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Algèbres Graduées Associées et Algèbres Symétriques Plates

Michel André

II s'agit d'un travail sur l'homologie et la cohomologie des algèbres commutatives.
Pour un anneau A quelconque et pour un idéal / quelconque, les résultats suivants

seront démontrés.
L'idéal / est dit symétriquement quasi-régulier si le ^//-module I/I2 est plat et si

l'algèbre symétrique de ce module est canoniquement isomorphe à la y4//-algèbre
graduée commutative ®/5//s+1.

PROPOSITION A. Les trois conditions suivantes sont équivalentes:
1 l'idéal I est symétriquement quasi-régulier,
2) pour tout entier k^l et pour tout Ajl-module W, il existe un entier t donnant

un homomorphisme canonique nul

H2(AIIk+t9AII, W)^H2(A/I\AII9 W),

3) pour tout entier Jc^l, pour tout A/I-module W et pour tout entier n^2,
Vhomomorphisme canonique suivant est nul

Hn(A/Ik+n-\A/I, W)^Hn(A/Ih9AII9 W).

COROLLAIRE A. L'idéal I est symétriquement quasi-régulier si le module

H2 (A, A/I, W) est nul pour tout A/I-module W.

L'idéal / est dit extérieurement quasi-régulier si le y4//-module I/I1 est plat et si

l'algèbre extérieure de ce module est canoniquement isomorphe à la ^//-algèbre
graduée anticommutative ® Tor^ (A/I9 Ajl).

THÉORÈME A. Les trois conditions suivantes sont équivalentes:
1) l'idéal I est extérieurement quasi-régulier,

2) pour tout A/I-module W et pour tout entier n*^2, le module Hn(A, A/I, W) est

nul,

3) l'idéal I est symétriquement quasi-régulier, de plus il s'agit d'un idéal d'Artin-
Rees.

L'idéal / est dit d'Artin-Rees si la condition suivante est satisfaite. Pour tout
entier k^ 1 et pour tout entier n^-1, il existe un entier t donnant un homomorphisme
canonique nul

Torî(A/Ik+\ AII)-+To4(All\ A/I).
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Cette condition est toujours satisfaite lorsque l'anneau A est noethérien. On le
constate à l'aide du lemme d'Artin-Rees appliqué à une résolution libre du y4-module

A/I, résolution choisie de type fini en chaque degré.
L'idéal / est dit symétriquement régulier s'il est symétriquement quasi-régulier et si

le ^//-module I/I2 est projectif.

PROPOSITION B. Les trois conditions suivantes sont équivalentes:
1) l'idéal I est symétriquement régulier,
2) pour tout entier k ^ 1 et pour tout A/I-module W, il existe un entier t donnant

un homomorphisme canonique nul

H\A\l\A\h W)^H
3) pour tout entier k^l, pour tout Ajl-module W et pour tout entier n^2,

Vhomomorphisme canonique suivant est nul

COROLLAIRE B. L'idéal lest symétriquement régulier si le module H2 (A, A/1, W)
est nul pour tout Ajl-module W.

L'idéal / est dit extérieurement régulier s'il est extérieurement quasi-régulier et si

le ^//-module Ijl2 est projectif.

THÉORÈME B. Les trois conditions suivantes sont équivalentes:
1) l'idéal I est extérieurement régulier,
2) pour tout Ajl-module W et pour tout entier n^2, le module Hn(A, A/I, W)

est nul,
3) l'idéal I est symétriquement régulier, de plus il s'agit d'un idéal d'Artin-Rees.
Considérons maintenant une 2?-algèbre C supposée plate et noethérienne. Par

définition, le morphisme

SpeeC->Spec£

est régulier si pour tout idéal premier Q de C, la ^-algèbre locale CQ est formellement
lisse pour son idéal maximal.

PROPOSITION C. Les trois conditions suivantes sont équivalentes:

1) le morphisme SpecC-> SpecB est régulier,

2) pour tout C-module W et pour tout entier n> 1, le module Hn(B, C, W) est nul,

3) le module des différentielles de Kaehler Qc/B est un C-module plat et son algèbre
extérieure est canoniquement isomorphe à la C-algèbre graduée anticommutative

®Torf®BC(C,C).
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En outre les modules de cohomologie ne sont pas nuls en général
Dans les théorèmes A et B l'équivalence des deux premières conditions est due à

D. Quillen. D'ailleurs par la suite on utilisera fortement un théorème de convergence
qui lui est dû. Les références simples concernent le présent travail et les références

doubles concernent mon livre: Homologie des algèbres commutatives - Springer
Verlag. Les résultats de la partie B sont présentés ici comme corollaires des résultats
de la partie A. Dans le livre en question les résultats de la partie B sont démontrés
de manière directe. Ces démonstrations peuvent servir d'introduction pour le présent
travail.

Pour conclure remarquons que la deuxième condition de la première proposition
peut s'exprimer de manière plus explicite.

Remarque D. Considérons à nouveau un anneau A et un idéal / et supposons
plat le ^//-module I/I2. Puis considérons le carré symétrique du ^-module /

S2=I®AIlt(I®AI) avec t(x®y) x®y-y®x.
Enfin considérons l'épimorphisme dû au produit

7t:S2->/2.

Alors l'idéal / est symétriquement quasi-régulier si et seulement si le noyau de n est

contenu dans tous les sous-modules ImS2.

Morphismes réguliers

Commençons par démontrer la partie C des résultats et cela partiellement à l'aide
de la partie A.

Considérons une ^-algèbre C plate et noethérienne. Dénotons par Q un idéal

premier quelconque de C, par P l'idéal premier correspondant de B, enfin par k(P)
et k (Q) les corps résiduels des anneaux locaux BP et CQ.

Par définition la jB-algèbre locale et noethérienne CQ est formellement lisse pour
son idéal maximal QCQ si et seulement si le module suivant est nul

H1 (B, CQ9 kiQ^limH1 (B, CQ/QkCQ, k(Q))

(voir le corollaire 10.15, la proposition 16.12 et la définition 16.14) autrement dit si

et seulement si le module suivant est nul

Ht (B, C, k(Q))&Ht (B, CQ, k(Q))

(voir le lemme 3.21 et le corollaire 5.27).

Remarque 1. Utilisons la platitude de la U-algèbre CQ sous la forme d'un iso-

morphisme (voir la proposition 4.54)

Hn(B9 CQ9 k(Q))^Hn{k(P\ k(P)®BCQ,
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Lorsque la i?-algèbre CQ est formellement lisse, alors la fc(P)-algèbre k(P)®BCQ est

formellement lisse. Par conséquent (voir la proposition 7.23) le module ci-dessus est

nul pour n non nul. En résumé, la condition suivante est satisfaite

Hn(B, C9k(Q))^0 avec n*0 et QeSpecC

dans le cas d'un morphisme régulier.

LEMME 2. Soit un idéal premier Q d'une B-algèbre noethérienne C satisfaisant
aux deux conditions suivantes pour un entier nfixé: d'unepart le module Hn (B9 C, k(Q))
est nul et d'autre part le module Hn+1(B, C, C/Q) est nul pour tout idéal premier Q

contenant strictement Q. Alors le module Hn{B9 C, C\Q) est nul.
Démonstration. Soit / un élément de C—Q. Considérons le module W égal à

CIQ+fC L'anneau C étant noethérien, il existe une suite de décomposition

0= W0Œ Wx c... c Wk_x c Wk= W

donnant lieu à des isomorphismes WJW^^C/Q^ l'idéal premier Qx contenant
strictement Q. Par suite (voir le lemme 3.22) la seconde partie de l'hypothèse implique
que l'on a un module nul

H.+1(jB,C,C/fi+/C)s0

autrement dit un monomorphisme

f:HH(B9 C, C/Q)^Hn(B, C, CjQ)

qui découle de la suite exacte

Cela a lieu pour chaque/de C—Q, on obtient donc un monomorphisme

Hn{By C, C/Q)^Hn(B9 C, CIQ)Q.

Par hypothèse le module suivant est nul

Hn(B, C, CIQ)Qç*Hn(B, C9(C/Q)Q)*Hn(B9 C, k{Q))

(voir le corollaire 4.59). Par conséquent le module Hn(B, C, C/Q) est nul.

LEMME 3. Soit une B-algèbre C locale et noethérienne satisfaisant à la condition
suivante pour un entier nfixé:

Hm(B,Qk(Q))^0 avec n^m^n + âimC et

Alors le module Hn(B9 C, W) est nul pour tout C-module W.

Démonstration. L'anneau C est supposé local simplement pour qu'il ait une
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dimension finie. Soit Q un idéal premier de cohauteur s. Par induction sur s croissant,
le lemme précédent démontre le résultat suivant

Hm(B9 C, C/Q)^0 n^m^n-s + dimC.

En particulier le module Hn(B9 C, CjQ) est nul pour tout idéal premier Q. Par

conséquent le module Hn (B, C, W) est nul pour tout W de type fini (utiliser le

lemme 3.22 pour une bonne suite de décomposition) et même pour tout W quelconque
(utiliser le lemme 3.24 pour les sous-modules de type fini).

Il est possible maintenant de démontrer la proposition C.

Démonstration 4. Lorsque le morphisme est régulier, les modules suivants sont
nuls d'après la remarque 1

Hn(B,C,k(Q))^0 avec w>l et geSpecC.

Mais alors les modules suivants sont nuls d'après le lemme 3

HH(B,CQ9WQ)*HH{B9C,JV)Q.

Par conséquent, le module Hn(B,C, W) est nul pour n^O. Les deux premières
conditions de la proposition sont donc équivalentes.

Appliquons le théorème A dans le cas particulier suivant, pour démontrer que les

deux dernières conditions de la proposition sont équivalentes

A^C®BC puis AjI^C enfin I/I2^QC/B.

Comme la première condition du théorème est équivalente à la troisième condition
de la proposition, il reste à démontrer que les deux deuxièmes conditions sont
équivalentes. Cela est dû aux isomorphismes suivants

Hn+1(C®BC, C, W)*Hn{C9 C®BC, W)^Hn(B, C, W).

Le premier isomorphisme provient de la suite exacte de Jacobi-Zariski de la C-algèbre

C®BC et de la C®BC-algèbre C (voir le théorème 5.1) et le second isomorphisme
est dû à la platitude de la ^-algèbre C (voir la proposition 4.54).

Premières remarques

Voici les parties élémentaires des démonstrations des résultats A et B.

Remarque 5. Dans les démonstrations des résultats A on peut supposer plat le

^//-module I/I2 et cela pour les deux raisons suivantes. Considérons une suite exacte
de y4//-modules

Pour constater la platitude du module lorsque la condition du corollaire est satisfaite
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(ou encore la deuxième condition du théorème) on utilise la suite exacte suivante

(voir le lemme 3.22)

H2 {A, A\h W") -> Hx (A, A\h W)-Ht (A, A/I, W)

et Fisomorphisme général suivant (voir la proposition 6.1)

Ht(A,AII9 W)^ï\

Pour constater la platitude du module lorsque la deuxième condition de la proposition
est satisfaite, on utilise le diagramme commutatif suivant

H2 (A/I2+\ A\h W) -> Hx (A/I2+t, A\h W) -> Hx (A/I2+t, A/I, W)
A | i

H2(A/I2,A/I,W") - HX(AII\AII,W) -* Hx(A/I2, A/I, W)

et les isomorphismes suivants

Hx(A/I2 + t9AII9 W)^ï\ï1®AllW^Hx{A\l1,A\h W).

Dans les démonstrations des résultats B on peut supposer projectif le ^//-module
Ijl2 et cela pour les deux raisons duales des précédentes.

Remarque 6. Par la proposition 6.1 et par les lemmes 3.20 et 3.21, l'hypothèse
du corollaire B est équivalente à l'hypothèse du corollaire A avec Ijl2 projectif. De
manière évidente, la conclusion du corollaire B est équivalente à la conclusion du
corollaire A avec I/I2 projectif. Par conséquent le corollaire B est un corollaire du
corollaire A. Pour des raisons analogues, le théorème B est un corollaire du théorème
A. Il reste à considérer la proposition B par rapport à la proposition A.

La première condition de la proposition B est équivalente à la première condition
de la proposition A avec l\l2 projectif. La deuxième condition de la proposition B est

équivalente à la deuxième condition de la proposition A avec Ijl2 projectif, grâce à

l'isomorphisme du lemme 3.20

H2{AjI\ A\h W)*H2(AII\ A/1 Ajl)®AII W

et grâce à l'isomorphisme du lemme 3.21

H2(AII\AH W)*nomA/I(H2(AIIk9AII9AII), W).

Par conséquent l'équivalence des deux premières conditions de la proposition B est

un corollaire de la proposition A.
Supposons satisfaites les deux premières conditions équivalentes de la proposition

B. Il reste à démontrer que la troisième condition est aussi satisfaite. Grâce aux suites

spectrales

W)
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la proposition A démontre que l'homomorphisme canonique suivant est nul

Hn(À/Ik,AII9 W)->Hn(AIIk+\AII, W)

pour un t bien choisi en fonction de n, par exemple

Pour obtenir t n— 1, il faut adapter à la cohomologie la démonstration de la
proposition A. Comme ce résultat en cohomologie n'est pas nouveau, il ne sera pas
redémontré ici (voir la remarque 12.12). La proposition B est démontrée par
conséquent.

Remarque 7. La suite exacte de Jacobi-Zariski (voir le théorème 5.1)

H2 (A, A/I, W) -> H2 (AII\ A/I, W)- Hx {A, A/l\ W)

et l'isomorphisme canonique (voir la proposition 6.1)

démontrent que l'hypothèse du corollaire A implique la deuxième condition de la
proposition A avec f=l. Par suite ce corollaire est bien un corollaire de cette
proposition. Il reste donc à démontrer la proposition A puis le théorème A.

La deuxième condition du théorème A fait de / un idéal symétriquement quasi-
régulier d'après le corollaire A. La première condition en fait autant grâce à un
premier isomorphisme (voir le lemme 3.20)

H2 {A, AU W)^H2 (A, A/l A/I)®A/I W

et grâce à un second isomorphisme (voir le théorème 15.8)

H2(A, A/l AII)*Tota2{AII A/I)l[Torî(All A/I)]2.

Par conséquent on peut supposer l'idéal / symétriquement quasi-régulier dans la
démonstration du théorème A.

Remarque 8. Utilisons la suite exacte de Jacobi-Zariski du diagramme commutatif
suivant avec «#1

Hn (A, A/Ik+\ W) -> Hn (A, AIU W) - Hn (A/Ik+t9 A/I, W)

\ i\

Hm(A, A/Ik, W) Hn(A/Ik+t+n-\ A/1, W).

Supposons satisfaite la troisième condition du théorème A. Pour un t bien choisi,
l'homomorphisme a est nul puisque l'idéal /est d'Artin-Rees (voir le corollaire 10.13);
en outre l'homomorphisme co est nul puisque l'idéal / est symétriquement quasi-
régulier (voir la proposition A). Par conséquent, le module Hn(A, A/I, W) est nul
et la deuxième condition du théorème A est satisfaite.
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Résumé 9. Il reste à démontrer les implications suivantes

2=>1=>3

dans la proposition A, en supposant plat le y4//-module ///2, et dans le théorème A,
en supposant symétriquement quasi-régulier l'idéal /. Ces démonstrations se font à

l'aide du théorème fondamental suivant (D. Lazard).

THÉORÈME 10. Pour qu'un module M soit plat, il faut et il suffit qu'il soit limite
inductive suivant un ensemble filtrant d'un système inductif de modules libres de type
fini.

Voici encore la démonstration de la remarque D à partir de la proposition A.
Remarque 11. Le noyau de l'homomorphisme n est isomorphe au module

H2 (A, Ajly Ajl) en toute généralité (voir le corollaire 15.10). Mais alors, pour t égal
à 1 et pour W égal à A/I, la deuxième condition de la proposition A prend la forme
explicite suivante

n-i (/*-i.72)=/*-!.52

pour tout k^l. Comme l'homomorphisme n est surjectif, l'égalité précédente peut
être remplacée par l'inclusion suivante

pour tout k^ 1. La remarque D est donc démontrée.

Algèbres filtrées

Un anneau filtré est un anneau A donné avec une suite décroissante d'idéaux

satisfaisant à la condition suivante

FpA-FqAaFp+qA.

Les homomorphismes d'anneaux filtrés préservent les filtrations. Une algèbre filtrée
est un homomorphisme d'anneaux filtrés. On a la notion d'algèbre filtrée libre.
Considérons une yi-algèbre libre

B=A[...xi...'] ieL

Pour pouvoir filtrer cet anneau, on suppose que l'anneau A est lui-même filtré et que
chaque variable xt est munie d'un degré ôt^0. Alors par définition les éléments

ax^xg-xj avec aeFqA et

engendrent l'idéal FPB de la filtration.
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Un module filtré sur un anneau filtré est un l?-module W donné avec une suite
décroissante de sous-modules

satisfaisant à la condition suivante

Les homomorphismes de modules filtrés préservent les filtrations. Avec un nombre

positif ou nul d, à un module filtré W correspond un nouveau module filtré
donné par les égalités

l'idéal FqW étant égal à W lorsque q est négatif. Considérons une .4-algèbre filtrée
libre B et un 2?-module filtré W. Alors le module correspondant des différentielles
de Kaehler est lui aussi filtré de manière naturelle. De manière plus précise, on a

l'isomorphisme suivant de modules filtrés

Dif(A,B9W)^®W\âl1 avec iel
le module filtré Wt étant égal au module filtré W.

On connaît la notion de résolution simpliciale d'une algèbre (voir la définition
4.30). Il s'agit de la généraliser.

DÉFINITION 12. Une résolution simpliciale filtrée de la ^-algèbre filtrée B est

une ^-algèbre simpliciale filtrée B* (les homomorphismes de face et de dégénérescence

préservent les filtrations) satisfaisant aux 3 conditions suivantes, l'isomorphisme de la
dernière condition étant donné explicitement:

a) la ^4-algèbre filtrée Bn est libre pour tout «^0,
b) le module Hn\JFpB^\ est nul pour tout n>0 et/?5*0,
c) les ^4-algèbres B et Ho [B*] sont isomorphes avec un diagramme commutatif

pour

1 I
B AHO[BJ.

Une résolution simpliciale filtrée est en particulier une résolution simpliciale ordinaire.

LEMME 13. Toute algèbre filtrée possède une résolution simpliciale filtrée.
Démonstration. Il suffit de généraliser la démonstration du théorème 9.26. Il

s'agit de donner un degré à chacune des variables de chacune des ^4-algèbres libres
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Bn et il s'agit aussi d'assurer un peu plus d'acyclicité que dans le cas ordinaire. Par
dégénérescence, les variables doivent garder leur degré. De plus, au cours du /i-ème

pas, il faut introduire suffisamment de variables de degré/? dans Bn+1 pour obtenir
l'acyclicité de FPB* en degré n. A part cela, la construction pas-à-pas reste la même

que dans le cas ordinaire.

PROPOSITION 14. Soient une A-algèbre filtrée B et un B-module filtré W.

Considérons une résolution simpliciale filtrée B*. Alors le #-ème module d'homologie
du complexe naturel

Fp Dif(A, B*9W)

ne dépend pas de B* et se note FP(A9 B, W).
Démonstration. Il suffit de généraliser la démonstration du théorème 4.43. Pour

cela considérons un ensemble dénombrable de yl-algèbres filtrées libres

A {Am\meZ}

suffisamment grand pour que les algèbres filtrées libres Bn y appartiennent toutes.
Puis considérons le complexe double ayant le module en bidegré (r, s)

0 Fp Diî (A9Amr9 W).

Les deux suites spectrales auxquelles il donne lieu dégénèrent, l'une parce que Bn

est un Am9 l'autre parce que les deux dernières conditions de la définition 12 sont
satisfaites. On obtient donc finalement un isomorphisme en chaque degré n. D'une
part il s'agit du n-ème module d'homologie du complexe de la proposition et d'autre
part il s'agit du n-èmc module d'homologie du complexe ayant le module en degré n

® Fp Dif(A, Amn9W).

Ci-dessus les flèches dénotent des homomorphismes de >4-algèbres filtrées. En
laissant varier l'ensemble A, cela démontre la proposition.

En général les modules FP(A, B, W) ne forment pas une filtration du module

Hn{A9B9W).
Remarque 15. Les modules F°n(A, B, W) et Hn(A9 B, W) sont isomorphes. Cela

découle du fait que les modules F0 Dif(A, Bn9 W) et Dif(A, Bn, W) sont toujours
isomorphes et du fait qu'une résolution simpliciale filtrée est une résolution simpliciale
ordinaire.

EXEMPLE 16. Avec un anneau A, un idéal / et un module W défini sur A/I9 on

peut considérer les modules FP(A9 A/I, W)9 l'anneau A étant filtré par l'idéal / et les
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filtrations de A\l et de Wétant triviales:

FpA=lp puis Fp(A/I)=0 enfin FPW=O

pour tout p strictement positif.

PROPOSITION 17. // existe un entier p(k, n) avec la propriété

si l'idéal I est nilpotent avec Ik nul.

Démonstration. La démonstration la plus simple serait de construire une résolution
simpliciale filtrée avec des variables de degré borné en chaque dimension. Je n'y suis

parvenu que pour les dimensions au plus égales à 3. La démonstration générale de la

proposition est résumée dans l'appendice de ce travail. Elle est malheureusement un

peu longue.
Les objets filtrés considérés ci-dessus ont évidemment des objets gradués associés,

notés par la lettre G avec Gp égal à Fp/Fp+i. C'est en particulier le cas pour le module
des différentielles de Kaehler d'une algèbre filtrée libre.

PROPOSITION 18. Soient une A-algèbre filtrée B et un B-module filtré W.

Considérons une résolution simpliciale filtrée B*. Alors le «-ème module d'homologie du

complexe naturel

Gp Dif(A, B^ W)

ne dépend pas de B* et se note GP(A, B, W).
Démonstration. Analogue à celle de la proposition 14.

Ces nouveaux modules d'homologie interviennent dans les démonstrations grâce

aux lemmes suivants.

LEMME 19. Soient une A-algèbre filtrée B et un B-module filtré W. Alors il
existe pour tout p^O une suite exacte naturelle

,B, W)....

Démonstration. Conséquence de la suite exacte courte de complexes

0->Fp+1 Dif(A, B^ W)->FP Dif(A, B*, W)-*GP Dif

LEMME 20. Soient une A-algèbre filtrée B et un B-module filtré W. Alors il
existe pour tout n^O un isomorphisme naturel

© GP(A9 B, W)*Hn(GA9 GB9 GW).



288 MICHEL ANDRÉ

Démonstration. L'algèbre graduée associée à une algèbre filtrée libre est une
algèbre libre. En outre avec une résolution simpliciale filtrée B* de la ^-algèbre filtrée
B on a une suite exacte

Il est donc évident que la G.4-algèbre simpliciale GB* est une résolution simpliciale
de la G^f-algèbre GB. D'autre part pour les modules des différentielles de Kaehler
des algèbres filtrées libres il existe un isomorphisme général qui prend ici la forme
suivante

0 Gp Dif(A9 B*, W)^Dif(GA, GB^ GW).

De cet isomorphisme de complexes découlent alors les isomorphismes du lemme.

Remarque 21. Lorsque la ^-algèbre B et le 2?-module W sont non seulement
filtrés mais encore gradués, les modules Hn(A,B9 W) sont eux aussi gradués de

manière naturelle, comme le démontre le lemme précédent. On peut le constater de

manière directe en utilisant des résolutions simpliciales graduées. En outre rappelons

que les suites exactes et les isomorphismes fondamentaux de la théorie générale de

l'homologie des algèbres commutatives préservent cette graduation des modules

d'homologie dans le cas gradué. Enfin, toujours dans le cas gradué, on a les

isomorphismes suivants

9W)* 0 Gl(A9B,W)

une résolution simpliciale graduée pouvant être utilisée comme résolution simpliciale
filtrée.

Démonstration de la proposition À

Avec un ,4-module libre L on va considérer l'algèbre symétrique SAL et l'idéal
d'augmentation 1AL qui donne donc un isomorphisme canonique

SAL/IAL*A.
En outre considérons un idéal / de l'anneau A et un module W défini sur AjL On va
utiliser les notations

Â=A/I et L=L/IL.
Un homomorphisme entre deux JF-modules libres se relève en un homomorphisme
entre deux yl-modules libres, de manière non unique évidemment.

Remarque 22. Utilisons maintenant les isomorphismes suivants

Htt(SALIIkAL, SAL\IAL, W)*Hn-M, SAL^L, W)s
*//„_! (4 SAL/IkAL, W)*Hn{SALll\l, SAllIAL, W).
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L'isomorphisme central est dû à la platitude du ^4-module SALjIAL (voir la proposition

4.54) et les autres isomorphismes proviennent de suites triviales de Jacobi-
Zariski. En résumé, le module suivant dépend fonctoriellement de L

Hn(SAL\lkAUSAL\IAUW).

Considérons maintenant une situation filtrée dans le sens de l'exemple 16. L'anneau
SAL\l\L est filtré par l'idéal IALjIAL, il est donc filtré grâce à sa graduation; en outre
les autres filtrations sont triviales. Dans ce contexte l'anneau A n'est donc pas filtré

par l'idéal /.

LEMME 23. Par rapport à L, les fondeurs suivants de la catégorie des A-modules
libres

Gl(SAL\lkAL,SAL\IAUW) et Fpn(SAL/IkL9 SAL/IAL, W)

sont en fait des fondeurs de la catégorie des Â-modules libres, par Vintermédiaire de L.
Démonstration. Cela découle des remarques 21 et 22. En effet les isomorphismes

de cette dernière préservent les graduations.

CONSTRUCTION 24. Appliquons le théorème 10 au ^"-module / égal à Ijl2
et supposé plat. Il existe donc des yf-modules libres de type fini Lj et des homo-
morphismes de v4-modules

lij:Lt-»Lj et lj:Lj-*I
qui forment un système inductif sur un ensemble filtrant et qui donnent un isomor-
phisme de ^4-modules

Par relèvement on obtient des ^-modules libres de type fini Lj et des homomorphismes
de v4-modules

ÀiJ:Li-+Lj et ^jiLj-^I
qui ne sont pas déterminés de manière unique et qui ne forment donc pas en général

un système inductif. Avec l'anneau A et l'idéal / considérons les anneaux et idéaux
suivants

Aj SaLj et Ij=IALj.
A partir des homomorphismes X^ et Aj9 on obtient des homomorphismes d'anneaux

(Xij'.Ai-^Aj et (XjiAj-^A

homomorphismes qui ne sont pas déterminés de manière unique. L'anneau Aj est
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à filtrer par l'idéal Ij et l'anneau A est à filtrer par l'idéal /. Les homomorphismes
précédents sont compatibles avec ces filtrations. Les homomorphismes suivants qui
en découlent

et

correspondent aux homomorphismes canoniques

A-+A et A-+AJL

A propos d'unicité démontrons le résultat suivant.

Remarque 25. Considérons deux relèvements de l'homomorphisme lj
X] et XjiLj^I.

Alors il existe un ^4-module libre M et des homomorphismes de ,4-modules

\î et fi":Lj-»M et \x\M-*l
satisfaisant aux conditions suivantes

Xj=fxofif et Xj iion" avec £' /*".

En voici la démonstration. Utilisons une base {xp} du ^4-module libre Lj. On a alors
des égalités

Par définition le >4-module libre M a la. base {mp, npq} et on conclut à l'aide des

homomorphismes suivants

li' (xp)=mp, n" (xp)=mp+X ^PfiiM,
0 K»)=^j (xp) > i" (WP€)=zpq •

Cela étant, on peut considérer l'anneau et l'idéal

B=SAM et J=IAM

avec les homomorphismes d'anneaux

fi' et p":Aj->B et p:B-+A

qui donnent aj et a'j par composition.

En utilisant le lemme 23 soit directement, soit par l'intermédiaire de la remarque
25, on démontre facilement les résultats suivants.

DÉFINITION 26. Les entiers p, n, k sont fixés. Alors les homomorphismes
suivants sont déterminés de manière unique

kpAjlIp W)
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et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

h W)

et ils donnent un homomorphisme de modules

g^'AjmG^AjII^Aj/Ij, W)^G:(AII\AII9 W).

De même les homomorphismes suivants sont déterminés de manière unique

foF'.iAJ^AJh W)^F>n(AjlIkj,AjlIj, W)

et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

fj:FpH(AjlIkj9AjlIj9 W)-+F'(AIIk9AII9 W)

et ils donnent un homomorphisme de modules

fnp>k:KmFpn(AjlIp Ajllj9 W)- F'n{Ajl\ A\l9 W).

Pour p nul, on a un homomorphisme

/„*: ]}mHm(AjlIkj9 Aj/Ip W)^Hn(All\ A\l9 W)

qui va jouer un rôle important dans la démonstration de la proposition A.
L'idéal / de l'anneau A est dit ^-symétrique si le ^//-module l/I2 est plat et si

l'algèbre graduée symétrique du module est canoniquement isomorphe à l'algèbre
graduée associée de l'anneau, jusqu'au degré k y compris.

LEMME 27. Pour un idéal (k — l)-symétrique I on a toujours des isomorphismes

canoniques

lim Hn(AjlIkjt Ajllj, W)*HH{AH\ A/I, W).

Démonstration. Partons de l'isomorphisme simple suivant

Hn(Um(SÂLjlIkALj), À, W)sH,,(Sx(lkiLj)IIk2QmLj), Â, W).

D'après la proposition 5.30, il s'agit de l'isomorphisme suivant

lîmHn(SÂLjlIkÂLj, Â, W)sHn(SAIIIkÂI, A, W).

On a un autre isomorphisme d'après la remarque 22

lim Hn(SALjlIkALj, A, W)*Hn(SAIIIkAl, Â, W).
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Mais l'idéal / est supposé {k— l)-symétrique et Pisomorphisme précédent s'écrit
comme suit

Km Hn(G(Aj/I% G(AjlIjlG(W))^Hn(G(AIIkl G{Ajl\G{W)).

On a un nouvel isomorphisme d'après le lemme 20

lim Gpn(AjlIkj9 Aj/Ij, W)^GP(A/Ik, A/I, W).

Voilà la première partie de la démonstration.
En utilisant la suite exacte du îemme 19, on démontre que l'on a toujours des

isomorphismes canoniques

Ijm Fpn(AjlIkp Ajllj, W)*Fpn(All\ A/I, W).

La démonstration se fait par induction sur n croissant et par induction sur p décroissant

pour n fixé. Grâce à la proposition 17, il n'y a pas de problème pour commencer
cette seconde induction. D'après la remarque 15, l'isomorphisme établi ci-dessus et

pris pour p nul donne l'isomorphisme du lemme.

Démonstration 28. D'après le lemme 12.6 on a des homomorphismes canoniques
nuls pour n ^ 1

Hn(AjlIÏ+n-1,AJIIJ, W)^Hn(Ajll),AjlIj, W).

Si l'idéal / est symétriquement quasi-régulier, on peut passer à la limite, utiliser les

isomorphismes du lemme 27 et démontrer que les homomorphismes canoniques
suivants sont nuls

Hn(A/Ik+n-\AII, W)^Hn{Ajl\All W).

Par conséquent, dans la proposition A, la première condition implique la troisième.
Démonstration 29. Supposons satisfaite la deuxième condition de la proposition A.

On a donc un homomorphisme nul

H2(AIIk+\ A\h AII)-*H2(A/I\ AU A/I).

D'après la proposition 6.1, on a un homomorphisme nul

Hx(AIIk+t9 A\l\ A\Ï)-*HM\P*%> AIJ> AIJ)-

Par une suite de Jacobi-Zariski, on a donc un isomorphisme

H2 (A/I\ AU A/I^H, (A/Ik+t, A\l\ Ajl).
En résumé pour k^2, on a un isomorphisme canonique
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toujours d'après la proposition 6.1. La même démonstration où le lemme 12.6

remplace l'hypothèse donne des isomorphismes canoniques pour

H2(AjlIkj, Aj/Ij,

Utilisons maintenant l'isomorphisme du lemme 27 pour n égal à 2. Si l'idéal / est

(k— l)-symétrique, on a donc un isomorphisme canonique

Cela suffit pour démontrer que l'idéal / est ^-symétrique. Finalement l'idéal / est

symétriquement quasi-régulier et la proposition A est démontrée.

Démonstration du théorème A

Commençons par utiliser le complexe de Koszul (voir en particulier le lemme

12.16).

Remarque 30. Pour un ^-module libre L et pour un ,4-module quelconque W,

il existe des isomorphismes naturels

Torns-L(IkALIIkA+ 1L, W)*IkALll\

De plus il existe une suite exacte naturelle pour tout

0 -Toiftf (SAL/IkA- XL, W) -> Torrt5-L (/*" xL\l\U W)

LEMME 31. Par rapport à L, les fondeurs suivants de la catégorie des A-modules
libres

et Tor^L{SALjIkAL,A)

sont en fait des fondeurs de la catégorie des Â-modules libres, par l'intermédiaire de L.
Démonstration. L'isomorphisme (respectivement l'épimorphisme) de la remarque

précédente le démontre dans le premier cas (respectivement dans le second cas).

Appliquons le lemme 31 à la construction 24, soit directement, soit par l'intermédiaire

de la remarque 25.

DÉFINITION 32. Les entiers n et k sont fixés. Alors les homomorphismes
suivants sont déterminés de manière unique

*/l5+1, A)
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et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

ïj:Toiï(IkjlIkj+19 Â)-+ToTÎ(I*IIk+i9 Â)

et ils donnent un homomorphisme de modules

TÎ:lim Tor^(/,*/J*+1, Â) -+Tor|f (2*//*+1, Â).

De même les homomorphismes suivants sont déterminés de manière unique

^:Tor^(^//f, Â)^Torï(Aj/1% Â)

et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

AjlIkj9Â)-+Torf (AII\ Â)

et ils donnent un homomorphisme de modules

tk : lim Tor^ (Aj/1% À) -> Tor;f (A/l\ Â).

Démonstration 33. Supposons l'idéal / extérieurement quasi-régulier, par
conséquent symétriquement quasi-régulier. On a alors non seulement les isomorphismes
canoniques de la remarque 30

mais encore des isomorphismes canoniques

En passant à la limite, on démontre que t£ est toujours un isomorphisme. Considérons
maintenant le diagramme commutatif suivant formé de suites exactes

...iim Tor^C/î"1//), Â) - lim Tor^(Aj/l), Â) -* lim To&(Aj/Pj'1, Â)...

(AII\ I) ^To4{AjIk-\ I)....
En procédant par induction sur k pour tous les n à la fois, on démontre alors que
t* est toujours un isomorphisme. Par conséquent non seulement les homomorphismes
suivants sont nuls

AJl)*1, Â) -* To& (Aj/I), I)
mais encore les homomorphismes suivants sont nuls

Torî(AIIk+1,1)
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pour tout «7*0. On a donc la condition d'Artin-Rees. Par conséquent, dans le
théorème A, la première condition implique la troisième.

Pour terminer la démonstration, il sera fait usage du résultat classique suivant de la
théorie simpliciale.

PROPOSITION 34. Soit un A-module simplicial M* supposé libre en chaque

degré. Si le module d'homologie Hm[M^\ est nul pour m^l et égal à M pour m= 1,

alors il existe un isomorphisme canonique

pour tout entier n.

Il nous faut utiliser maintenant la troisième partie du chapitre 13 dont voici les

points essentiels.

DÉFINITION 35. Considérons une ^4-algèbre B et une ^-algèbre C. Alors il
existe une C-algèbre simpliciale avec un idéal simplicial /* jouissant de propriétés
remarquables à voir ci-dessous. On pose

Pkn(A,B,C)*HnlJkJJl+1} et Qku(A9B,C)çÊHH\JÏ\.

En fait l'idéal simplicial /* est le noyau de l'homomorphisme

B*®AC-+C*

où B+ est une résolution simpliciale de la ^4-algèbre B et où C# est la résolution
simpliciale triviale de la C-algèbre C.

LEMME 36. Soient une A-algèbre B et une B-algèbre C. Alors il existe une suite

exacte naturelle

...Qk,+ 1(A,B)C)-+QkB(A,B,C)^Pk!(A,B,C)->Qk+J1(A,B,C)...

pour tout entier k.

LEMME 37. Soient une A-algèbre B et une B-algèbre C. Alors il existe des

isomorphismes naturels

Pi(A,B,C)sHn(A,B,C) et Q°n(A, B, C)sTotf(fl, C)

pour tout entier n.

Démonstration. Il s'agit des égalités 13.13 et 13.14.

Voici maintenant le résultat de convergence de D. Quillen.

LEMME 38. Soient une A-algèbre B et une B-algèbre C. Alors pour toute paire
k>n, le module Q^(A, B,C) est nul, si Vanneau B est un quotient de Vanneau A.
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Démonstration. Voir la proposition 13.3 et l'égalité 13.12.

Enfin on utilisera le corollaire suivant de la proposition ci-dessus.

LEMME 39. Soient une A-algèbre B et une B-algèbre C. Si le module Hm (A, B, C)
est nul pour m^l et égal à M pour m=l, alors il existe un isomorphisme naturel

AcnM^® Pk(A,B,C)
kZO

pour tout entier n.

Démonstration. Il existe un isomorphisme naturel (voir l'égalité 13.16)

qui permet de conclure par la proposition 34 et le lemme 37.

Utilisons à nouveau les notations utilisées précédemment et liées à l'anneau A
et à l'idéal /.

LEMME 40. Par rapport à L, les fondeurs suivants de la catégorie des A-modules
libres

Pk(SAL9A,Â) et Qk(SAL,A,Â)

sont en fait des fondeurs de la catégorie des Â-modules libres, par l'intermédiaire de L.
Démonstration. D'après le lemme 39, Fhomomorphisme canonique

Pkn(SAL,A,Â)^Pkn(SÂL9Â,Â)

est toujours un isomorphisme. La suite exacte du lemme 36 et l'isomorphisme établi
ci-dessus démontrent alors que Fhomomorphisme canonique

&(SAL,A,Â)->(£(SÂL9Â,Â)

est toujours un isomorphisme. On procède par induction sur n croissant et par
induction sur k décroissant pour n fixé, en tenant compte du lemme 38.

Appliquons le lemme 40 à la construction 24, soit directement, soit par
l'intermédiaire de la remarque 25.

DÉFINITION 41. Les entiers n et k sont fixés. Alors les homomorphismes
suivants sont déterminés de manière unique

PiJ:PkMi, AJI,, Â)->Pkn(Aj, Aj/Ij, À)

et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

Pj:Pktt(Ap Ajllj, à)-*Pkn{A> AU Â)
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et ils donnent un homomorphisme de modules

pk:\im Pk(Aj9 Ajllp A)^Pk(A9 A\l9 A).

De même les homomorphismes suivants sont déterminés de manière unique

qtJ:&u(At9 Atlh A)->Qk(Aj9 Aj/Ij, A)

et ils forment un système inductif sur l'ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de manière unique

qj:Qkn(Ap Ajllp A)-+Qkn(A9 A\î9 A)

et ils donnent un homomorphisme de modules

qk : lim Qk (Aj9 Aj/Ij, A) -> Qk (A, A/I, A).

Démonstration 42. Supposons satisfaite la deuxième condition du théorème A.
Les seuls modules d'homologie à ne pas être nuls pour les algèbres en question sont
les suivants

H^ApAj/Ij,!)*^ et HX{A9AII9Â)*I.

En utilisant le lemme 39 et en passant à la limite, on démontre que pkn est toujours un
isomorphisme. La suite exacte du lemme 36 et l'isomorphisme établi ci-dessus

démontrent alors que l'homomorphisme qk est toujours un isomprohisme. On procède

par induction sur n croissant et par induction sur k décroissant pour n fixé, en tenant

compte du lemme 38. Pour k nul on a donc un isomorphisme naturel (voir le lemme 37)

lim To&(Aj/Ij, A)^Tovi(AII, A)

autrement dit un isomorphisme naturel

totoA*LjÇ*Tozî(AII,Â)

ou encore un isomorphisme naturel

qui indique que l'idéal / est extérieurement quasi-régulier. Le théorème A est

démontré maintenant.

Appendice

II s'agit de démontrer la proposition 17. A propos des algèbres filtrées et de leur

homologie, on a les deux résultats suivants (suite de Jacobi-Zariski et changement
de base).
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PROPOSITION 43. Soient une A-algèbre filtrée B, une B-algèbre filtrée C et un
C-module filtré W. Alors il existe une suite exacte naturelle

,C9 W)-+Fkn(B,C, W)-+-
pour tout entier k.

Démonstration. Transcription filtrée de la démonstration du cas ordinaire (voir
le théorème 5.1).

PROPOSITION 44. Soient une A-algèbre graduée plate B, une A-algèbre filtrée
quelconque C et un B®A C-module filtré W. Vanneau A est supposé muni de la
filtration triviale. Alors il existe un isomorphisme naturel

Fk(A, B9 W)*Fkn(Q B®AC9 W)

pour tout entier k et tout entier n.

Démonstration. En utilisant une résolution simpliciale graduée de l'algèbre
graduée, on peut répéter la démonstration du cas ordinaire (voir la proposition 4.54).

DÉFINITION 45. Une ^-algèbre tronquée B est une ^4-algèbre filtrée B avec
FkB nul pour k grand. On supposera toujours que l'anneau filtré A est aussi tronqué
et que l'on a un isomorphisme canonique

Un ^-module tronqué W est un ^-module filtré W avec FkW nul pour k grand. Son

ordre est l'entier

Ces définitions généralisent les hypothèses de la proposition 17.

DÉFINITION 46. Considérons un anneau tronqué A et un entier m positif ou
nul. Puis considérons un ensemble X de m ensembles Xt non vides. Enfin considérons
deux ensembles s et t de m entiers st et tt strictement positifs. On peut alors considérer

une algèbre tronquée, dite algèbre tronquée modèle

On commence par considérer la ^-algèbre filtrée libre engendrée par tous les éléments

de tous les ensembles Xi9 les éléments de l'ensemble Xt recevant le degré st. Puis on
quotiente cette algèbre par un idéal bien choisi, engendré par les m idéaux suivants.

Pour chaque /, on considère la puissance *, +1 de l'idéal engendré par les éléments de

X{. On a bien une ^4-algèbre tronquée avec l'ordre suivant



Algèbres graduées associées 299

Les triples (Xi9 si9 tt) sont appelés les composantes de l'algèbre tronquée modèle.

DÉFINITION 47. Une résolution simpliciale tronquée de la ^-algèbre tronquée B
est une ^4-algèbre simpliciale filtrée B* formée de ^-algèbres tronquées modèles Bn9

les conditions d'acyclicité restant celles du cas filtré (voir la définition 12). Toute
algèbre tronquée possède une résolution simpliciale tronquée (voir le lemme 49

ci-dessous).

LEMME 48. Soit une A-algèbre tronquée B avec une résolution simpliciale tronquée
B* et un B-module tronqué W. Alors il existe une suite spectrale

pour tout entier k.
Démonstration. On utilise un complexe double comme dans la démonstration de la

proposition 14, mais cette fois seule une des deux suites spectrales est dégénérée.

LEMME 49. Soit une A-algèbre tronquée B. Considérons l'ordre <x de A, Vordre p
de B et les nombres

dn oc-h(n+l)dl-1 avec d_l=p.

Alors il existe une résolution simpliciale tronquée B* avec Vordre de Bn au plus égal à dn.

Démonstration. On commence la construction pas-à-pas avec une ^-algèbre
tronquée modèle Bo du type suivant (voir le lemme 13)

B0=A [Xl9..., Xfdjjifcy/J

algèbre tronquée dont l'ordre est le suivant

Supposons maintenant avoir fait la construction pas-à-pas jusqu'à Bn-t dont Tordre
est au plus égal à d^-i- Cette algèbre tronquée modèle a au plus dn^t composantes

(Xhsi9tt) avec si^dn.1 et t^d,^.
Les composantes de Bn sont obtenues soit pour des raisons de dégénérescence, soit

pour des raisons d'acyclicité.
Par dégénérescence, les composantes de Bn^1 se retrouvent comme composantes

de Bn et cela au plus de n manières différentes dans chaque cas. Cela fait introduire un
premier lot d'au plus ndn^x composantes de Bn avec st et tt toujours bornés par dn-v
II reste à obtenir Pacyclicité en degré w— 1 de FkB+ pour l^k^dn-x. Pour chaque k
il faut alors une composante de Bn avec st égal à k et tt égal à 4,-i- L'hypothèse
initiale A/F1A^B/F1B permet de négliger le cas k=0 où il ne serait plus possible de
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tronquer. Cela fait introduire un second lot de dn^t composantes de Bn avec st et tt
toujours bornés par d^-i- Finalement la ^-algèbre tronquée modèle Bn a au plus
(«+1) dn-i composantes

(Xi9si9tù avec s^d»^ et *,<</„_!•

Il est alors clair que l'ordre de Bn est au plus égal à l'entier dn.

Voici maintenant le résultat dont la proposition 17 est un cas particulier.

PROPOSITION 50. Soient une A-algèbre tronquée B et un B-module tronqué W.

Alors la condition suivante est satisfaite

9W)^0 si

pour une fonction nn bien choisie.

Démonstration. Grâce à des suites exactes élémentaires et à des décalages de

graduation, on peut se ramener au cas où W est filtré de manière triviale. Grâce à la
suite spectrale du lemme 48 appliqué à la résolution simpliciale tronquée du lemme

49, on peut se ramener au cas d'une yl-algèbre tronquée modèle B à plusieurs
composantes. Grâce aux suites exactes de Jacobi-Zariski (voir la proposition 43)
concernant les algèbres filtrées suivantes

on peut se ramener au cas d'une ^-algèbre tronquée modèle B à une seule composante.
Grâce à un changement de base (voir la proposition 44) on peut se ramener au cas

où l'anneau de base A est l'anneau des entiers rationnels. Il reste donc à démontrer
ce cas particulier, qui prend la forme suivante d'après la remarque 21.

L'anneau des entiers rationnels Z et les groupes abéliens W sont gradués de

manière triviale ci-dessous.

LEMME 51. Soient deux entiers s et t strictement positifs. Alors la condition

suivante est satisfaite

Gpn(Z,ZtXjt9 W)*0 si p>nn

pour un entier nn bien choisi, indépendamment de Vensemble X et du groupe abélien W.

Démonstration. Grâce à une suite exacte de Jacobi-Zariski, on peut remplacer
la Z-algèbre Z[Xjt par la Z[Z]J-algèbre Z. Utilisons maintenant le théorème de

structure des groupes abéliens de type fini. A l'aide de limites inductives (voir le

lemme 3.24) puis de sommes directes (voir le lemme 3.23) enfin de suites exactes

(voir le lemme 3.22) on peut se ramener au cas W=Z. Il reste donc à démontrer le

cas particulier suivant de la proposition 17.
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LEMME 52. Soient deux entiers s et t strictement positifs. Alors la condition
suivante est satisfaite

Z,Z)s& si

pour un entier pn bien choisi, indépendamment de l'ensemble X.
Démonstration. Utilisons les modules de la définition 35

p;(z[ri;,z,z) et eî(z[ri;,z,z).
Ils sont construits à l'aide d'un idéal simplicial /* qui peut être obtenu gradué dans

ce cas particulier. Les modules ci-dessus sont donc gradués de manière naturelle.
Démontrons le lemme par induction sur n. L'hypothèse d'induction s'exprime de la
manière suivante: pour m<n, les modules gradués

sont bien tronqués (c'est-à-dire tronqués avec un ordre indépendant de X). Par la
théorie simpliciale des produits symétriques (voir la proposition 13.8) on démontre

ce qui suit. Les modules gradués

p;_! (z[rc, z, z)^Hn_, [4/4+1]
sont bien tronqués pour tout entier k. Grâce aux lemmes 36 et 38, le module gradué
suivant est par conséquent bien tronqué

Utilisons encore une fois le lemme 36. Le module gradué intéressant

Pi (Z[A% Z, Z)^Hn(Z[Xjt, Z, Z)
est donc bien tronqué si le module gradué élémentaire

est aussi bien tronqué. Mais ce dernier point est évident. En effet le Z [Z]*-module Z
possède toujours une résolution libre graduée dont le «-ème terme est un module
gradué tronqué dont l'ordre est égal à st(n +1). Cela achève la démonstration de la

proposition 17.
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