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Algébres Graduées Associées et Algébres Symétriques Plates

MICHEL ANDRE

Il s’agit d’un travail sur I’homologie et la cohomologie des algébres commutatives.
Pour un anneau 4 quelconque et pour un idéal I quelconque, les résultats suivants
seront démontrés.

L’idéal I est dit symétriquement quasi-régulier si le A/I-module I/I* est plat et si
Palgébre symétrique de ce module est canoniquement isomorphe & la A/I-algébre
graduée commutative @ I5/I5*1,

PROPOSITION A. Les trois conditions suivantes sont équivalentes:

1) l’idéal I est symétriquement quasi-régulier,

2) pour tout entier k=1 et pour tout A/I-module W, il existe un entier t donnant
un homomorphisme canonique nul

H, (A/I**, AJL, W) — H, (A]T*, AL, W),

3) pour tout entier k> 1, pour tout A|/I-module W et pour tout entier n>2, I’ homo-
morphisme canonique suivant est nul

H, (AT, A]I, W)~ H,(A/I* AJI, W).

COROLLAIRE A. L’idéal 1 est symétriquement quasi-régulier si le module
H, (A4, A/I, W) est nul pour tout A/I-module W.

L’idéal I est dit extérieurement quasi-régulier si le A/I-module I/I* est plat et si
lalgébre extérieure de ce module est canoniquement isomorphe & la A/I-algebre
graduée anticommutative @ TorZ (4/I, A/I).

THEOREME A. Les trois conditions suivantes sont équivalentes:

1) l'idéal I est extérieurement quasi-régulier,

2) pour tout A|/I-module W et pour tout entier n>2, le module H,(A, A/I, W) est
nul,

3) lidéal I est symétriquement quasi-régulier, de plus il s’agit d’un idéal d’ Artin-
Rees.

L’idéal I est dit d’Artin-Rees si la condition suivante est satisfaite. Pour tout
entier k=1 et pour tout entier n> 1, il existe un entier £ donnant un homomorphisme
canonique nul

Tor (A/1***, AJI) - Torf (4/I*, A/I).
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Cette condition est toujours satisfaite lorsque I’anneau A est noethérien. On le con-
state & ’aide du lemme d’Artin-Rees appliqué a une résolution libre du 4-module
A/I, résolution choisie de type fini en chaque degré.

L’idéal I est dit symétriquement régulier s’il est symétriquement quasi-régulier et si
le A/I-module I/I? est projectif.

PROPOSITION B. Les trois conditions suivantes sont équivalentes:

1) I'idéal I est symétriquement régulier,

2) pour tout entier k=1 et pour tout A/I-module W, il existe un entier t donnant
un homomorphisme canonique nul

H2(AJT*, AL, W) — H*(A/T**, ]I, W),

3) pour tout entier k> 1, pour tout A/I-module W et pour tout entier n>2, I’homo-
morphisme canonique suivant est nul

H"(A[T*, AJI, W)— H"(A/T*"~1, 4]I, W).

COROLLAIRE B. L'’idéal I est symétriquement régulier sile module H* (A, A|I, W)
est nul pour tout A/I-module W.

L’idéal I est dit extérieurement régulier s’il est extérieurement quasi-régulier et si
le A/I-module I/I? est projectif.

THEOREME B. Les trois conditions suivantes sont équivalentes:

1) lidéal I est extérieurement régulier,

2) pour tout A|/I-module W et pour tout entier n>2, le module H" (A, A|I, W)
est nul,

3) l'idéal I est symétriquement régulier, de plus il s’agit d’un idéal d’ Artin-Rees.

Considérons maintenant une B-algébre C supposée plate et noethérienne. Par
définition, le morphisme

Spec C — Spec B

est régulier si pour tout idéal premier Q de C, la B-algébre locale C, est formellement
lisse pour son idéal maximal.

PROPOSITION C. Les trois conditions suivantes sont équivalentes:

1) le morphisme Spec C — Spec B est régulier,

2) pour tout C-module W et pour tout entier n>1, le module H,(B, C, W) est nul,

3) le module des différentielles de Kaehler Qc,p est un C-module plat et son algébre
extérieure est canoniquement isomorphe a la C-algébre graduée anticommutative

@ Toré®=€(C, C).
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En outre les modules de cohomologie ne sont pas nuls en général.

Dans les théorémes A et B I’équivalence des deux premiéres conditions est due a
D. Quillen. D’ailleurs par la suite on utilisera fortement un théoréme de convergence
qui lui est df. Les références simples concernent le présent travail et les références
doubles concernent mon livre: Homologie des algébres commutatives — Springer
Verlag. Les résultats de la partie B sont présentés ici comme corollaires des résultats
de la partie A. Dans le livre en question les résultats de la partie B sont démontrés
de maniére directe. Ces démonstrations peuvent servir d’introduction pour le présent
travail.

Pour conclure remarquons que la deuxiéme condition de la premiére proposition
peut s’exprimer de maniére plus explicite.

Remarque D. Considérons a nouveau un anneau A4 et un idéal I et supposons
plat le A/I-module I/I*. Puis considérons le carré symétrique du 4-module 7

S?=IQ It(I®4I) avec 1(x®y)=xRy—yRx.
Enfin considérons I’épimorphisme dii au produit

n:S* -1,
Alors I'idéal 7 est symétriquement quasi-régulier si et seulement si le noyau de n est
contenu dans tous les sous-modules I™S2.

Morphismes réguliers

Commengons par démontrer la partie C des résultats et cela partiellement a 1’aide
de la partie A.

Considérons une B-algébre C plate et noethérienne. Dénotons par Q un idéal
premier quelconque de C, par P I'idéal premier correspondant de B, enfin par k (P)
et k(Q) les corps résiduels des anneaux locaux Bp et C,.

Par définition la B-algébre locale et noethérienne C, est formellement lisse pour
son idéal maximal QC, si et seulement si le module suivant est nul

H' (B, Co, k(Q))=lim H" (B, Co/Q*Cy, k(Q))

(voir le corollaire 10.15, la proposition 16.12 et la définition 16.14) autrement dit si
et seulement si le module suivant est nul

H,(B, C, k(Q))=H,(B, Co, k(Q))

(voir le lemme 3.21 et le corollaire 5.27).
Remarque 1. Utilisons la platitude de la B-algébre Cj, sous la forme d’un iso-
morphisme (voir la proposition 4.54)

H,(B, Co, k(Q))=H,(k(P), k(P)®5Co, k(Q))-
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Lorsque la B-algébre C, est formellement lisse, alors la k (P)-algébre k(P)® 5C, est
formellement lisse. Par conséquent (voir la proposition 7.23) le module ci-dessus est
nul pour n non nul. En résumé, la condition suivante est satisfaite

H,(B,C,k(Q))~0 avec n#0 et QeSpecC
dans le cas d’un morphisme régulier.

LEMME 2. Soit un idéal premier Q d’une B-algébre noethérienne C satisfaisant
aux deux conditions suivantes pour un entier n fixé: d’une part le module H,(B, C, k(Q))
est nul et d’autre part le module H,, (B, C, C/|Q) est nul pour tout idéal premier Q
contenant strictement Q. Alors le module H,(B, C, C|Q) est nul.

Démonstration. Soit f un élément de C— Q. Considérons le module W égal a
C/Q+fC. L’anneau C étant noethérien, il existe une suite de décomposition

0O=WycW,c-oocW_cW,=W

donnant lieu & des isomorphismes W;/W;_,~C/Q,, I'idéal premier Q; contenant
strictement Q. Par suite (voir le lemme 3.22) la seconde partie de I’hypothése implique
que I’on a un module nul

H,.1(B, C, C/@+fC)=0
autrement dit un monomorphisme
f:H,(B, C, C|Q)~ H,(B, C, C/Q)
qui découle de la suite exacte
0-CJ/05ClQ - ClQ+fC—0.
Cela a lieu pour chaque fde C— Q, on obtient donc un monomorphisme
H,(B, C, C/|Q)— H,(B, C, C/|Q),.
Par hypothése le module suivant est nul
H,(B, C, C|Q)o=H,(B, C,(C|Q)g)= H,(B, C, k(Q))
(voir le corollaire 4.59). Par conséquent le module H,(B, C, C/Q) est nul.
LEMME 3. Soit une B-algébre C locale et noethérienne satisfaisant a la condition
suivante pour un entier n fixé:
H,(B,C,k(Q))=0 avec n<m<n+dimC et QeSpecC.

Alors le module H,(B, C, W) est nul pour tout C-module W.
Démonstration. L’anneau C est supposé local simplement pour qu’il ait une
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dimension finie. Soit Q un idéal premier de cohauteur s. Par induction sur s croissant,
le lemme précédent démontre le résultat suivant

H,(B,C,C/|Q)=0 n<m<n—s+dimC.

En particulier le module H,(B, C, C/Q) est nul pour tout idéal premier Q. Par
conséquent le module H,(B, C, W) est nul pour tout W de type fini (utiliser le
lemme 3.22 pour une bonne suite de décomposition) et méme pour tout W quelconque
(utiliser le lemme 3.24 pour les sous-modules de type fini).

I est possible maintenant de démontrer la proposition C.

Démonstration 4. Lorsque le morphisme est régulier, les modules suivants sont
nuls d’aprés la remarque 1

H,(B,C,k(Q))=0 avec n=>1 et QeSpecC.
Mais alors les modules suivants sont nuls d’aprés le lemme 3
H,(B, Cy, W)= H,(B, C, W),.

Par conséquent, le module H,(B, C, W) est nul pour n#0. Les deux premiéres
conditions de la proposition sont donc équivalentes.

Appliquons le théoréme A dans le cas particulier suivant, pour démontrer que les
deux derniéres conditions de la proposition sont équivalentes

A=C®pC puis A/I=C enfin I/I>=Qp.

Comme la premiére condition du théoréme est équivalente a la troisiéme condition
de la proposition, il reste & démontrer que les deux deuxiémes conditions sont équi-
valentes. Cela est di aux isomorphismes suivants

H,.,(C®;C, C, W)= H,(C, C® yC, W)xH, (B, C, W).

Le premier isomorphisme provient de la suite exacte de Jacobi-Zariski de la C-algébre
C®C et de la C® zC-algébre C (voir le théoréme 5.1) et le second isomorphisme
est dii a la platitude de la B-algébre C (voir la proposition 4.54).

Premiéres remarques

Voici les parties élémentaires des démonstrations des résultats 4 et B.

Remarque 5. Dans les démonstrations des résultats 4 on peut supposer plat le
A/I-module I/I? et cela pour les deux raisons suivantes. Considérons une suite exacte
de A/I-modules

O-W ->W->W"-0.

Pour constater la platitude du module lorsque la condition du corollaire est satisfaite
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(ou encore la deuxiéme condition du théoréme) on utilise la suite exacte suivante
(voir le lemme 3.22)

Hy (A, AL, W)~ H, (A4, A|I, W)~ H, (4, A/, W)
et 'isomorphisme général suivant (voir la proposition 6.1)
Hy (A, A]I, W)=IIP® ,, W.

Pour constater la platitude du module lorsque la deuxiéme condition de la proposition
est satisfaite, on utilise le diagramme commutatif suivant

H, (A/?*", A]I, W) — H (A/I**", A]I, W) - H (AI**", A]I, W)

! ! !
H,(A/I*, AL, W) —» H,(A[I?, A]I, W) — H(A[I*, A]I, W)

et les isomorphismes suivants
Hy(A/I** AL W)2IIPQ 4 W H (A%, AT, W).

Dans les démonstrations des résultats B on peut supposer projectif le 4A/I-module
I/I? et cela pour les deux raisons duales des précédentes.

Remargque 6. Par la proposition 6.1 et par les lemmes 3.20 et 3.21, I’hypothése
du corollaire B est équivalente & I’hypothése du corollaire A avec I/I? projectif. De
maniére évidente, la conclusion du corollaire B est équivalente 4 la conclusion du
corollaire A avec I/I? projectif. Par conséquent le corollaire B est un corollaire du
corollaire A. Pour des raisons analogues, le théoréme B est un corollaire du théoréme
A. 1l reste & considérer la proposition B par rapport a la proposition A.

La premiére condition de la proposition B est équivalente a la premiére condition
de la proposition A avec I/I? projectif. La deuxiéme condition de la proposition B est
équivalente a la deuxiéme condition de la proposition A avec I/I? projectif, grace a
Pisomorphisme du lemme 3.20

H, (A%, A]I, W)= H,(A|I*, A|I, A|[)® 4, W
et grace a I'isomorphisme du lemme 3.21
H?(A/I*, A]I, W)~Hom,,(H,(A/I*, A/I, A|I), W).

Par conséquent I’équivalence des deux premiéres conditions de la proposition B est
un corollaire de la proposition A.

Supposons satisfaites les deux premiéres conditions équivalentes de la proposition
B. Il reste & démontrer que la troisi¢éme condition est aussi satisfaite. Grace aux suites
spectrales

Ext2,, (H,(A/I* A, A|I), W)= H"(A|I*, A|I, W)
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la proposition A démontre que I’homomorphisme canonique suivant est nul
H"(AI*, A|]I, W)— H"(AJI**", A]I, W)

pour un ¢ bien choisi en fonction de n, par exemple
t=n(n—1)/2.

Pour obtenir t=n—1, il faut adapter a la cohomologie la démonstration de la pro-
position A. Comme ce résultat en cohomologie n’est pas nouveau, il ne sera pas
redémontré ici (voir la remarque 12.12). La proposition B est démontrée par con-
séquent.

Remargue 7. La suite exacte de Jacobi-Zariski (voir le théoréme 5.1)

Hy(A, AL, W)—> H,(A/I*, A|I, W)— H, (A, A]T*, W)
et 'isomorphisme canonique (voir la proposition 6.1)
H (4, AI*, W)2IN[*'® ;W

démontrent que ’hypothése du corollaire A implique la deuxiéme condition de la
proposition A avec t=1. Par suite ce corollaire est bien un corollaire de cette pro-
position. Il reste donc & démontrer la proposition A puis le théoréme A.

La deuxiéme condition du théoréme A fait de I un idéal symétriquement quasi-
régulier d’aprés le corollaire A. La premiére condition en fait autant gridce a un
premier isomorphisme (voir le lemme 3.20)

Hy(A, AL, W)= H, (A, A, AIN® W
et grice a un second isomorphisme (voir le théoréme 15.8)
H, (A, AL, A[T)=Tor} (4/I, A/I)|[Tor} (A/I, A]I)]*.

Par conséquent on peut supposer I'idéal I symétriquement quasi-régulier dans la
démonstration du théoréme A.

Remarque 8. Utilisons la suite exacte de Jacobi-Zariski du diagramme commutatif
suivant avec n# 1

H,(A, A[T**', W) —> H, (A, A[I, W) - H,(A/I**, A]I, W)

v N e

H, (A, A/I*, W) H, (A/I* "L AL W),

Supposons satisfaite la troisiéme condition du théoréme A. Pour un ¢ bien choisi,
’homomorphisme « est nul puisque I'idéal I est d’Artin-Rees (voir le corollaire 10.13);
en outre ’homomorphisme w est nul puisque I'idéal I est symétriquement quasi-
régulier (voir la proposition A). Par conséquent, le module H,(4, A/I, W) est nul
et la deuxiéme condition du théoréme A est satisfaite.
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Résumé 9. 1l reste & démontrer les implications suivantes
2=1=3
dans la proposition A, en supposant plat le 4/I-module 7/I?, et dans le théoréme A,

en supposant symétriquement quasi-régulier I’'idéal 1. Ces démonstrations se font a
’aide du théoréme fondamental suivant (D. Lazard).

THEOREME 10. Pour qu’un module M soit plat, il faut et il suffit qu’il soit limite
inductive suivant un ensemble filtrant d’un systéme inductif de modules libres de type
Jfini.

Voici encore la démonstration de la remarque D a partir de la proposition A.

Remarque 11. Le noyau de I’homomorphisme 7 est isomorphe au module
H, (A, A/I, A|T) en toute généralité (voir le corollaire 15.10). Mais alors, pour ¢ égal
a 1 et pour W égal 4 A/I, la deuxiéme condition de la proposition A prend la forme
explicite suivante

n—l(Ik—l,IZ)_____Ik-—l,SZ

pour tout k>1. Comme ’homomorphisme 7 est surjectif, I’égalité précédente peut
étre remplacée par 'inclusion suivante

KerncI*~1.52

pour tout k>1. La remarque D est donc démontrée.
Algébres filtrées

Un anneau filtré est un anneau A donné avec une suite décroissante d’idéaux
A=F°A>F'A>...5FPASFP 14>

satisfaisant & la condition suivante
FPA-FiAcFP*i4.

Les homomorphismes d’anneaux filtrés préservent les filtrations. Une algebre filtrée
est un homomorphisme d’anneaux filtrés. On a la notion d’algébre filtrée libre.
Considérons une A-algébre libre

B—_-A[...xi...] iEI.

Pour pouvoir filtrer cet anneau, on suppose que I’anneau A est lui-méme filtré et que
chaque variable x; est munie d’un degré 6,>0. Alors par définition les éléments

ax;!x;2..xjx avec aeFiA et q+r 6, +--+nd, =p

engendrent I’idéal F?B de la filtration.
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Un module filtré sur un anneau filtré est un B-module W donné avec une suite
décroissante de sous-modules

W=F°WoF'W>...oFPW>FPiWws...
satisfaisant a la condition suivante
FPB- F4 WCF‘”'"W.

Les homomorphismes de modules filtrés préservent les filtrations. Avec un nombre
positif ou nul 4, 2 un module filtré W correspond un nouveau module filtré W4
donné par les égalités

FPW=Frdpy

I’'idéal F?W étant égal a W lorsque g est négatif. Considérons une A-algébre filtrée
libre B et un B-module filtré W. Alors le module correspondant des différentielles
de Kaehler est lui aussi filtré de maniére naturelle. De maniére plus précise, on a
I’'isomorphisme suivant de modules filtrés

Dif (4, B, W)@ WP avec iel

le module filtré W, étant égal au module filtré W.
On connait la notion de résolution simpliciale d’une algébre (voir la définition
4.30). Il s’agit de la généraliser.

DEFINITION 12. Une résolution simpliciale filtrée de la 4-algdbre filtrée B est
une A-algébre simpliciale filtrée B, (les homomorphismes de face et de dégénérescence
préservent les filtrations) satisfaisant aux 3 conditions suivantes, I’isomorphisme de la
derniére condition étant donné explicitement:

a) la A-algebre filtrée B, est libre pour tout n>0,

b) le module H, [F?B,] est nul pour tout n>0 et p=0,

c) les A-algébres B et H,[B,] sont isomorphes avec un diagramme commutatif
pour tout p=>0

F*BS H,[F’B,]

L
B > H,[B.].

Une résolution simpliciale filtrée est en particulier une résolution simpliciale ordinaire.
LEMME 13. Toute algébre filtrée posséde une résolution simpliciale filtrée.

Démonstration. 11 suffit de généraliser la démonstration du théoréme 9.26. Il
s’agit de donner un degré a chacune des variables de chacune des A-algébres libres
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B, et il s’agit aussi d’assurer un peu plus d’acyclicité que dans le cas ordinaire. Par
dégénérescence, les variables doivent garder leur degré. De plus, au cours du n-¢éme
pas, il faut introduire suffisamment de variables de degré p dans B,,, pour obtenir
Pacyclicité de FPB, en degré n. A part cela, la construction pas-a-pas reste la méme
que dans le cas ordinaire.

PROPOSITION 14. Soient une A-algébre filtrée B et un B-module filtré W.
Considérons une résolution simpliciale filtrée B,. Alors le n-¢éme module d’homologie
du complexe naturel

F? Dif (4, B,, W)

ne dépend pas de B, et se note F%(A, B, W).
Démonstration. 11 suffit de généraliser la démonstration du théoréme 4.43. Pour
cela considérons un ensemble dénombrable de A-algebres filtrées libres

A={4, | meZ}

suffisamment grand pour que les algébres filtrées libres B, y appartiennent toutes.
Puis considérons le complexe double ayant le module en bidegré (r, s)

@ F? Dif (A4, 4,,, W).

Am = Amg— B,

Les deux suites spectrales auxquelles il donne lieu dégénérent, I’'une parce que B,

est un 4,, 'autre parce que les deux derniéres conditions de la définition 12 sont

satisfaites. On obtient donc finalement un isomorphisme en chaque degré n. D’une

part il s’agit du n-éme module d’homologie du complexe de la proposition et d’autre

part il s’agit du n-éme module d’homologie du complexe ayant le module en degré n
®d F? Dif (A, 4., W).

Am, = Amg B
Ci-dessus les fléches dénotent des homomorphismes de A-algébres filtrées. En
laissant varier ’ensemble 4, cela démontre la proposition.

En général les modules F% (A, B, W) ne forment pas une filtration du module
H,(A, B, W).

Remarque 15. Les modules F° (4, B, W) et H,(A, B, W) sont isomorphes. Cela
découle du fait que les modules F° Dif (4, B,, W) et Dif (4, B,, W) sont toujours
isomorphes et du fait qu’une résolution simpliciale filtrée est une résolution simpliciale
ordinaire.

EXEMPLE 16. Avec un anneau A, un idéal I et un module W défini sur A/, on
peut considérer les modules F% (A4, A/I, W), ’anneau A étant filtré par 1’idéal I et les
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filtrations de A/ et de W étant triviales:
FPA=I" puis FP(A/I)=0 enfin F’W=0

pour tout p strictement positif.

PROPOSITION 17. Il existe un entier p (k, n) avec la propriété
FE(A, A, W)=0 p=p(k,n)

si I'idéal I est nilpotent avec I* nul.

Démonstration. La démonstration la plus simple serait de construire une résolution
simpliciale filtrée avec des variables de degré borné en chaque dimension. Je n’y suis
parvenu que pour les dimensions au plus égales a 3. La démonstration générale de la
proposition est résumée dans I’appendice de ce travail. Elle est malheureusement un
peu longue.

Les objets filtrés considérés ci-dessus ont évidemment des objets gradués associés,
notés par la lettre G avec G? égal & FP/FP*!, C’est en particulier le cas pour le module
des différentielles de Kaehler d’une algébre filtrée libre.

PROPOSITION 18. Soient une A-algébre filtrée B et un B-module filtré W. Con-
sidérons une résolution simpliciale filtrée B,. Alors le n-éme module d’homologie du
complexe naturel

G® Dif (4, By, W)

ne dépend pas de B, et se note G4 (A, B, W).

Démonstration. Analogue a celle de la proposition 14.

Ces nouveaux modules d’homologie interviennent dans les démonstrations grace
aux lemmes suivants.

LEMME 19. Soient une A-algébre filtrée B et un B-module filtré W. Alors il
existe pour tout p=>0 une suite exacte naturelle

...F?*'(A,B, W) > F?(4,B, W) GI(A, B, W)— Ff*!(4, B, W)....
Démonstration. Conséquence de la suite exacte courte de complexes
0 F?*! Dif (A4, By, W)— F? Dif (4, By, W)— G? Dif (4, B,, W)—0.

LEMME 20. Soient une A-algébre filtrée B et un B-module filtré W. Alors il
existe pour tout n=0 un isomorphisme naturel

® G?(A, B, W)xH,(GA, GB, GW).

pz0
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Démonstration. 1’algébre graduée associée a une algébre filtrée libre est une
algébre libre. En outre avec une résolution simpliciale filtrée B, de la A-algébre filtrée
B on a une suite exacte

o H,[FP*1B,] > H,[F?B,] > H,[6"B,] » .

Il est donc évident que la GA-algébre simpliciale GB,, est une résolution simpliciale
de la GA-algébre GB. D’autre part pour les modules des différentielles de Kaehler
des algebres filtrées libres il existe un isomorphisme général qui prend ici la forme
suivante

@ G’ Dif(A, By, W)=Dif(GA, GB,, GW).

p=20
De cet isomorphisme de complexes découlent alors les isomorphismes du lemme.

Remarque 21. Lorsque la A-algébre B et le B-module W sont non seulement
filtrés mais encore gradués, les modules H,(A4, B, W) sont eux aussi gradués de
maniére naturelle, comme le démontre le lemme précédent. On peut le constater de
maniére directe en utilisant des résolutions simpliciales graduées. En outre rappelons
que les suites exactes et les isomorphismes fondamentaux de la théorie générale de
I’homologie des algébres commutatives préservent cette graduation des modules
d’homologie dans le cas gradué. Enfin, toujours dans le cas gradué, on a les iso-
morphismes suivants

FP(A,B, W)~ @& G!(A,B, W)

qzp

une résolution simpliciale graduée pouvant étre utilisée comme résolution simpliciale
filtrée.

Démonstration de la proposition A

Avec un A-module libre L on va considérer ’algébre symétrique S,L et I’idéal
d’augmentation I,L qui donne donc un isomorphisme canonique

SLIILL=A.
En outre considérons un idéal 7 de ’anneau A4 et un module W défini sur 4/I. On va
utiliser les notations

A=A/ et L=LJIL.

Un homomorphisme entre deux 4A-modules libres se reléve en un homomorphisme
entre deux A-modules libres, de maniére non unique évidemment.
Remargque 22. Utilisons maintenant les isomorphismes suivants

H,(S,L/IL, S,L/I,L, W)=H,_,(A4, S,LIIL, W)=
~H, (4, SzL/IZL, W)= H,(SzL/IZL, SzL/I;L, W).
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L’isomorphisme central est dd a la platitude du A-module S,L/IfL (voir la proposi-
tion 4.54) et les autres isomorphismes proviennent de suites triviales de Jacobi-
Zariski. En résumé, le module suivant dépend fonctoriellement de L

H,(SL/I4L, S,LIL,L, W).

Considérons maintenant une situation filtrée dans le sens de ’exemple 16. L’anneau
SL/IXL est filtré par Iidéal 1,L/IXL, il est donc filtré grace a sa graduation; en outre
les autres filtrations sont triviales. Dans ce contexte I’anneau 4 n’est donc pas filtré
par I’idéal I.

LEMME 23. Par rapport a L, les foncteurs suivants de la catégorie des A-modules
libres

GP(SL/I’L, S,LII.L, W) et F2(S,LIIL, S,LILL, W)

sont en fait des foncteurs de la catégorie des A-modules libres, par I’intermédiaire de L.
Démonstration. Cela découle des remarques 21 et 22. En effet les isomorphismes
de cette derniére préservent les graduations.

CONSTRUCTION 24. Appliquons le théoréme 10 au A4-module I égal a I/I?
et supposé plat. Il existe donc des A-modules libres de type fini L; et des homo-
morphismes de 4-modules

qui forment un systéme inductif sur un ensemble filtrant et qui donnent un isomor-
phisme de 4-modules

A:limL i I
—_—
Par relévement on obtient des 4-modules libres de type fini L; et des homomorphismes
de A-modules
A’ij:Li_')Lj et A,J:LJ—')I

qui ne sont pas déterminés de maniére unique et qui ne forment donc pas en général
un systéme inductif. Avec I’anneau A et I’idéal I considérons les anneaux et idéaux
suivants

A_]':SALJ Ct Ij=IALj.
A partir des homomorphismes 4;; et 4;, on obtient des homomorphismes d’anneaux
aij:Ai—‘)Aj et (XJ:AJ-—>A

homomorphismes qui ne sont pas déterminés de maniére unique. L’anneau 4; est
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a filtrer par I'idéal /; et 'anneau A est a filtrer par I'idéal 1. Les homomorphismes
précédents sont compatibles avec ces filtrations. Les homomorphismes suivants qui
en découlent

correspondent aux homomorphismes canoniques

A—->A et A-— Al

A propos d’unicité démontrons le résultat suivant.
Remarque 25. Considérons deux relévements de I’homomorphisme £;

A et ApL;—1I.

Alors il existe un A-module libre M et des homomorphismes de A-modules
poet piLi->M et u:M-I

satisfaisant aux conditions suivantes
Aj=pop’ et Aj=pou” avec jg'=p".

En voici la démonstration. Utilisons une base {x,} du 4-module libre L;. On a alors
des égalités

A{; (xP) = A’.; (xp) + z ypquq o yP‘l’ ZP‘IEI'

Par définition le 4-module libre M a la base {m,, n,,} et on conclut a I'aide des
homomorphismes suivants

w(x,)=m,, I (xp)=mp+2 Ypaltpq>
u(my)=4;(x,), n (npg)=2pq-

Cela étant, on peut considérer ’anneau et 1’idéal

B=SM et J=IM
avec les homomorphismes d’anneaux

B et p':A;—»B et p:B—-A
qui donnent «; et &; par composition.

En utilisant le lemme 23 soit directement, soit par 'intermédiaire de la remarque
25, on démontre facilement les résultats suivants.

DEFINITION 26. Les entiers p, n, k sont fixés. Alors les homomorphismes
suivants sont déterminés de maniére unique

8i;:Gy (Ai/II;’ AT, W)- Gy (Aj/I,;: AL, W)
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et ils forment un systéme inductif sur I’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

g, Gh(A,T5, AL, W) > GL(AT*, A]I, W)

et ils donnent un homomorphisme de modules _
gt lim GF (4,15, A;/1;, W)~ G (AI*, AL, W).

De méme les homomorphismes suivants sont déterminés de maniére unique
fij Fy (Ai/Il;a AI, W)—Fy (Aj/I’,", A;ll;, W)

et ils forment un systéme inductif sur ’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

[ FR(A4]L5, A1, W)~ FL(AIIY AL W)
et ils donnent un homomorphisme de modules
S8 im F (AT, Al1, W)~ FR (AT, AL W).
Pour p nul, on a un homomorphisme
x 1 im H, (4,115, A;/1;, W) > H,(A/I*, A, W)

qui va jouer un rdle important dans la démonstration de la proposition A.

L’idéal I de I’anneau A est dit k-symétrique si le A/I-module I/I* est plat et si
l’algébre graduée symétrique du module est canoniquement isomorphe a I’algébre
graduée associée de I’anneau, jusqu’au degré k y compris.

LEMME 27. Pour un idéal (k—1)-symétrique I on a toujours des isomorphismes
canoniques

lim H, (4,/I}, 4;/1;, W)=H,(A[I", A|I, W).
Démonstration. Partons de I'isomorphisme simple suivant
H,(lim (SzL,/I5L;), 4, W)= H, (S (lim L;)/I3 (tim L)), 4, W).
D’aprés la proposition 5.30, il s’agit de I’'isomorphisme suivant
lim H,(SzL;/I5L;, A, W)=H,(SzI/I5], 4, W).
On a un autre isomorphisme d’aprés la remarque 22

lim H,(S L JTSL;, A, W)= H, (SzI/I51, 4, W).
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Mais I'idéal I est supposé (k—1)-symétrique et 'isomorphisme précédent s’écrit
comme suit

lim H, (G (4;/1%), G (4,]1), G (W))=H, (G (AII"), G (4]I), G (W)).

On a un nouvel isomorphisme d’aprés le lemme 20

lim G (4 IS, AL, W)= GE(A[TX, AL, W).

Voila la premiére partie de la démonstration.
En utilisant la suite exacte du lemme 19, on démontre que I’on a toujours des
isomorphismes canoniques

lim F7 (4 i, AL, W)= FE (AT, AL, W).

La démonstration se fait par induction sur #z croissant et par induction sur p décrois-
sant pour n fixé. Grace a la proposition 17, il n’y a pas de probléme pour commencer
cette seconde induction. D’aprés la remarque 15, I'isomorphisme établi ci-dessus et
pris pour p nul donne I’isomorphisme du lemme.

Démonstration 28. D’aprés le lemme 12.6 on a des homomorphismes canoniques
nuls pour n#1

H, (AT, Ayl W)= H,(4,/15, A;]1;, W).

Si I'idéal I est symétriquement quasi-régulier, on peut passer a la limite, utiliser les
isomorphismes du lemme 27 et démontrer que les homomorphismes canoniques
suivants sont nuls

H,(A/I**"~1, A/I, W)~ H,(A/I*, A|I, W).

Par conséquent, dans la proposition A, la premiére condition implique la troisiéme.
Démonstration 29. Supposons satisfaite la deuxiéme condition de la proposition A.
On a donc un homomorphisme nul

H,(A[I**, AL A]T)— H, (A[I*, A]I, A|I).

D’aprés la proposition 6.1, on a un homomorphisme nul
H (AJT**, AJI*, A|T)— H, (A[T**", A[I, A]I).

Par une suite de Jacobi-Zariski, on a donc un isomorphisme
H,(A/I*, AL AII)= H, (A/I***, AJI*, AJI).

En résumé pour k>2, on a un isomorphisme canonique

H, (AJI* AL, A/T)=I*[I**1
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toujours d’aprés la proposition 6.1. La méme démonstration ou le lemme 12.6
remplace I’hypothése donne des isomorphismes canoniques pour k>2

H, (4,15 A1, AID =I5 1®Aj,,jA/I.

Utilisons maintenant I’isomorphisme du lemme 27 pour » égal & 2. Si I’idéal I est
(k—1)-symétrique, on a donc un isomorphisme canonique

lim (I%L, /15" L)= I

Cela suffit pour démontrer que I'idéal I est k-symétrique. Finalement I’idéal I est
symétriquement quasi-régulier et la proposition A est démontrée.

Démonstration du théoréme A

Commengons par utiliser le complexe de Koszul (voir en particulier le lemme
12.16).

Remarque 30. Pour un A-module libre L et pour un 4-module quelconque W,
il existe des isomorphismes naturels

Torj4* (I4L/IN 'L, W)= ISL/IKT'L® AL W .
De plus il existe une suite exacte naturelle pour tout n#0

0 — Tors45 (S L/I% 'L, W) — Tory#* (I 'L/IKL, W)
— Tory 4% (S,L/I5L, W) — 0.

LEMME 31. Par rapport a L, les foncteurs suivants de la catégorie des A-modules
libres

TorSAL(INL/IK 'L, A) et Tory+*(S,L/ISL, A)

sont en fait des foncteurs de la catégorie des A-modules libres, par I'intermédiaire de L.
Démonstration. L’isomorphisme (respectivement I’épimorphisme) de la remarque
précédente le démontre dans le premier cas (respectivement dans le second cas).
Appliquons le lemme 31 a la construction 24, soit directement, soit par I'intermé-
diaire de la remarque 25.

DEFINITION 32. Les entiers n et k sont fixés. Alors les homomorphismes
suivants sont déterminés de maniére unique

t;;: Torf (11¥* Y, A) - Tor (15151, A)
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et ils forment un systéme inductif sur ’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

t;: Torg! (51511, A) - Torf (IM1**, 4)
et ils donnent un homomorphisme de modules .

*: lim Tor, ! (I§/I5*1, A) - Tor, (I1**1, 4).

De méme les homomorphismes suivants sont déterminés de maniére unique
t,;: Tor (4,/1F, A) > Tor} (4,/I% A)

et ils forment un systéme inductif sur I’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

t;: Tory! (A4;/I5, A) - Tor, (A/I*, A)
et ils donnent un homomorphisme de modules
ty: lim Tor; (A4;/1% A) - Tor; (A/I*, ).
Démonstration 33. Supposons I'idéal I extérieurement quasi-régulier, par con-

séquent symétriquement quasi-régulier. On a alors non seulement les isomorphismes
canoniques de la remarque 30

A kypk+1 ~ Tk k+1 A
TOI',, j(Ij/Ij ,J):IzLj/Iz Lj@j/lnlj
mais encore des isomorphismes canoniques

Tor (IMN1**Y, )= I NI I 1 AX1.

En passant 3 la limite, on démontre que 7" est toujours un isomorphisme. Considérons
maintenant le diagramme commutatif suivant formé de suites exactes

..Jim Tor:f(lljf“‘/ljf, A) - lim Tor, (4,/I, 4) - lim Tor,‘,‘f(lA A A)..
LTord(IYIY, A) - Torf (A%, 4) — Torg (A/I*7, 4)....

En procédant par induction sur k pour tous les n a la fois, on démontre alors que
t¥ est toujours un isomorphisme. Par conséquent non seulement les homomorphismes
suivants sont nuls :

Torfs (4,/15*", 4) » Tor (4,11}, A)
mais encore les homomorphismes suivants sont nuls

Tor? (4/I**, A)— TorZ (4/I%, )
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pour tout ##0. On a donc la condition d’Artin-Rees. Par conséquent, dans le
théoréme A, la premiére condition implique la troisiéme.

Pour terminer la démonstration, il sera fait usage du résultat classique suivant de la
théorie simpliciale.

PROPOSITION 34. Soit un A-module simplicial M, supposé libre en chaque
degré. Si le module d’homologie H,,[ M, est nul pour m#1 et égal @ M pour m=1,
alors il existe un isomorphisme canonique

MM H,[S,M,]

pour tout entier n.
Il nous faut utiliser maintenant la troisiéme partie du chapitre 13 dont voici les
points essentiels.

DEFINITION 35. Considérons une A-algébre B et une B-algébre C. Alors il
existe une C-algébre simpliciale avec un idéal simplicial J, jouissant de propriétés
remarquables & voir ci-dessous. On pose

PY(A, B, C)=H,[J%/J "] et QF(A, B, C)=H,[J%].
En fait I’idéal simplicial J, est le noyau de I’homomorphisme
B,®,C—C,y

ou B, est une résolution simpliciale de la A-algébre B et ou C, est la résolution
simpliciale triviale de la C-algébre C.

LEMME 36. Soient une A-algébre B et une B-algébre C. Alors il existe une suite
exacte naturelle

Q.71 (4, B, C)~ 0;(4, B, C) - P;(4, B, C) > ;11 (4, B, C)...

pour tout entier k.

LEMME 37. Soient une A-algébre B et une B-algébre C. Alors il existe des
isomorphismes naturels
P,(4,B,C)=H,(4,B,C) et Q}(4, B, C)=Tor, (B, C)

pour tout entier n.
Démonstration. 11 s’agit des égalités 13.13 et 13.14.
Voici maintenant le résultat de convergence de D. Quillen.

LEMME 38. Soient une A-algébre B et une B-algébre C. Alors pour toute paire
k>n, le module Q% (A, B, C) est nul, si 'anneau B est un quotient de I'anneau A.
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Démonstration. Voir la proposition 13.3 et I’égalité 13.12.
Enfin on utilisera le corollaire suivant de la proposition ci-dessus.

LEMME 39. Soient une A-algébre B et une B-algébre C. Si le module H,,(4, B, C)
est nul pour m#1 et égal @ M pour m=1, alors il existe un isomorphisme naturel

ASM= @ PX(4, B, C)
k>0
pour tout entier n.
Démonstration. 11 existe un isomorphisme naturel (voir 1’égalité 13.16)

Sc (J*/Ji)g @ (Ji/-ﬂfrﬂ)

kz0

qui permet de conclure par la proposition 34 et le lemme 37.

Utilisons a nouveau les notations utilisées précédemment et liées a I’anneau A4
et a I'idéal I.

LEMME 40. Par rapport a L, les foncteurs suivants de la catégorie des A-modules
libres

PE(S.L, A, A) et QL(S.L, A4, A)

sont en fait des foncteurs de la catégorie des A-modules libres, par l'intermédiaire de L.
Démonstration. D’aprées le lemme 39, ’homomorphisme canonique

PE(SLL, A, A) - Pi(SsL, 4, A)

est toujours un isomorphisme. La suite exacte du lemme 36 et I'isomorphisme établi
ci-dessus démontrent alors que I’homomorphisme canonique

Qfl (SAL9 A’ /I)_) Qfl (SZ‘E9 fi-, A—)

est toujours un isomorphisme. On procéde par induction sur n croissant et par
induction sur k décroissant pour 7 fixé, en tenant compte du lemme 38.

Appliquons le lemme 40 a la construction 24, soit directement, soit par I'inter-
médiaire de la remarque 25.

DEFINITION 41. Les entiers n et k sont fixés. Alors les homomorphismes
suivants sont déterminés de maniére unique
piy:Pi(4y, AL, A)~Pr(4;, 411, A)

et ils forment un systéme inductif sur I’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

p;i:PE(A;, A;/1;, A)— Pk (4, AL, A)
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et ils donnent un homomorphisme de modules
pn:lim P, (4, A;/1;, )~ P,(4, All, A).
De méme les homomorphismes suivants sont déterminés de maniére unique
qij- Qﬁ (Ais Al ff)—’ Qﬁ (Aj’ Aj/Ij’ /I)

et ils forment un systéme inductif sur ’ensemble filtrant. De plus les homomorphismes
suivants sont déterminés de maniére unique

qj:Qﬁ(Ap AJ/IJ’ A)-) Qﬁ(A’ A/I’ ‘4’)
et ils donnent un homomorphisme de modules

qt’:E_rE)Qﬁ(A_]’ A_’/IJ’ A-)_) Qfl (As A/Ia /i')

Démonstration 42. Supposons satisfaite la deuxiéme condition du théoréme A.
Les seuls modules d’homologie & ne pas €tre nuls pour les algébres en question sont
les suivants

En utilisant le lemme 39 et en passant 2 la limite, on démontre que p est toujours un
isomorphisme. La suite exacte du lemme 36 et 'isomorphisme établi ci-dessus dé-
montrent alors que ’homomorphisme g est toujours un isomprohisme. On procéde
par induction sur » croissant et par induction sur k décroissant pour »n fixé, en tenant
compte dulemme 38. Pour & nul on a donc un isomorphisme naturel (voir le lemme 37)

lim Tor’ (4;/1;, A)=Tor; (4/I, A)
autrement dit un isomorphisme naturel
lim A,L;=Tor, (4/1, 4)
ou encore un isomorphisme naturel
AZI=Tor? (4, A)
qui indique que I'idéal I est extérieurement quasi-régulier. Le théoréme A est dé-
montré maintenant.

Appendice

Il s’agit de démontrer la proposition 17. A propos des algébres filtrées et de leur
homologie, on a les deux résultats suivants (suite de Jacobi-Zariski et changement
de base).
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PROPOSITION 43. Soient une A-algébre filtrée B, une B-algébre filtrée C et un
C-module filtré W. Alors il existe une suite exacte naturelle

v+ > F%(A4,B, W)~ Fi(4,C, W) F5(B,C, W) ...

pour tout entier k.
Démonstration. Transcription filtrée de la démonstration du cas ordinaire (voir
le théoréme 5.1).

PROPOSITION 44. Soient une A-algébre graduée plate B, une A-algébre filtrée
quelconque C et un B® ,C-module filtré W. L’anneau A est supposé muni de la
filtration triviale. Alors il existe un isomorphisme naturel

F%(A, B, W)= F:(C, B® ,C, W)

pour tout entier k et tout entier n.
Démonstration. En utilisant une résolution simpliciale graduée de 1’algébre
graduée, on peut répéter la démonstration du cas ordinaire (voir la proposition 4.54).

DEFINITION 45. Une A-algébre tronquée B est une A-algébre filtrée B avec
F*B nul pour k grand. On supposera toujours que ’anneau filtré 4 est aussi tronqué
et que I’on a un isomorphisme canonique

A|F'A=B|F'B .

Un B-module tronqué W est un B-module filtré W avec F*W nul pour k grand. Son
ordre est ’entier

dW=max {k | F*W#0}.
Ces définitions généralisent les hypothéses de la proposition 17.

DEFINITION 46. Considérons un anneau tronqué A4 et un entier m positif ou
nul. Puis considérons un ensemble X de m ensembles X; non vides. Enfin considérons
deux ensembles s et ¢ de m entiers s; et ¢; strictement positifs. On peut alors considérer
une algébre tronquée, dite algébre tronquée modéle

A[XE=A[X,, .., X J0mim,

ssss ‘m

On commence par considérer la 4-algebre filtrée libre engendrée par tous les éléments
de tous les ensembles X, les éléments de I’ensemble X; recevant le degré s;. Puis on
quotiente cette algebre par un idéal bien choisi, engendré par les m idéaux suivants.
Pour chaque #, on considére la puissance #;+1 de I’idéal engendré par les éléments de
X,. On a bien une A4-algébre tronquée avec I’ordre suivant

dA[XJ;=dA+) sit;.
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Les triples (X, 5;, #;) sont appelés les composantes de 1’algébre tronquée modéle.

DEFINITION 47. Une résolution simpliciale tronquée de la 4-algébre tronquée B
est une A4-algébre simpliciale filtrée B, formée de A-algébres tronquées modéles B,,
les conditions d’acyclicité restant celles du cas filtré (voir la définition 12). Toute
algébre tronquée posséde une résolution simpliciale tronquée (voir le lemme 49
ci-dessous).

LEMME 48. Soit une A-algébre tronquée B avec une résolution simpliciale tronquée
B, et un B-module tronqué W. Alors il existe une suite spectrale

H,[Fi(A, B,, W)]=F(4, B, W)

pour tout entier k.
Démonstration. On utilise un complexe double comme dans la démonstration de la
proposition 14, mais cette fois seule une des deux suites spectrales est dégénérée.

LEMME 49. Soit une A-algébre tronquée B. Considérons I’ordre a de A, I’ordre
de B et les nombres

d,=a+ (n+1)d2_, avec d_,=p.

Alors il existe une résolution simpliciale tronquée B, avec I’ordre de B, au plus égal a d,.
Démonstration. On commence la construction pas-a-pas avec une A-algébre
tronquée modeéle B, du type suivant (voir le lemme 13)

Bo=A[Xy, ..., Xpl5:5008
algébre tronquée dont I’ordre est le suivant
dBo=a+B(B+1)2<a+p>=d,.

Supposons maintenant avoir fait la construction pas-a-pas jusqu’a B,_; dont I’ordre
est au plus égal & d,_,. Cette algébre tronquée modéle a au plus d,_; composantes

(X, 55, 8;) avec s;<d,_, et t,<d,_,.

Les composantes de B, sont obtenues soit pour des raisons de dégénérescence, soit
pour des raisons d’acyclicité.

Par dégénérescence, les composantes de B,_,; se retrouvent comme composantes
de B, et cela au plus de n maniéres différentes dans chaque cas. Cela fait introduire un
premier lot d’au plus nd,_, composantes de B, avec s; et ¢; toujours bornés par d, ;.
11 reste A obtenir I’acyclicité en degré n—1 de F*B, pour 1<k <d,_,. Pour chaque k
il faut alors une composante de B, avec s, égal & k et ¢, égal 4 d,_,. L’hypothése
initiale A/F'4 =~ B/F!B permet de négliger le cas k=0 ou il ne serait plus possible de
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tronquer. Cela fait introduire un second lot de d,._; composantes de B, avec s; et ¢;
toujours bornés par d,_;. Finalement la A-algébre tronquée modele B, a au plus
(n+1) d,_, composantes

(X;, 85, t;) avec s;<d,_; et 1,<d,_;.

Il est alors clair que I’ordre de B, est au plus égal & 'entier d,.
Voici maintenant le résultat dont la proposition 17 est un cas particulier.

PROPOSITION 50. Soient une A-algébre tronquée B et un B-module tronqué W.
Alors la condition suivante est satisfaite

FE(A,B, W)=~0 si p>n,(dA,dB)+dW

pour une fonction 1, bien choisie.

Démonstration. Grace a des suites exactes ¢lémentaires et a des décalages de
graduation, on peut se ramener au cas ou W est filtré de maniére triviale. Grace a la
suite spectrale du lemme 48 appliqué & la résolution simpliciale tronquée du lemme
49, on peut se ramener au cas d’une A4-algébre tronquée modéle B & plusieurs com-
posantes. Grice aux suites exactes de Jacobi-Zariski (voir la proposition 43) con-
cernant les algébres filtrées suivantes

A—)A[Xl f;-—»A[Xl’Xz]m,sz,.._,A[Xl’.”’X S1yeres Sm

t1, 12 miti,...otm

on peut se ramener au cas d’'une 4-algébre tronquée modéle B & une seule composante.
Grice 4 un changement de base (voir la proposition 44) on peut se ramener au cas
ou I’anneau de base A4 est I’anneau des entiers rationnels. Il reste donc & démontrer
ce cas particulier, qui prend la forme suivante d’aprés la remarque 21.

L’anneau des entiers rationnels Z et les groupes abéliens W sont gradués de
maniére triviale ci-dessous.

LEMME 51. Soient deux entiers s et t strictement positifs. Alors la condition
suivante est satisfaite

Gi(Z,Z[XT;, W)=0 si p=>m,

pour un entier T, bien choisi, indépendamment de I’ensemble X et du groupe abélien W.

Démonstration. Griace a une suite exacte de Jacobi-Zariski, on peut remplacer
la Z-algébre Z[X]; par la Z[X];-algébre Z. Utilisons maintenant le théoréme de
structure des groupes abéliens de type fini. A I'aide de limites inductives (voir le
lemme 3.24) puis de sommes directes (voir le lemme 3.23) enfin de suites exactes
(voir le lemme 3.22) on peut se ramener au cas W=Z. Il reste donc & démontrer le
cas particulier suivant de la proposition 17.
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LEMME 52. Soient deux entiers s et t strictement positifs. Alors la condition
suivante est satisfaite

Gr(Z[X), 2,Z)=0 si p>p,

pour un entier p, bien choisi, indépendamment de I’ensemble X.
Démonstration. Utilisons les modules de la définition 35

PL(Z[X], Z,Z) et Qu(Z[XT, Z, Z).

Ils sont construits & I’aide d’un idéal simplicial J, qui peut étre obtenu gradué dans
ce cas particulier. Les modules ci-dessus sont donc gradués de maniére naturelle.
Démontrons le lemme par induction sur »n. L’hypothése d’induction s’exprime de la
maniére suivante: pour m<n, les modules gradués

sont bien tronqués (c’est-a-dire tronqués avec un ordre indépendant de X). Par la
théorie simpliciale des produits symétriques (voir la proposition 13.8) on démontre
ce qui suit. Les modules gradués

Pﬁ—l(Z[X]i Za Z)an—l [J:/Jl;+1]

sont bien tronqués pour tout entier k. Grace aux lemmes 36 et 38, le module gradué
suivant est par conséquent bien tronqué

0:-1(Z[X]: Z, 2).

Utilisons encore une fois le lemme 36. Le module gradué intéressant
PL(Z[XT, Z, Z)2H,(Z[X], Z. Z)

est donc bien tronqué si le module gradué élémentaire
02 (Z[XT, Z, Z)=Tor?% (2, Z)

est aussi bien tronqué. Mais ce dernier point est évident. En effet le Z [ X' ];-module Z
posséde toujours une résolution libre graduée dont le n-éme terme est un module
gradué tronqué dont 'ordre est égal & st(n+1). Cela achéve la démonstration de la
proposition 17.
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