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Homological Methods Applied to the Derived Series of Groups

by RALPH STREBEL1)

0. Introduction

0.1. Let R be a non-trivial commutative ring with unit and let G be a group. We say
G lies in the class E(R) if the G-trivial module R has an RG-projective resolution

-»sz-iPi —-P,»R
for which the map
1R®0;: RQre P2 > RQpe Py

is injective. We say G lies in the class E, or that G is an E-group, if G lies in E(R)
for every R. The purpose of this paper is to investigate the derived and the lower central
series of E-groups.

The second homology group with coefficients in R, H, (G, R), vanishes for a group
belonging to E(R). In general, the converse is false, but it does hold for groups G
whose cohomological dimension cdgG is at most two.

An E-group G can be characterized by the following two properties (see Lemma
2.3):

— G lies in E(Z)

— The abelianization G, of G is torsion-free.

From this it is clear that all free groups and all knot groups are E-groups.

0.2. The motivation for studying E-groups comes from three fields: from the theory
of knot groups, from the theory of poly-nilpotent groups, and from the theory of
parafree groups. We begin our discussion by presenting the relevant facts about
knot groups.

The multiplicator H, (G, Z) of a knot group G is zero, as is the multiplicator
H,(G', Z) of the derived group of a knot group ([26, p. 156], [24, p. 198, Corollary
(3.1)]). The question arises whether this is true for the multiplicators of the higher
derived groups G'® of G.

The abelianization G,, of a knot group G is free cyclic. The abelianization G,
of the derived knot group is torsion-free [4, p. 349, Theorem (1.3)] (but in general
not free abelian). Again one may ask whether the abelianizations of the higher
derived groups G® are torsion-free.

1) Part of this work was done at the Battelle Advanced Studies Center, Geneva, Switzerland.
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The answer to both questions is affirmative. It follows immediately from part (i)
of the following result on closure properties of the class E.

THEOREM A. The class E has the following closure properties:

(i) Every derived group G'® (a any ordinal) of an E-group G is an E-group.

(ii) Every term Gyz(1<B<w) of the lower central series of an E-group G is an
E-group.

(iii) If G is an E-group then the quotient G/((N, G'®) is an E-group whose coho-
mological dimension is at most two.

We note that statements (i) and (ii) imply that every term of the iterated lower
central series of an E-group is an E-group. In particular, the multiplicator of every
such term is trivial.

Remark. In the present paper, we shall not investigate consequences of statement
(iii). Here we merely point out that a preliminary discussion may be found in [22,
p. 41, Section 6.4]. There it is shown that the derived length of an E-group is 0, 1, 2,
a limit ordinal A, or A+1.

0.3. A second motivation for investigating E-groups stems from subgroup theorems.
Denote the lower central series of a group G by G, (j=1, 2,...). By definition, G,
coincides with G. Let k be the symbol (1) or an s-tuple of natural numbers greater or
equal to two,

k=(ky,..., k) (s=1,k,>2). (0.1)

The terms {G,} of the iterated lower central series of G are defined by recursion on s
as follows:

The following result on subgroups of free poly-nilpotent groups is well-known (see
e.g. [15, p. 117, 42.35] (and [15, p. 76, 26.33])).

(*) Let T be a subset of a free group F and let k be an s-tuple as in (0.1). If T'is
independent modulo F, then T freely generates in F/F; a free poly-nilpotent subgroup.

One might ask for conditions on a (not necessarily free) group G which ensure
that a statement analogous to (x) holds, but where the free group F is replaced by G.
The following result indicates a step in that direction.

(**) Let T be a subset of a group G whose multiplicator H, (G, Q) is zero. (Here
Q denotes the additive group of the rationals.) If T is independent modulo G, then,
for every j (2<j<w), the set T freely generates in G/G; a free nilpotent subgroup.

(The above statement can be deduced from a result of J. Stallings [17, p. 180,
Theorem 7.3] (see [22, p. 69, Satz 8.1]).)
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We shall prove the following combination of () and (#*).

THEOREM B. Let T be a subset of an E(Q)-group G and let k be an s-tuple as in
(0.1). If T is independent modulo G, then T freely generates in G|Gy a free poly-nilpotent
subgroup.

0.4. The third motivation comes from the work of G. Baumslag on parafree groups
([17, [2])- We say a group G is (absolutely) parafree if G is residually nilpotent and
if there exists a group homomorphism ¢:F— G from a free group into G which in-
duces, for every j, an isomorphism ¢: F/F; 3 G/G; (2<j<w).

Remark. Our definition of parafreeness is not quite the same as Baumslag’s
definition, but is equivalent to it. The proof of the equivalence is implicit in an
argument given in Baumslag’s second paper [2, p. 522, Proof of Theorem 4.1].
(See also U. Stammbach [21, pp. 162-164, Proposition 4.1, Proposition 4.3]).

Of course, every free group is parafree. The problem is to find non-free, parafree
groups. As shown by G. Baumslag, there are plenty of them. Our contribution to this
problem is the following result.

THEOREM C. Let V and W be non-trivial elements of the free group F on y,
and y,. Let G denote the group

(X, Y1, Y2 Y3 x [V, x] ([W, J’s])6> (5=i1)’

and let ¢ :F— G be the obvious map from the free group on y,, y,, y3 into G. Then the
following statements are true:
(i) @:F/F;~G|G; is isomorphic for every j (2< j<w).

(i) @:F/F, ;3 G|G s, is isomorphic for every j(2<j<w).

(iti) If V is an element of Fy then @:F|Fy ;,3G|Gy,;, is isomorphic for every
j @<j<w). A

(iv) If W is an element outside F, then G is an extension of a free group by a free
cyclic group. Moreover, G is residually nilpotent.

(v) If V is an element of F, then G is not free.

0.5. The paper consists of five sections. In the first one, we set up the basic machinery
used to prove results on the classes E(R). For this we introduce the classes D (R).
We say the group G lies in the class D (R) if any map between RG-projective modules,
whose image under the functor

R®RG-:RGI‘OJ—)RJ0([

is injective, is itself injective. We say G lies in D if G lies in every D (R). We cite some
results on the classes D (R) (R arbitrary):
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(i) The free cyclic group lies in D (R).

(ii) Any subgroup U<G of a group G lying in D(R) lies in D(R).
(ili) Any product [[; G; of groups G; lying in D(R) lies in D (R).
(iv) If G has a transfinite descending subnormal series

G=G0>G1>G2 >"'Gm>Gw+1 >"'Gu=e

all whose factors lie in D (R), then G lies in D(R).
(v) Any direct limit of groups lying in D (R) lies in D(R).
We remark that by (i), (iv) and (v) every torsion-free nilpotent group belongs to D.
This is, however, not true for an arbitrary torsion-free supersolvable group (see
Subsection 1.5).
In the second section we introduce the classes E(R). The connection between
D(R) and E(R) is given by

LEMMA 2.1. Let G be an extension of the form NaG—» Q. If Q lies in D(R), and
if G belongs to E(R), then N belongs to E(R).

In the remainder of Section 2 Theorem A is proved.

The third section contains the proof of Theorem B. The proof uses properties of
D (Q)-groups and the result of J. Stallings [17] mentioned above.

In the fourth section we provide a large number of examples of finitely presented
E(Z)-groups. We say a group G lies in M(Z) if G has a presentation

Zyy ey Zpgil ey eny ZN)

such that the difference M — N equals the torsion-free rank of the abelianized group
G, We say G lies in M if G lies in M(Z) and if G, is torsion-free. The class M was
studied by W. Magnus in 1939 ([13], see also U. Stammbach [19]). We shall show
that M(Z) is a subclass of E(Z) (Proposition 4.1).

The fifth and last section is devoted to the proof of Theorem C. For the statements
(i) through (iv) we rely heavily on results obtained in the preceding sections of the
paper, especially on Theorem B and on an isomorphism criterion proved in Sub-
section 4.3. The question whether G is free or not can be decided by Whitehead’s
algorithm [25].

0.6. The theory of E-groups grew out of an attempt to prove, by homological methods,
results on the derived series of a given group. This program was suggested to me by
Professor U. Stammbach who also proposed a theorem of G. Baumslag [2] (see
Theorem D, Subsection 5.3) as a test result. As Theorem C illustrates, the theory
succeeds in the test direction. Moreover, it generalizes results on knot groups. I
would, however, like to emphasize that it deals with only a very narrow class of
groups; for example, few non-abelian soluble groups belong to E (cf. [22, pp. 38-41,
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§6.3]). This contrasts with the results of J. Stallings [17] and U. Stammbach [18]
on the lower central series.

Many of the results of this paper go back to my thesis [22]. In this article they
are reformulated and new results have been added. My work has been expedited by
many people to some of whom I am particularily indebted. U. Stammbach not only
suggested the problem but also supervised and encouraged my work on its solution.
G. Baumslag, K. W. Gruenberg, P. M. Neumann and J. E. Roseblade, through their
comments on various aspects of the theory, indicated new directions. Miss R. Boller
transformed my manuscript into a carefully typed preprint. To these and others
who have assisted me I express my gratitude.

1. The Classes D(R) and the Class D

1.1. The Basic Definitions

Throughout this paper, R shall denote a non-trivial commutative ring with unit,
G a group, RG the group algebra, and &: RG—» R the standard augmentation, given
by Y r;g;—) r.. The ring R shall be viewed as a (trivial) RG-module via . The
symbol j<w shall mean that j is a non-negative integer; w denoting the first limit
ordinal.

We say G lies in the class D(R) if any map between RG-projective (left RG-)
modules whose image under the functor

R®RG-:RGJ04 —*R-IOJ

is injective, is itself injective.

Remark. In a picturesque way we can say that G belongs to D (R) if, and only if|
the functor R - detects injective mappings between projective modules.

We say G lies in the class D if G lies in D (R) for every R.

1.2. Residually Nilpotent Modules

We shall denote the kernel of ¢: RG—» R by I. It is called the augmentation ideal.
Its powers {I' | I°=RG};,, induce, for every left RG-module 4, a filtration {I'4};.,,
defined by

I°A=4
IA={aed:a=) (1-g,)...(1-gy)a;} (1<)).

Note that every RG-module homomorphism n: 4 — B is compatible with the filtra-
tions {I’A4} and {I’B}.

DEFINITION. A left RG-module A is called residually nilpotent if the intersection
(Nj<w I’A reduces to 0. (The R-algebra RG is called residually nilpotent if the left
RG-module RG is residually nilpotent.)
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We associate with the filtration {I/4};., the graduated G-trivial RG-module
gr A defined by

grA={IAII*' 4}, ..

The proof of the following lemma is straightforward and is omitted.

LEMMA 1.1. Any submodule of an arbitrary product of residually nilpotent
modules is again residually nilpotent. In particular, any RG-projective module is residual-
ly nilpotent provided the group algebra RG is residually nilpotent.

The next lemma will be used in Proposition 1.3 and again in Lemma 1.10.

LEMMA 1.2. Suppose the following conditions are fulfilled:
(i) RG is residually nilpotent.
(ii) n: A4 - B is a map between RG-projective modules.
(iii) 14 ey, @M1/ @peA— P[P+ Qe B is injective for every j<w.
Then n itself is injective.
Proof. We shall first exhibit a natural transformation

7:(grRG)®@gcA — gr4

which is an isomorphism whenever 4 is RG-flat.
For any j<w and any RG-module A4, the diagram of canonical mappings

P ' Q@reA—>F@rcA~ (8rRG);@pcA 0

,|,01+1 l.aj lff
0-F*"'4 - FA - (grd); -0

is commutative. Its rows are exact and the vertical maps are onto. If 4 is RG-flat,
o; is moreover injective since the top map in the commutative square

Ij®RGA _‘)RG®RGA
ld’j Elao
A s A

is injective. Thus 7;:(gr RG);®@ge 4 — (gr4); is bijective provided A is RG-flat.

Now every RG-projective module is RG-flat. In the presence of condition (ii),
the condition (iii) can therefore be replaced by

(iv) (grn);: I’A/I’*'A— I'B/I'*!B is injective for every j<w. But using Lemma
1.1, the conditions (i), (ii) and (iv) are easily seen to imply the injectivity of #. This
proves Lemma 1.2.



308 RALPH STREBEL

1.3. The Non-Triviality of the Class D

PROPOSITION 1.3. The free cyclic group belongs to the class D.

Proof. Let R be an arbitrary non-trivial commutative ring with unit, and let
C=(c) be free cyclic. Our first objective is to prove that RC is residually nilpotent.

Every element x#0 of RC can be written in the form

x=cV(rotric+--+ref)  (ro#0,7,#0). (1.1)

As we require ro#0 and r,#0, the integer N, the non-negative integer g and all the
rie R (1<i<g) are uniquely determined. Suppose now that x is in /. Because the
RG-module I/ is generated by (1 —c)’, x has a representation

x=%(1—c)’, where
g=c" (Fo+Fc+ - +Fc®) (7o #0, 73#0).
It results the representation
x=cﬂ (r~0+jlc+ A +§§+J‘_1c§+"~1 +(_ 1)] f§0§+j). (1.2)

Since 7, as well as (— 1)’ 7; are different from zero, the representations (1.1) and (1.2)
are identical. In particular, g=g+j, so that j<g. This proves RC to be residually
nilpotent.

Remark. (1.2) shows also that (1—c)’ is not a zero-divisor. Therefore I is an
RC-free, cyclic module and (grRC);=I’/I’*! is RC-isomorphic with RC/I, i.e.
with R.

Now let n: 4 — B be any map between RC-projective modules, for which 1;® .7
is injective. By the preceding remark, the map 1, grc),®ct is, for every j<ow,
naturally isomorphic with 1;®.n and thus injective. RC being residually nilpotent,
it follows from Lemma 1.2 that # itself is injective. As n was arbitrary, this means that
C belongs to D (R).

1.4. Some Closure Properties of D(R)

DEFINITION. A system {U;},. of subgroups of a group G is called inverse
if there exists for every pair (j',j")eJxJ an index jeJ such that U,cU; nU;..
Note that the inverse limit in %z of such a system is canonically isomorphic with the
intersection ();.; U;. _

In Proposition 1.5 the following technical result on inverse systems of subgroups
shall be needed.

LEMMA 1.4. Suppose {U;};., is an inverse system of subgroups of a group G.
Denote its intersection by U. Let n: A — B be a map from an RG-projective module into
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an arbitrary RG-module such that all the induced maps 1R ®y 1 are injective. Then
1, ®yn is injective.
Proof. (For an arbitrary RG-module M, we denote by

lM:R®UM—>H(R®UjM)
J

the canonical map given by the maps r®ymr ®y,m and by the universal property
of the product.) In the commutative square

R®y A 1R®——>M R®yB
14 lp
];](R®UJA) TI(1r®u ;) I;[ (R®Uj B)

the bottom map is by hypothesis injective. We shall show that the left-hand map 1,
is also injective, thus proving the assertion.

Assume first that A4 is the group algebra RG. Select a right transversal {7}, /v
of G in U. Then every element x#0 of R®yRG has a unique representation of the
form

x=) ry(x)®yTs.

Since x#0, there exists an seG/U for which r,(x)#0. As the support supp(x)
(={seG/U:ry(x)+0}) is finite, there exists an index j=j(x) in J such that for every
pair (s, s) of different indices out of supp(x) the element T, 7, ' avoids U,. This
means that the set {7},cqupp(x) Can be enlarged to a right transversal of U; in G,
and this in term implies that the image of x in R®y, RG is different from zero. Hence
1zc 1S injective.

Next note that for an arbitrary coproduct [ [, M, of RG-modules the diagram of
canonical mappings

];[(R®UM")_ETM-,‘—)];I I;I (R®Uj M,)

= ag

I_I(RéUMk)"""“"l;[ H(RéUij) (1.3)

k

>~ x~

Ré)v (I,;IM")THTH R®y, (lk_[Mk)
k , J

is commutative and that o is injective. It follows therefore from (1.3) and from the
injectivity of 1z, that 1, is injective for every RG-free module A. One further ap-
plication of (1.3) shows that 1 is injective for every direct summand A4 of an arbitrary
RG-free modaule, i.e. for every RG-projective module.
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PROPOSITION 1.5. The class D (R) satisfies the following closure properties:

(i) sD(R)=D(R), i.e. any subgroup U< G of a group G lying in D (R) lies in D (R).

(ii) ED(R)=D(R), i.e. any group G having a transfinite descending subnormal
series

G=G >G>0, -G, >G> -G,=e

all whose factors Gg/Ggy (B<a) lie in D(R), lies in D(R).
(iii) T D(R)=D(R), i.e. any product [|; G; of groups lying in D (R) lies in D(R).
Proof. As the three operations s, E and IT are closure operations, we need only
prove the inclusions “<”. (i) SD(R)=D(R). Suppose U<G and G belonging to
D(R). Let n: 4— B be a map between RU-projective modules, for which 1 ®@yn is
injective. The change-of-rings functor

RG@U' . RU"JOd - RG"IOd

sends RU-projective modules to RG-projective modules. The map 1;®;(1xc®un)
is naturally isomorphic with 1; ® y#. Therefore

N=1gc®un

is a map between RG-projective modules, for which 1;®# is injective. Because G
lies by hypothesis in D (R) the map 7 itself is injective which in term implies that # is
injective.

(ii) ED(R)=D(R). Suppose G has a transfinite subnormal series

G=Gy>G GGGy -G =0

all whose factors G4/G,.; (<o) belong to D(R). Let n:4— B be a map between
RG-projective modules, for which 1;®4# is injective. Using transfinite induction,
we shall show that all the maps 1;®¢,n (B<«) are injective which clearly implies
that # is injective.

Inductive step. Suppose f<a. By the induction hypothesis, 1z®g¢,7 is injective.
n may also be viewed as a map between R (Gj)-projective modules. Gy is an extension
of G4y by Gg/Gg4q. SO

ﬁ=lR®Gp+ M

is a map between R(Gy/Gjy.1)-projective modules, for which 1R®G,,/G,H'7, being
naturally isomorphic with 1;®g,7, is m_]ectxve As G;/Gg . lies in D(R) we deduce
that # is injective.

Limiting step. Suppose A<« is a limit ordinal. By the induction hypothesis, all
the maps 1;®¢," (B<A) are injective. Since, from the definition of a descending
subnormal system, G,=("\g<1 G, and since the chain of subgroups

G=Go>G1 >G2 >".GA
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forms an inverse system we can infer from Lemma 1.4 that 1;®g,7 is injective.
(iii) TD(R)<D(R). Suppose G is an arbitrary product [[;., G; of groups G,
belonging to D (R). Consider for any finite subset F<J the normal subgroup

Nr={ge[] G;:jeF=¢g(j)=¢}.

These normal subgroups form an inverse system with trivial intersection. Moreover,
the quotients G/Np (=] ];<r G;), being finite products of groups belonging to D (R),
lie by the already established closure property “ED(R)=D(R)” in D(R).

Now let n: 4 — B be a map between RG-projective modules, for which 1;®47 is
injective. Because for every finite F<J the group G/N; lies in D (R), it follows that
all the maps 1;®y,.n7 are injective. But (g, Np=e, so that we can infer from Lemma
1.4 that n itself is injective.

So far in showing a group G to lie in D(R) we always considered maps n: 4 — B
between arbitrary RG-projective modules. It is, however, sufficient to test all maps
n:A— B between finitely generated, RG-free modules. This is the content of the next
lemma, which will be crucial in the proof of Proposition 1.7.

LEMMA 1.6. The following statements are equivalent:
(i) GeD(R).

(ii) Any map n: A — B between RG-free modules, for which 1@ is injective,
is itself injective.

(iii) Any map n:A— B between finitely generated, RG-free modules, for which
1, ® ¢ is injective, is itself injective.

Proof. The implication ““(i)=>(iii)” is evident.

(ii)=> (i). For every RG-projective module C we select a (distinguished) comple-
ment C. We define the construction ~ associating to every map u between projective
modules a map 7 between free modules, by setting

. A®A - BOB®ADA

NA=>B1:  de d@0@0@d

Plainly, # is injective if (and only if) 7 is injective, and 1, ® ¢ is injective if (and only
if) 1 ® ¢ is injective. The claim follows immediately from this remark.

(ii)=>(iii). This implication depends upon the fact that every RG-free module
is the union of its finitely generated, free, direct summands. The details are omitted.

PROPOSITION 1.7. LD(R)=D(R), ie. if F is a directed system, and G:
F = 91 a functor such that, for every index j in ¢ the group G( j) belongs to D(R),
then the direct limit lim G belongs to D(R).
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Proof. As L is a closure operation, we need only prove the inclusion “LD(R)<
cD(R)”.
Denote the group&rgG by G. By Lemma 1.6 it is sufficient to test a map n: 4 — B

between finitely generated RG-free modules, for which 1;®¢n is injective. If we
choose in 4 an RG-basis {ay, ..., d)} and in B an RG-basis {b,, ..., by}, the map 5 can
be described in these bases by an M x N-matrix H. In H occur only finitely many
elements, say gi,..., gg, Of l_i_n_l)G. So there exists an index m in _# such that each

gx (1<k<F)has a preimage in G(m). It need not be unique. Fix for every k (1<k<F)
a preimage and call it g,(m). Then the matrix H has a corresponding pointwise
preimage H(m) under the ringhomomorphism R(G(m))— R (l_1_n_1’G) We may sup-

pose that m is the minimal element of #, so that there exists, for every index j in
#> a map G(m—j):G(m)— G()).
Define next, for every index j in ¢, a mapping

n(/):A()~B())
between finitely generated R (G (j))-free modules as is shown below:

A()) is R(G(j))ree on ay (), - an ()

B(j) is R(G(j))-free on b (), ..., by (J).

n(j) is given in the bases {a,(j)} and {b,(j)} by the matrix H(j) which is by
definition the pointwise image of H(m) under the ring homomorphism
R(G(m—})): R(G(m))~R(G(j))

The functor G: £ — % gives rise to a functor A: _# — &/4. It maps j onto A (j) con-
sidered as an abelian group. If j—j' is a morphism of ¢ the induced homomorphism
A(j-Jj'):A(j)—A(Jj') is given by

g()a;(Neg(i’)a (i) (Iss<M),

g.(j') denoting the image of g () under the group homomorphism G(j—j’), and
by R-linearity. Similarily, G gives rise to a functor B: # — &/¢#. Thirdly, the functor
G induces a functor

n: f - (| AE).
It maps j onto 11(j) considered as a homomorphism between abelian groups. If
j—Jj’ is a morphism of # the square

n(Jj)

A(j)—/B(j)

A=) ‘l B(—J")

A(j)—>B0")

n(J")
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is commutative. So we are allowed to definen (j—j') as the pair {A (j—j'),B(j—j")}.
The colimit l_i_rgn exists and coincides with # when 7 is viewed as a map between

abelian groups.

Now consider an arbitrary map m(j). By construction the matrices H(j)* and
H*, ¢ denoting the (pointwise applied) appropriate augmentation, are identical. But
1:®4n, described by H?, is by hypothesis injective. So, for every index jin # the map
1:®@¢ M (Jj), described by H(j)’, is injective. Since every G(j) belongs to D(R),
every n(j) is injective. It follows that li_rgn, which underlies #, is injective. This
establishes the claim.

1.5. Concluding Remarks
By way of illustration, we state explicitly some easy consequences of Proposition
1.3, Proposition 1.5 and Proposition 1.7.

COROLLARY 1.8. The following statements are true:
(i) Every poly-free-cyclic group belongs to D.

(ii) Every torsion-free nilpotent group belongs to D.

(iii) Every free group belongs to D.

We conclude the investigation of the classes D(R) by establishing a necessary
condition for a group to lie in D(.S), where now S is an integral domain of charac-
teristic zero. We first recall the definition of a (locally) indicable group (G. Higman
[9, p. 24111.], cf. [8, pp. 61-62, §4.5]). A group G is called indicable if every non-
trivial, finitely generated subgroup U< G can be mapped onto the free cyclic group.
Note that one requires precisely that the abelianization U,, of any finitely generated
subgroup U is infinite, or equivalently, that U,, has a free cyclic, direct summand.
The announced condition then reads as follows.

PROPOSITION 1.9. If S is a non-trivial integral domain of characteristic zero,
then the class D (S) is contained in the class of indicable groups.

Proof. Suppose G belongs to D(S) and let U< G be a finitely generated subgroup
of G. By Proposition 1.5 U belongs to D(S). The augmentation ideal I(SU) is a
finitely generated SU-module. So the G-trivial module S has an SU-free resolution

I(SU)

S«"SU(-————-—-——FI (-—-qu-._...
01 22

in which F, is finitely generated. Let A be any left SU-module. The cohomology
groups H* (U, A) with coeflicients in 4 may be computed from the bottom row in
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the following commutative diagram

Homy(I(SU), A
N\
HomU (SU, A) Hom@r 1.0) %Homu (1F1, A) —HmHomU (Fz, A)
A > 114 14
J I

(1.4)

By construction J is finite so that we have a canonical isomorphism [[, 4 x]], 4.
Assume U,, is finite. We claim that U must be trivial. If U,, is finite, then
Homy, (U,,, S)=H' (U, S) vanishes, the characteristic of S being zero. Now
Hom (9, 15) is easily seen to be the zero map. Hence H'(U, S)=0 implies that
Hom (4,, 15) is injective. But by hypothesis S is an integral domain. So it follows
from linear algebra that there exists a finite subset I’ such that the composition

1,@un 1S T ST s 211 s

1

is injective. Here p denotes the obvious projection. Thus the map

n: ]f[ SUWI;[ SU.;_,];[ SU«-—Iﬁ[ SU
is a homomorphism between SU-free modules for which 1® 7 is injective. But U
lies in D(S). Thus n and, consequently, Hom(d,, 15y) are injective. This forces
Hom (8,, 15y) to be the zero map. Now use (1.4) to compute H° (U, SU). One obtains
that (SU)Y=SU. This means that SU is a U-trivial module. As by hypothesis S is
non-trivial, U must be trivial. This establishes the claim.

Remarks. A poly-cyclic group is indicable if and only if it is poly-free-cyclic.
A nilpotent group is indicable if and only if it is locally poly-free-cyclic, i.e. if it is
torsion-free. This shows that the first two statements in Corollary 1.8 cannot be
improved. We also remind the reader that a torsion-free poly-cyclic group need not
be poly-free-cyclic. Standard counterexamples are the groups

G(k)=<a, b, t:a'=a",b'=b"%, [a,b]=1*) (keZ) (1.5)

found by G. Zappa [27] and K. A. Hirsch [11]. If k#0 is even, G (k) is a poly-cyclic
(even supersolvable), infinite group. It is an extension of a torsion-free nilpotent
group by a cyclic group of order two. (As we shall see, this implies that G(k) lies
in D(Z,).) Moreover, if k is a multiple of four, G (k) is torsion-free. However, G (k)
is not indicable, G (k),, being finite (k#0).
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A finitely generated perfect group does not lie in D, but this need not be true if
the group is infinitely generated. For example, the group

{(xwnez:Xn=[Xn+1, Xp+2])

is perfect, but locally free. So it belongs to D.

We add a word on the group algebra SG of a group belonging to D(S), where
S is any integral domain. If the characteristic of S is zero G is indicable and so SG
has no zero-divisors (G. Higman [9]). If the characteristic is p the group algebra SG
may have zero-divisors which, however, are bound to be elements of the augmentation
ideal. The situation is illustrated by Lemma 1.10. The lemma, moreover, shows that
the torsion-free groups given by (1.5) lie in D(Z,), although they do not belong to
D(Z).

LEMMA 1.10. A finite group belongs to D(Z,) if and only if it is a p-group
(p denoting a prime).

Proof. Suppose the finite group G belongs to D(Z,). Take an element geG of
order a prime, say ¢, and consider the homomorphism

n:Z,(8)~>Z,(g),

given by x> (1+g+g%+---+g? 1) x. It is not injective. Since the subgroup (g)<G
belongs also to D(Z,), the map 1, ® (7 cannot be injective either. Therefore g=p.

Conversely, suppose G is a finite p-group. Let #: 4 — B be a map between Z,G-
projective modules, for which 1, ®g# is injective. Z,G is a nilpotent module (cf.
[3, p. 681, Theorem 97) and the quotients I//1/*! ( j<w), being Z -vector spaces, are
Z -flat. So we can deduce from Lemma 1.2 that 7 itself is injective.

2. The Proof of Theorem A

2.1. The Definitions of the Classes E(R) and of the Class E

As in the first section, R shall always denote a non-trivial commutative ring with
unit.

We say a group G lies in the class E(R) if the G-trivial module R has an RG-
projective resolution

o3 Py P, 3P, - Py—»R
such that the image of the second differential 0, under the functor
R®RG-:RGJOJ 4 R-IOJ

is injective.
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We say G lies in E if G lies in E(R) for every R.
Remark. If G belongs to E(R) then H, (G, R)=0. The converse, although false
in general, holds for groups of cohomological dimension at most two.

2.2. Some Properties of E(R)
We shall first give a lemma connecting the classes D(R) and E(R). This lemma
will be crucial in the proof of Theorem A.

LEMMA 2.1. Suppose the group G is an extension of the form N<G-»Q. If Q
lies in D(R) and if G belongs to E(R), then N belongs to E(R).

Proof. Suppose G belongs to E(R). Let P,—» R be an RG-projective resolution
of R for which 1;®4;0, is injective. Consider

R®NP* .

It is a complex of RQ-projective modules for which 1;®,(1x®@x0,) is injective.
By hypothesis Q lies in D(R). So 1;®y0, is injective. Because P,— R is also an
RN-projective resolution of R, we have shown that N belongs to E(R).

For future reference we state explicitly the obvious

COROLLARY 2.2. A group G which belongs both to D(R) and to E(R) is of
cohomological dimension cdgxG at most two.

The particular importance of the class E(Z) is shown by the following lemma 2.3.
This lemma also characterizes the class E.

LEMMA 2.3. The following statements are true for any group G:
(i) GeE(Z)=(GeE(R)<H,(G, R)=0).

(ii) GeE <>GeE(Z) and G|G’ is torsion-free.

Proof. Suppose GeE(Z) and H, (G, R)=0. Let

a3 a2
v+ P3—P, > P, > Py—>»Z

be a G-projective resolution of Z for which 1,®0, is injective. Then 1;®0; is the
zero map. Tensoring the above complex with R®, — one gets an RG-projective
resolution of R. Because the map 1;® s (1x® z0;) is also zero, H, (G, R) is trivial
if and only if 1;® ¢ (1x® z0,) is injective. This proves one half of (i). The converse
is obvious. Part (ii) then follows from statement (i) and the universal coefficient
theorem.

2.3. Additional Properties of E
We recall the definition of the transfinite series of derived groups {G'®} of a group
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G. It is given by
GP=¢G
Gt 1)=[G(“), G(a)]
GM=N G® (4 a limit ordinal).

a<i

We now state a fundamental closure property of the class E (Part (i) of Theorem A).

PROPOSITION 2.4. Any derived group G'® of an E-group G is again an E-group.

Proof. We use transfinite induction on a. The claim holds obviously for a=0.
Now let >0 be an ordinal such that for every f <a the group belongs to E. Consider
G/G™@. It has a transfinite descending normal series (sc. {G®/G‘®}) all whose
factors are torsion-free abelian (see Lemma 2.3). Therefore G/G'® lies for every R in
D(R) (see Proposition 1.5 and Corollary 1.8). Lemma 2.1 then implies that G®
belongs to E(R) for every R and hence, by definition, to E. This establishes the claim.

We also recall the definition of the lower central series {Gg},<p<o- It is given by

G1=G
Gw= m Gj
j<o

The next proposition deals with the second assertion of Theorem A:

PROPOSITION 2.5. Any term G, (1<p<w) of the lower central series of an
E-group G is again an E-group.

Proof. Suppose G belongs to E. As G/G, is torsion-free and H, (G, Z) is trivial,
all the quotients G;/G;,; (1<j<w) are torsion-free [23]. It follows that G/G,
(1<B<w) lies in D for every f which, by Lemma 2.1, yields the claim.

An immediate consequence of Proposition 2.4 and Proposition 2.5 is

COROLLARY 2.6. For any E-group G the following implications are true:
H,(G™,Z) is trivial, and

G@®|G*Y s torsion-free.

H,(Gy, Z) is trivial, and

Gy/[Gy, Gg]  is torsion-free.

(i) o any ordinal = {

(ii)) 1<f<w = {
We are left with the third claim of Theorem A. For convenience we restate it as

PROPOSITION 2.7. If G is an E-group then G/((N, G'®) is an E-group whose
cohomological dimension is at most two.
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Proof. Let & denote the smallest ordinal for which G®=G®*1, Then G® =
=", G'¥. Suppose that

F
co P, —2>P1 — Py—»1Z
is a G-projective resolution for which 1,®,0, is injective. We assert that
0
0 o 4 Z®G(a) PZ -3’ Z®5(a) Pl 4 Z®G(a) PO -»7Z

is a G/GP-projective resolution of Z. The modules Z® g» P; (i=2, 1, 0) are G/G-
projective. The map 1,®¢/6» d,, being naturally isomorphic with 1,®¢8,, is in-
jective and G/G® lies in D. Therefore &, is injective. The homology at Z® g(s Py
equals H,(G®, Z)=GP|G®*1=0. Since Z®sw» — is a right exact functor, the
complex is also exact at Z®g P, and at Z. Thus the assertion is established. It
follows that the cohomological dimension of G/G® is at most two. As mentioned
above, 1,®¢/6 0, is injective. This shows that G/G® is an E-group.

3. The Proof of Theorem B
3.1 The Crucial Lemma

LEMMA 3.1. Let ¢:F— G be a map from a free group into a group of E(R) for
which

¢(R):H, (F, R)» H, (G, R)
is injective. Suppose Q is a quotient of G lying in D (R). Then

¢ (RQ): H,(F, RQ)~ H, (G, RQ)

is injective.

Proof. Let ---—=0—>1 (RF)—"-)RF—’»R be the RF-free augmentation resolution of
R, and let P, - R be an RG-projective resolution of R for which 1,®0, is injective.
View P,—» R as an acyclic complex of RF-modules via ¢. There exists a chain map
1, yielding the commutative diagram

.= 0 > I(RF)> RF—»R

ooy P P — P, » R
2 1 0
02 g
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of RF-modules. Note that 7, factors as

I(RF)
\\.

c, / _ RG®:I(RF)
P’

since P, is an RG-module.
The map ¢: F— G induces a natural transformation ¢ (—) between the functors

H,(F,=):Modpg— Modg
and

H, (G, —): Modyg— Mody.
This natural transformation ¢ (—) is defined by the composition p,o(t;)%°1 in the
diagram

H,(F, A)

|

| g\

: (T1)'* (T1)s

-> A®FRF

14®u

A®G (RG@FI(RF)) (ro)*
l 14Q®a;
ker(1A®Gal)’j_: AQ¢ P,

| v

H,(G, 4)

> A®GP0

14®04

The injectivity of ¢ (4) can therefore be characterized by (3.1).

(i) (t1)s is injective.
(ii) ir; (ao(z1)e) nim (1,8¢0,) =0. (3.1)

If A is the G-trivial module R, the embedding iy is onto and (3.1) may be rewritten as

(3.2)

@ (A) is injective <>

(i) 1z®¢0, is injective.
(li) im (1R®Gal)nim(lk®gaz) =0.

Now define the auxiliary map

r]=01@52:(RG®FI(RF))@P2 —'Pl‘

®(R) is injective <>
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The induced map 1;®;7 is injective because 1,®0, is injective by the choice of
P,-» R, and because (i) and (ii) hold by the hypothesis on ¢ (R). Consider 1z,® 1.
It is a map between RQ-projective modules, whose image under the functor
1:®g-:roM 0d — g M od is injective. As Q lies by assumption in D (R), we infer that
1:0®¢n is injective. In particular, ¢ (RQ) is injective, as we set out to prove.

3.2. The Iterated Lower Central Series

DEFINITION. Let K denote the set consisting of the one-tuple (1) and of all
the ordered, finite tuples (k,..., k) of natural numbers k;>2 (s>1). The number s
is called the length of the tuple. For an arbitrary group G, the terms of the iterated
lower central series {G,} are defined by recursion on the length of k and given by

G(1)=G
G(k1)=Gk1 (=[G, [G, G:I ])
S

ki
G(kl,...,ks-l,k,)=(G(k1 ..... k,-l))k,-

Note that all the terms {G,} are fully invariant subgroups of G.
In the proof of Proposition 3.2 we shall need an auxiliary, iterated descending
central series {,G}. It is defined by

(1)G= G
k+1y)G= kef((k)G“"»n (G/LwG> G1)®2Q)
(ki ..., k,)G= (k,)((h yoeer ks ,)G)-

Note that every term .G is a fully invariant subgroup of G, and that {,G} is the most
rapidly descending iterated central series all whose quotients

G/ 2)G,
Ky ors k)T Rty s ke, 2T
and
K1y s k) Ol (Rt oo e+ 1T

are torsion-free.
We are now ready to prove Theorem B which we restate, in a slightly different
formulation, as :

PROPOSITION 3.2. Let ¢:F— G be a map from a free group into an E(Q)-group
Sfor which

¢:F|F,— GG,
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is injective. Then
¢:F|F, > GGy

is injective for every keK.
Proof. We shall first prove the following implication:

If @:F[3F—G[,G is injective then
o:F ,F - G/,G is injective for every keK. (3.3)

We use induction on the length of k. The group G lies in E(Q) so that H,(G, Q) is
trivial. Therefore (3.3) follows for s=1 from a result of J. Stallings ([17, p. 180,
Theorem 7.3], cf. [22, p. 69, Satz 8.1]). Consider now (K, ky11)=(ky,..., kg kg 1),
s=1. By induction hypothesis

¢:F F->G/,G (3.4)

is injective. It follows that ¢, in the composition

H, (F, Q(F/\F))5 H, (F, Q(G/,G)) H, (G, Q(G/,G))

is injective. So check the hypothesis of Lemma 3.1. The map
¢(Q):H,(F, Q)— H,(G, Q)

is injective since ¢ :F/;)F— G/ ,)G is injective, since Q is Z-flat, and since
Fl()F®2Q— G/5,G®2Q

is naturally isomorphic with ¢ (Q). The group G/, G is poly- (torsion-free nilpotent),
and so belongs to D=D(Q). We can now infer from Lemma 3.1 that ¢ (Q(G/,G))
in the above composition is injective. As F/y ,)F is torsion-free, it follows that

¢3kF/(k,2)F"’ kG/(k,Z)G

is injective. Because G/, G lies in D(Q), and because G belongs by the hypothesis of
Proposition 3.2 to E(Q), the group ,G belongs to E(Q) so that H,(,G, Q)=0. It
follows from Theorem 7.3 in [17] that for every j (2<j<w)

(p:kF/(k,j)F_-) kG/(k,])G (3-5)
is injective. From (3.4) and (3.5) one finally deduces that

—_—
?(Q(G/Gk))

O F o, kee nF = Gl ik, k54 1)

is injective. This completes the proof of claim (3.3).

Now note that for a free group F the terms ,F and F; coincide for every keK.
From this fact and the auxiliary result (3.3), Proposition 3.2 is readily deduced (see
the proof of Satz 8.1 in [22]).
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4. The Classes M(Z) and M

4.1. Definition and Elementary Properties of M(Z) and of M

We say a group G lies in M(Z) if G is finitely presentable and if the deficiency
def G of G equals the torsion-free rank of the abelianized group G,,.

We recall the definition of defG: The deficiency def# of a finite presentation
P=_Zyy..., Zpg:l1,..., 'y is the difference M — N. The deficiency of a finitely pre-
sentable group G is sup {defZ:Z presents G}. As is well-known, defG is at most
equal to rk(G,;) (see also formula (4.7)).

We say a group G lies in M if G lies in M(Z) and if G, is torsion-free.

Remark. The class M has been investigated by W. Magnus [13] in 1939. We
cite two of his results:

HILFSSATZ 1. [13, p. 310]. Any group belonging to M has a presentation of
the form

X1y eens Xgs Yiseoes Yai X1C1 (Xms V)s oo o5 X4Ct (Xms ) (4.1)

where C;(Xn, ¥,) (1<i<t) has zero exponent sum on all generators.

HILFSSATZ 2. [13, p. 311]). If G has a presentation of the form (4.1), then the
images of y, ..., ya in G|G, freely generate G/G; for every j (2<j<w). Thus G/G; is
free nilpotent of rank d and of class j— 1. Moreover, the images of yy, ..., y4 in G freely
generate a free subgroup of G.

For a modern account of Hilfssatz 1, see [14, Section 3.3]; for Hilfssatz 2, see
[14, pp. 351-353, Theorem 5.14 and Corollary 5.14.1] or [19, p. 133, Korollar 1].

4.2. Around Lyndon’s Resolution
The relevance of the class M(Z) for our investigation stems from the fact that
M(Z) is a subclass of E(Z), as we shall show in this subsection.

Let R<F->»G be an extension of groups. There exists an associated short exact
sequence

R, ZG®IF»IG (4.2)

of left G-modules (see e.g. [10, VI. 6] for details). The G-module structure of R, in
(4.2) is induced by conjugation.

Suppose F is a free group. Then the extension R< F>G is called a free presenta-
tion of G. Splicing the sequence (4.2) with IG*>ZG-»Z, one obtains the exact
sequence

0- Ry ZGRpIF—5ZG > Z 0. (4.3)
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(Note that the module ZG®(IF is G-free because IF is F-free.) Choosing a set
{r:};c1= R whose normal closure in F is R, one gets a corresponding surjection

B: ]_I (ZG)i_»Rab’ L, [R’ R]-

iel
Again, one may splice f with (4.3) obtaining
11(Z6) =5 26®, IF- 5265 Z. (4.4)
iel

This exact sequence is the beginning of a G-free resolution of Z found by R. C.
Lyndon [12, p. 656, Lemma 5.1].
Now apply the functor

IR gMod — sl

to (4.2). There results the exact sequence

1z®c

0—ker(1,®¢k) = R/[F, R]—— IF/IF* > IG/IG* - 0. (4.5)

From (4.3) one deduces that ker(1,®;x)=H,(G, Z). Using the isomorphisms
IF|IF*=F,, and IG/IG*=G,,, the sequence (4.5) can be written as

1zQ@c x

0- H, (G, Z) - R/[F, R] »F oy —s G,y — 0. (4.6)

Remark. If {r;};.; generates R as a normal subgroup of F, then {r;[R, R]};.;
generates R,, as a G-module, and {r;[R, F]},.; generates R/[F, R] as an abelian
group.

Suppose next that G is finitely presentable. Let

@=<Zl,..., ZM:rl,..., rN>

be a finite presentation of G. For a finitely generated abelian group A4, denote the
minimal number of generators by s(A4). Since, in (4.6), kern, <F,, is free abelian, it
follows that

N>=s(R/[F, R])=s(H,(G, Z))+rk(kern,)
=s(H,(G, Z)+ M —r1k(G,).
Therefore

def P=M—-N<1k(G,,)—s(H,(G, Z))
and

defG<r1k(G,;,)—s(H, (G, Z)). (4.7)
(The above deduction is taken from [20, p. 295].)
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The inequality (4.7) shows that the deficiency of a finitely presentable group is
bounded by rk(G,;), and is thus finite. So there always exists a presentation £ of G
whose deficiency equals defG.

Suppose, finally, that G lies in M(Z). Let Z={z,,..., z) 14, ..., 'y) be a presenta-
tion of G whose deficiency equals rk (G,;). Let (4.4) denote the associated beginning
of a G-free resolution of Z. Consider

1,®60,=(1286k)°(1288).

The map 1,®¢x is injective by (4.6) and (4.7), whereas 1,®¢8:] [ (Z);~ R/[F, R]
maps a free abelian group of rank N onto an abelian group of rank

M—r1k(G,p)=M—defG=N,

and thus 1,®¢f is isomorphic. So 1,® 0, is injective.
We summarize part of the discussion in

PROPOSITION 4.1. Suppose G has a presentation
P=C21,.cs Zpgil1ser5 N
whose deficiency M — N equals 1k (G,,). Then
R, IF
SN

N
[1 (Z6)i—— ZG®; IF ZG»Z

1=i

01

is the beginning of a G-free resolution of Z for which 1,® 40, is injective.
Every M(Z)-group is therefore an E(Z)-group.

COROLLARY 4.2. Every M-group is an E-group.

4.3. An Isomorphism Criterion

We recall some notions from the free differential calculus [6]. Let F be a free
group, free on {x,};.;. The corresponding augmentation ideal IF is an F-free (left)
module, free on {1—x;};.; (see e.g. [10, p. 196, Theorem 5.5]). So every element of
the form 1~—f (feF) can uniquely be written as

1—f=% Dy, (f) (1-x) (4.8)

This representation defines for every iel a function

D, .F-ZF.
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From (4.8) one derives in a straightforward manner the following properties:

. 1 if i=k,
(i) D, (xk)={0 otherwise

(i) Dy, (ff)=Dy,(f) + /Dy (f)

(iii) Dxi(fml): —f—l'Dxi(f)
Property (ii) says the function D,, is a derivation which, in view of (i), we shall call
the partial derivative with respect to x;. Properties (i), (ii) and (iii) show how to
calculate explicitly the partial derivative D,, of a given element feF.

Consider now a group G in M. As proved by W. Magnus [13, p. 310, Hilfssatz 1],
G has a presentation of the form

G=<x1’ suey xt’ yla vesy yd:xlcl (xm’ yn)’ R4 xtCt(xm’ yn))na (4'9)

where every C;(x,, »,) has zero exponent sum on all generators. (The index = ap-
pearing in (4.9) indicates the name of the projection from the free group onto G.)
Let F be free on y,,..., y;, and let F** F” denote the free group

Xy eees Xps Viseews Vit )

occurring in the presentation (4.9). The augmentation ideal of Z (F** F”) is naturally
isomorphic with

(Z(F*% F)Qpx IF*)®(Z(F** F*)®py IF”)
(see e.g. [10, p. 196, Theorem 5.5], or [10, p. 220, Lemma 14.1]). Therefore the exact
sequence (4.4) can in our particular case be written as

Py 3 (ZG®pm IF)(ZG® s [F?) 3 ZGZ. (4.10)
Denote the projection from (ZG®p«IF*)D(ZG®pyIF?) onto its first summand

ZG® p<IF* by p,. The announced criterion reads then as follows:

PROPOSITION 4.3. Let k be an s-tuple out of K, let F be free on y,, ..., y;, let

G=CX1yeres Xt V1sevs Yai X1C1 (Kms Vu)s -5 XCe (Xms V) D>

where C;(X,, y,) has zero exponent sum on all the generators, and let ¢:F— G be
given by y,—y5 (1<n<d).

Then the mappings ¢:F|Fy ;, = G|G, ;) are isomorphic for all j (2< j<w) if and
only if

@:FlFy 5,3G[G, 2 (4.11)
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is isomorphic, and ¢ in (4.11) is isomorphic if and only if

IZ(G/Gk)®G(px°62)

is surjective.
Proof. 1t is readily checked that ¢:F/F, —» G/G, is an isomorphism. So Proposi-
tion 3.2 applies saying that

(P:F/Fk‘HG/le (412)

is injective for every k,eK. One also easily checks that the map 1,®¢;(p,°0,) is
given by 1,®1,,—~1,8(1—x,,) (1<m<r) and thus is onto (even isomorphic).

The Frattini subgroup of a nilpotent group contains the derived group. In other
words, every set S H, generating the (arbitrary) group H modulo its derived group
H,, generates H modulo any term H; (2<j<w) of its lower central series. Thus
@:F|Fq, ;,— G/G,; is onto for a given j (2<j<w) if and only if @:F/Fy ,)—
— G/G ) is onto. Together with (4.12), this remark proves the first part of Prop-
osition 4.3. It also shows that the map

(p:F/F(kl,...,kg,...,k,,Z)—')G/G(kx,...,kg,...,k,,Z)
is surjective if and only if all the maps
¢:(F,,..., k0)ab = (G, ..., kiyab
are surjective (i=1, 2,..., 5). Since

lz(GlG(kp—ak,))®G (px ° 62)

is surjective when 13 ,6,,®¢(Px°0;) is surjective, we can apply induction on the
length of k. Taking into account (4.12), only the following claim (*) remains to be
verified :

(*) Suppose ¢:F/F, = G/G, is isomorphic. Then ¢:(Fy),;— (Gy),» is surjective
if and only if 15 (/6,)® ¢ (Px°0;) is surjective.

In order to prove (=), we analyse the natural transformation ¢ (—) from

H,(F,—): Modg— A
to
H,(G,—):Mods—HE

(cf. the proof of Lemma 3.1).
Let IF»ZF-»Z be the F-free augmentation resolution of Z, and let

P, 3 (Z6®p IF)®(Z6®p IF) 3 ZGH Z

be the beginning of a G-free resolution of Z, as described in the previous section (see
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also (4.10)). Choose 1o=¢:ZF— ZG and

IF - (ZG® p IF)®(ZG® y IF?)
l_ynH 0 @(1ZG®(1—yn))'

The diagram of F-modules

0- IF —ZF > Z

|- I -
P, > (ZGQpIF*)D(ZG QR IF’) > ZG — Z

T1=@x:

is then commutative and may be used to compute ¢ (4): H, (F, A)— H, (G, A) for
any G-module 4.

Suppose now that ¢:F/F, % G/Gy is an isomorphism. Then, modulo G, every
generator x,, (1<m<t) is congruent to the image w;, of some element w,, of F. As
1 —w,, has a representation

1 —-Wm=2 (D,vn (Wm))° (1 —yn)’
there results a G-one-cycle, to wit
12 6/60®@ (1 =Xn)®Y. (= Dy, (Wa))* @ (1= y,). (4.14)

It follows that every element a,.€(Z(G/Gy)®~IF*) occurs as the first component
of some G-one-cycle «,Da,.

On the other hand, it is clear from (4.13) that the images of the F-one-cycles
under 1, are exactly the G-one-cycles of the form 0+ «,. The natural transformation

¢(Z(G/Gy)): H, (F, Z(G/Gy))~ H, (G, Z(G/Gy))
is therefore surjective if and only if
12 6/6,)®c (Px°02)
is surjective. But ¢:(Fy).s — (Gy).p is naturally isomorphic with the composition

Hy (F, Z(FIF)) 33 Hy (F, 2(6I6) gz H1 (G Z(GIGW)),

in which ¢, is isomorphic by hypothesis. So (*) is established, proving Proposition 4.3.
Remarks. The composition p,cd,:P, - ZGQpIF* induces for every keK an
embedding
=1z (G/Gk)®G(Px° 02).

For n, is a map between G/G,-free modules, for which 1,®g/¢, 7k is injective, and
G/G,, being poly-(torsion-free nilpotent) lies in D(Z). The condition

“lz 6/60®¢(Px00,) is surjective”
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appearing in the statement of Proposition 4.3, is therefore equivalent to the condition
“lz(6/6,)®c (Px°82) is isomorphic”.

Any knot group G, i.e. the fundamental group =, (S>\#) of the complement of a
(tame) knot#£ in a 3-sphere, is an M-group, whose abelianization G,, is free cyclic

(see e.g. [5, p. 83, (2.5)] and [5, p. 112, (1.2)]), and thus has a presentation of the
form

G=<x1a ety X y:x1C1 (xm9 y), Tty xtct(xm9 y)>1r

Let C=(c) denote a free cyclic group. Consider the map ¢:C— G given by sending
c onto y". Then

0:C/C"—>G|G"

is an isomorphism if and only G’ is perfect, i.e. if G'=G". It can be verified that the
determinant of 15,6, ®¢(Px°0;) is, up to a unit of Z(G/G’), the Alexander poly-
nomial 4 (¢). So Proposition 4.3 generalizes the well-known criterion that the derived
group G’ of a knot group G is perfect if and only if the Alexander polynomial 4 (¢)
equals 1 (see e.g. [16, p. 46, Theorem 4.9.1]).

5. The Proof of Theorem C

In this section we shall prove Theorem C. Moreover, we shall discuss a similar
result due to G. Baumslag [2].

5.1. THEOREM C. Let V and W be non-trivial elements of the free group F on
y1 and y,. Let G denote the group

<xsy13y2ay3:x[Va x] ([W’y3})a>1¢ (5=i1)’

and let ¢:F— G be the map from the free group on y,,y, and y; into G, given by
sending y, onto y, (n=1, 2, 3). Then the following statements hold:
(i) @:F|F;~G|G, is isomorphic for every j (2< j<w).

(i) @:F|F 3, ;)3 G|G s, ) is isomorphic for every j (2< j<w).

(iii) If V belongs to Fy then ¢:F|Fy ;=3 G|G, ;) is isomorphic for everyj(2< j<w)

(iv) If W is not in F, then G is an extension of a free group by a free cyclic group.
G is, moreover, residually nilpotent.

(V) If V belongs to F, then G is not free.

Remark. If a and b are two elements of a group, we denote by [a, b] the element
aba™ b1,

5.2. Proof. Plainly ¢:F/F,~ G/G, is an isomorphism. The deficiency defG is
equal to the rank of G/G, and G/G, is torsion-free. So G is an M-group, and by
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Corollary 4.2 it is an E-group. We then deduce from Theorem B that ¢ induces, for
every keK, an embedding

@:F|F,—G|G,.

In particular, ¢: F/F; - G/G, is injective for every j (2< j<w). So claim (i) is establish-
ed provided we can show that ¢:F/F; > G/G; is onto for every j. This follows from
the surjectivity of ¢:F/F, - G/G, and from the fact that the Frattini subgroup of
a nilpotent group contains the derived group.

(ii) and (iii). The mapping ¢:F— G is of the form considered in Proposition 4.3.
So look at

IZ(G/Gk)®G(px°aZ)'

It is onto if, and only if, the image of (D,(r))" under the canonical projection
:ZG—»Z(G|G,) is a unit in Z(G/G,), i.e. an element of the multiplicative group
of Z(G/Gy). The partial derivative D,(r) of the relator with respect to x may be
computed as follows:

D.(x[V,x]'[W, y3])=1+xV—xVxV " 1x~!
=1+xV—x-[V, x].

(Remember [a, b]=aba™'b~1.) Clearly x™ belongs to G,. So ((D,(r))")*= (V")
is a unit of Z(G/G,). This proves (ii).

On the other hand, if V lies in £, the element ((D,(r))")? is equal to 1, which
proves (iii).

(iv) By hypothesis, W is in F\F,. Suppose a,, (W), the exponent sum on y;,
differs from zero. We claim that the normal subgroup

N(x", y2, y3)<5G,

i.e. the normal closure of x*, y3, y3 in G, is free. To see this, present N (x*, y3, ¥3) by
the method of Reidemeister-Schreier (cf. [14, pp. 253-258, Case 2 or Case 3]).
Choose the powers {(¥])"},cz as a transversal of N(x", y5,»3) in G. Choose the
symbols

X, ~Yixyi*  (heZ)
Ya,n ™ y'iJ’2y1_h (heZ)
V3, n J’b’s)’;h (heZ)

as generators for N(x", y3, y3). Since the powers {y1},.z form a Schreier system, N
can be presented by

{Xns V2,10 V3, (hEZ): Xp* V;.x,.+.,,,V;.'1x;1 ‘(J’3,hmy;,lh+awm.—1)6>ﬂa
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where V,, and W, (heZ) denote words in {y, ,}4c z, and where oy is short for o, (V),
ow is short for o, (W)#0. From this presentation it is patent that N(x", y3, y3) is
free on {x}}scz> {¥2 n}nez and lo,, (W)| consecutive generators chosen out of the
sequence

T n n T n n
s V3, -2V3, =15 V3,00 V3, +15 V3, 420 V3, +35 -+ -

The quotient G/N(x", y3, y3) is generated by the image of yi and is free cyclic.
So G is an extension of a free group by a free cyclic group. There remains the question
why G is residually nilpotent.

The normal subgroup N (x%, y3, y3), being free, is residually nilpotent and contains
G,. Therefore

M G, jp=e.

ji<o
By (ii) the groups G/G,,;, are free nilpotent by abelian. Such groups are known
to be residually nilpotent ([7, p. 52, Theorem 6.3 or Theorem 7.1], cf. [15, p. 76,
26.33]). Consequently, G is residually (residually nilpotent), i.e. residually nilpotent.

Claim (v) is proved by applying the algorithm due to J. H. C. Whitehead [25]
whereby one can decide whether a one-relator group is free.

5.3. We conclude Section 5 with a word on the model for Theorem C, namely on
Theorem 2.1 in Baumslag’s second paper on parafree groups [2, p. 512].

THEOREM D (G. Baumslag [2]). Let m and n be integers, both different from
zero. Let H denote the group

X y15 ¥2:x V0 x1 D1 v2 D ws

and let ¢:F— H be the map from the free group on y, and y, into H given by sending
yi onto yy (h=1, 2). Then the following statements hold:
(i) @:F|F;~ H[H, is isomorphic for every j (2<j<w).

(ii) ¢:F/[F, F"]x H/[H, H"] is isomorphic.

(iv) H is an extension of a free group by a free cyclic group. It is, moreover, re-
sidually nilpotent.

(v) H is not free.
The statements (i), (iv) and (v) can be proved by arguments, analogous to those used
in the proofs of the statements (i), (iv)-and (v) of Theorem C. Claim (ii) does not
follow solely from the methods of this paper but needs, in addition, a result of
U. Stammbach [18]. In detail:

Consider the partial derivative D, (r) of the relator with respect to x. It reads:

D, (x[y7, x] D1, y2D)=1+xy7—x )7, x].
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Because x* is in H,, the image ((D,(r))")?* of (D, (r))* in Z(H/H,) equals ((y7)*)"
which is a unit of Z (H/H,). By Proposition 4.3, the map

@ F[Fo, S HIH G,

is therefore isomorphic for every j (2<j<w). Consider j=2. From the properties
(1) ¢:F/F,~ H/H,
(2) H,(H,Z)=0
(3) (D:F/F(Z,Z):H/H(Z,Z)

a result of Stammbach [18, p. 166, Satz] allows to infer that

@:F|[...[[F", F, F], ... F]~ H/[...[[H", H], H], ... H]

is isomorphic for every j (2<j<w). This proves (ii) in Theorem D.

We add a remark. In H/H, the image %= (x")?* of x" is equal to [7{, 7,] '=
=[#1, 2]~ " The image D, (r) of (D,(r))" in Z(H/H3) can therefore be written as

Dx(r)=l+[}71’ 372]—"'.}7?—[.}713 )72]_"'

As H[H, is free nilpotent it is indicable in the sense of G. Higman ([9, p. 241f1.],
cf. [8, pp. 61-62, §4.5]). It follows that all units of Z(H/H,) are of the form +A

(heH/H,). So D.(r) is not a unit in Z (H/H,). By Proposition 4.3 this implies that
CD:F/F(a,Z) "’H/H(a,z)

is injective but not onto.
I do, however, not know whether H/H 3, ,, is free (abelian by nilpotent-of-class-
two), or not.
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