort
nachpriift (man beachte dabei, daB letztere Untergruppe &,-invariant ist, fiir jedes
g€G,). Die Behauptung (11) folgt unmittelbar. Also ist auch 2c) bewiesen. Damit
ist der Beweis von Satz 2 (§5.5) beendet.

5.11. Zur Veranschaulichung von Satz 2 sei auf die Beispiele in §5.2 verwiesen;
insbesondere kann man fiir (11) das Beispiel (i) in §5.2 heranziehen.
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Weiter ist ein Vergleich der Sétze 1 (§4) und 2 — und ihrer Beweise — wohl emp-
fehlenswert. Man beachte noch, daBB im Falle von Satz 2 die Quotientenalgebra
L' (G)/1,,, nichts Neues liefert, weil ja hier I, =J'(G, H, ) ist (vgl. (24), (26)); der
triviale Multiplikator k,,  fiir G ist hier von einem trivialen Multiplikator abgeleitet,
zum Unterschied gegeniiber den Gruppen vom Heisenbergtyp (§§2.8, 3.6).

Beziiglich der Ideale I¥* sei darauf hingewiesen, daB sich der Durchschnitt von
I** mit #(G) auf die konstante Funktion Null reduzieren kann (auch fiir 1Y~ # (0)),
wie man etwa im Falle von §5.2, Beispiel (iii), fiir N=R, G, =(R*)?, sofort zeigt.

5.12. Aus Teil 2a) von Satz 2 ergibt sich iibrigens in Verbindung mit Teil 1:
Wenn fiir ¢ die Kompressionseigenschaft und fiir & die Injektionsbedingung gilt,
so ist I¥* in sdmtlichen Maximalidealen von L!(G) enthalten, sofern w nicht auf der
G,-Achse liegt. Dies steht im Kontrast zum Falle kompakter Gruppen, wo der Kern
einer irreduziblen Darstellung von L' (G) stets ein Maximalideal ist.1°)
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