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Functions of Bounded mean Oscillation and Quasiconformal Mappings

H. M. REIMANN

1. Introduction

A locally integrable real valued function u is said to be of bounded mean oscilla-
tion (BMO) in R", if

1 1
@lilu(x)—“ u(x)dx

dx<K
Q|
Q

for every cube Q =R" and some constant K. The notations

uQ=Jf u (x) dx=|-(-12—|£u(x) dx with |Q|=fdx

Q Q

will be used. On the space of BMO-functions modulo constants a norm can be
defined by

lu]| g = sup :’:Iu (x)—ug| dx. (1.1)
o<k,

With this norm BMO/R is a Banach space. The space of BMO-functions was intro-
duced by John and Nirenberg [8]. We will make use of their fundamental lemma:

LEMMA 1. Assume that ucBMO. Then, if p(c)=|{xeQ:|u(x)—up|>a}| is the
measure of the set of points in the cube Q where |u(x)—uy| >0, we have

,u(a)sa e ~bolliully 10|, (1_2)

where a and b are constants depending on n only.

BMO-functions have been used in many different contexts, first in a paper of
John on rotation and strain [7] and at the same time by Moser [9] in his work on the
continuity of solutions of elliptic differential equations. Later on applications arose
in connection with singular integral operators (Stein [12]) and as spaces of interpola-
tion (Stampacchia [11], Stein and Zygmund [13]). Most recently, Fefferman and
Stein[3] characterized the space of BMO-functions as the dual of the Hardy space
H.

It seems that BMO-functions also have their place in the theory of quasiconform-
al mappings. We propose to show that the logarithm of the Jacobian determinant of a
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quasiconformal mapping f:R" - R" is in BMO. We then proceed to study transforma-
tions of BMO-functions by quasiconformal mappings. It turns out that a quasicon-
formal mapping of R" onto itself induces a continuous bijective isomorphism ¢:u—
—uof ~1 of BMO/R. Moreover this situation is in a certain way typical for quasicon-
formal mappings: If @:u—uof~1is a continuous bijective isomorphism of BMO/R
which is induced by a homeomorphism f of R” satisfying certain regularity conditions,
then f is quasiconformal.

2. The Jacobian of a Quasiconformal Mapping

For our considerations we adopt the so called analytic definition of quasicon-
formality. A function f: G — R" defined in a domain G<R" is said to be absolutely
continuous on lines (ACL), if it is continuous and if for each interval I=
={xeR":a;<x;<b;} =G f is absolutely continuous on almost all line segments in 7,
parallel to the coordinate axes. The partial derivatives of an ACL-function f exist
a.e. and the Jacobian matrix of f'at x will be denoted by F(x), its determinant by J(x).
By definition a K-quasiconformal mapping is a homeomorphism f: G — R" such that
feACL, fis totally differentiable a.e. and

sup  |[F(x)¢"<KJp(x) ae. (2.1)

EeR™, || =1

According to a theorem of Viisild [14], in this definition the regularity conditions
fe ACL and f differentiable a.e. can be replaced by the single hypothesis, that f has
generalized derivatives which are locally L"-integrable.

THEOREM 1. If f is a quasiconformal mapping of R" onto itself with Jacobian
determinant J; then logJ,€ BMO.

The proof of Theorem 1 is based on a converse to the lemma of John and Niren-
berg (Lemma 3) and on the following result due to Gehring [5]:

LEMMA 2. Assume that f is a K-quasiconformal mapping of G onto G'<R" and
that Q is a cube in the domain G with

dia Q' <dist (Q’, G") (2.2)

(Q'=1Q). Then there exist constants c and p, p>n, which depend on K and n only, such
that

n/p
p/n
(J: Jy dx) <c:[: J,dx. (23)
Q Q
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We set

L, (x)=lim sup Mt AC)
y=x ly—x|
Since f is K-quasiconformal, inequality (2.1) and the total differentiability imply
L;<KJ, ae. and J,<L} a.e. Hence according to Lemma 4 in [3] there exists a

constant ¢, (depending on K and n) such that for every cube Q<= G with dia @’ <
<dist(Q’, 9G")

J:dex<co(J[ 1/"dx) " (2.4)
Q Q

If Q is such a cube (satisfying (2.3)), then (2.4) holds for any cube contained in Q and
Lemma 3 in [5] shows that for some constants ¢ and p, p>n,

n/p
(:FJ}’"dx) sc:’:.]fdx.
Q Q

For later reference let us note a simple consequence of this lemma (cf. [5] Theorem 2)

COROLLARY. Assume that f is a K-quasiconformal mapping of G onto G’ =R" and
that Q is a cube in the domain G with dia Q' <dist (Q’, 0G"). Then

|A I IAI (p—n)/p
2.5
o)~ (IQI) (25)

for every measurable set A= Q with image A'=fA. (As above |A| stands for the n-di-
mensional measure of the set A.)
If A is a measurable set, 4= Q, then

E%=J[J,dx<(fﬁ/"dx)"lp
A A
A1\~ ) (IAI)‘””’ 21
JE™ dx
(IQI) (i ! <o) 1o

by Lemma 2 and Hoélder’s inequality.

Let us remark that for the case of plane quasiconformal mappings results similar
to Lemma 2 have previously been established by Bojarski [1] and by Gehring and
Reich [6].
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LEMMA 3. f=logueBMO if and only if for all cubes Q <R"

(]( e dx)llask (][ u? dx)-llb (2.6)
Q Q

for some positive constants a, b and k.

The fact, that inequality (2.6) is a consequence of I.emma 1 has already been
pointed out by John and Nirenberg. (The result has been stated in this form by Moser
[9].) Let us therefore assume that (2.6) holds for u=e'. It is well known that

1/t
(J( u' dx) t£0
Q

exp:[: logudx t=0
[¢]

M,=M,(u)=

is a monotone increasing function of ¢. Our assumption therefore implies M < KM,
and M,< KM _ for s=min(a, b). If we set

Q1={er: logu(x)> jf logu dx}
0

and Q,=Q\0, we obtain the inequalities

Q]! fu dxs:[: u® dx=M:<k’MS

Qi Q
and
Q]! J u tdx<k™°M,°.
Q2

After adding these two inequalities and inserting the expressions
f=logu and f, =:‘:fdx=logM0
Q
we have

feS(f-fQ) dx+fe"(f_f°) dx=f eV el dx< (kK +k7%) Q).
Q1 Q2 Q
Finally,

exp:l:slf—fgl dxgjf el ~Tel gx
Q

[}
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upon applying Jensen’s inequality. This shows that feBMO with
£l <5 log (k*+k~%). @

We shall also need a distortion lemma for quasiconformal mappings, to the effect
that the image of a cube can still be compared with a cube. This kind of result is typical
for the geometric theory of quasiconformal mappings. We choose a formulation,
which is particularly suited for our purposes.

LEMMA 4. Let f:G—R" be a K-quasiconformal mapping. There exists a constant
k (which depends on K and n) such that to every cube P' =G’ = fG with

dist(P’, 0G')>2 k diaP’
there exists a cube Q<G with fQ=Q'> P’, diaQ’ <dist(Q’, dG’) and
|Q'| <k™n"?|P'|. (2.8)

The proof is based on the geometric definition of quasiconformality, according to
which a homeomorphism f: G — R" is K-quasiconformal if and only if

mod R’ <KV~ modR

for every ring R= G. We refer the reader to the literature (see e.g. [10], [2]) for the
precise definitions and for a proof of the equivalence of the analytic and geometric
definitions of quasiconformality.

Using preliminary translations, we can assume that the given cube P’ is centered
at 0 and that f(0)=0. Consider the spherical ring R’ = G’ with complementary com-
ponents

Co={z:|z]<r'=2"1diaP’} and Ci={z:|z|>s'=k27'diaP’}.

The constant k> 1 will be determined later on. The modulus of the ring R’ is given by

’

mod R’ =log f—,=logk. (2.9)
r

We set s=inf, ¢, |f~'(z)| and r =sup, ¢, | f ~!(z)| and observe that |f ~(z)| < r for
all zeP'.

The inner complementary component C, of R=f 'R’ contains 0 and a point x,
with |x,|=r, the outer component C,; a continuum connecting oo with a point x,,
|x1]=s. According to a theorem of Teichmiiller and its space analogue (see [4], [2],

[10])
modRélog(Az (§+1)) (2.10)
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for some constant 4 which depends on » only. Since K-quasiconformal mappings
satisfy

mod R'< K, mod R
with K, =K'/~ D, we then have by (2.9) and (2.10)

logk<K, log (112 (f+ 1))
r

which is equivalent to

kKo 52 (5+1>.
r

This shows that s/r>n'/? if we choose k= (1%(1+n'/?))*°. In this situation any cube
Q<G centered at the origin with side length 2r (and diameter 2r n'/?) satisfies the
requirements of the lemma: The construction shows that diaQ’ <k diaP’ and

|Q'| <k"n"?| P’|
since |z| <k2~! diaP’ for all ze Q'. If we further assume that dist (P’, 6G')> 2k diaP’ =
=4s’, then it is clear that dia Q' <2s'<dist(Q’, 0G").

LEMMA 5. The Jacobian determinant J=J, of a K-quasiconformal mapping
[:R"—>R" satisfies

. ~1/b
}deScl (J:J""dx) (2.11)
Q Q

for all cubes Q <R". The constants b and ¢, depend on n and K only.
The inverse f ! of a K-quasiconformal mapping is K"~ 1-quasiconformal and its
determinant J ~! satisfies Gehring’s inequality (see (2.3)):

n/p
(][ Jeln dy) <c J[ J ldy (2.12)
P’ P’

for every cube P’ =R". To any cube @ =R” let us choose in accordance with Lemma
4 a cube P’ with P=f"1'P'>Q and

|P|<Kk"n"?|Q|=FK'|Q|. (2.13)

A transformation of variables for the integrals in inequality (2.12) then shows that

n/p
(IP'I‘IJJ'p/"J dx) <c|P||P'|"!.
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Because |P'|=[p J dx this can be rewritten in the form

n/p (n—p)/p
( f Jo=pin dx) <c|P] ( f de)
P P

and together with inequality (2.13) this leads to
n/(n~p)
(J: J—p)/n dx) >(ck')p/(n—p) :‘: J dx.
Q Q

If the two Lemmata 3 and 5 are combined, a bound for ||logJ/ |/, can be given by
llog Il <~ log ((ek' Y™+ (k') ")

provided that p<2n and by
IIIOgJ”* Slog ((ckl)P/(P_n) + (Ck')p/("_l’))

otherwise.
Remark 1. By definition, a K-quasiconformal mapping f'=(fi,..., f,) of R" onto
itself satisfies for i =1,..., n

K™"*1J <|gradf)|"<KJ, ae.in R"

Hence there exist g,eL*(R"), [ gillo<(n—1)logK, such that nlog|gradf;|=
=logJ,+g; (i=1,..., n). But functions in L*(R") are also in BMO and therefore
log|gradf;|eBMO (i=1,..., n).

Remark 2. Local variants of Theorem 1 can be obtained. If f: G — G’ is a quasicon-
formal mapping and if Q=G is a cube such that both dist(Q, dG) and dist(Q’, dG’)
are big enough, then logJ, considered as a function in Q is in BMO.

3. The Invariance of the Space BMO

THEOREM 2. Iffis a K-quasiconformal mapping of R" onto itself, then ¢ :u—u' =
=uof "1 is a bijective isomorphism of BMO and

Il <Clulls @3.1)

for all ue BMO, where C is a constant depending on K and n only.

We note that since the inverse of a quasiconformal mapping is also a quasicon-
formal mapping, all that has to be shown is inequality (3.1). It then follows directly
from the definition that ¢ is an isomorphism of BMO.

For the proof of Theorem 2 we assume that ue BMO and set u’ =uof ~. To a given
cube P’ we determine Q as in Lemma 4 such that P'<Q’ and |Q’|<k"n"?|P’|. The
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set A, = {xeQ:|u(x)—ug| >0} is mapped onto the set 4, = {zeQ":|u'(z)—uy| >0} and
by the corollary to Lemma 2 one knows that

|4 (IAA)"’ B
—<c| —+ .
Q'] 19|
Because of Lemma 1
|4, <a e b/l Q)

hence
I.é‘;!<ca(0—n)/1’ exp ( —bo (p_n)> .
Q] luls p

An integration of this inequality with respect to o shows that
]f lu’ (2) ~ugl dz=10'|* f |AL| do<ca® b~ p (p—n)™* ull,
o 0

and in combination with inequality (2.8) of Lemma 4

:f: lu’ (z2)—ug| dz<k"n"'? :[: lu’ (z)—ugl dz<const |ul|,
% o

One is left with the task of replacing u, by

Up = ][ u'(z)dz,
P'
but

b

lup —ug) =H: (v (z)—up) dz
%
sO
:{: lu' (z)—up| dz<|up —uy) +:f lu" (2)—ugl dz<2:’: lu' (z)—ugl dz.
P’ P’ P
This shows that ||u'||, < Cllul|x with C=2k" n"?c a?»~"/? p~1p(p—n)~1.
THEOREM 3. Assume that f is a (orientation preserving) homeomorphism of R"

onto itself, that fe ACL and that f is totally differentiable a.e. If the induced mapping
@:u—u'=uof "1 is a bijective isomorphism of BMO and if

||« <Cllully forall ueBMO 3.1

then f is a quasiconformal mapping.
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Let us make precise that the hypothesis of ¢ being a bijective isomorphism of
BMO is meant to include the assumption that f and its inverse are absolutely contin-
uous with respect to n-dimensional measure. If this were not the case, the isomorphism
¢ could not be defined properly: if the zero set N were mapped onto a set N’ of positive
measure, then both 4’ =0 and u” = yy-, the characteristic function of N’, were in BMO
and both would satisfy

w=uof ! u' =uyof 1
with #=0 a.e. in R", ue BMO.

Our first aim is to construct suitable functions ¥ eBMO.

LEMMA 6. (John-Nirenberg).

1
log— [x|<1
|x]

0 x| =1

u(x)=log* % =

is in BMO.
For a proof see [9].

LEMMA 7. Assume that g is a continuous function defined on R with

kg=sup |g (x)|+ sup lg(x)—g(»)l (1+10g+ I-1—~)<oo. (3.2)

xeR x,yeR x'"yl

If ueBMO (R") and if

k,= sup fu(x) dx
el=1 o

<00,

then v(x, y)=u(x) g(y)eBMO (R"*1).
Let 0, <R" denote the cube with side length 7, centred at the origin. If ue BMO,
then for r<1

» logr
lug, —ug,|< (2" +1) (1—@—2) fleel (3.3)

This can be seen as follows: Set u;=ugy, , s=0, 1,... Then
t=tymsl =2 [ ] d
Q25

<o f [ (%) =ty 1| dx+ [ull o <(2"+1) [l

Q2-5+1



Functions of Bounded mean Oscillation 269

=< > =il <@+ 1) .
k=1

For r =277 this is equivalent with

—log

" r
lug, —ug,|<(2"+1) leel] s -

log2

For arbitrary r, 0< r <1, inequality (3.3) can now easily be derived.

A cube Q =R"*! with sides parallel to the coordinate axes can be represented as a
direct product Q=P x S of cubes P =R", S =R. Set ap=upg,, Where g, is the value
of g at the center of S. Then

J( lv(x, y)—agl dx dy
Q
SJ[ lg (¥l dyJ[ |u (x)—upl dx+|up|J[ lg (¥)—gol dy.

If |Q]>1 this gives immediately

:’: lv(x, y)—agl dx dy<k, (lull«+k,).
Q

If |Q]| <1, we make use of (3.3) and (3.2) to conclude that

N

log | P|
)+mwm

nlog?2

and

][ lg (¥)—gol dy<k,(1—n"'log|P|)~".
S

Therefore

][ lv(x, ¥)—aql dx dy<2k, (k,+2""*|ulls)
0

for any cube with sides parallel to the coordinate axes. If Q =R"*! is an arbitrary cube,
there exists a cube Q, > Q with sides parallel to the coordinate axes and with

|Qol < (n+1)"*D2|Q).
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So the estimate

{ lv—vg| dx dy<2f lv—ag,| dx dy<2(n+1)"* D72 :flv——agol dx dy
Q Q Qo

for the mean oscillation over Q shows that
lollx<4(n+ 1) D2k, (ke +27"Flul 4 ).

As an application set u(x)=1log* 1/|x|, xeR and let g(y) be the piecewise linear,
continuous odd function defined for yeR by

I—|y—1] 0<y<2,
g(y)=10 2<y,
-g(-y) y<o.

Since [g(x)—g(y)|<min {2, |x— y|}, g satisfies the assumptions of Lemma 7 (with
k,<3). From the Lemmata 6 and 7 we conclude that

1
v(xy, x2)=g(x;) log" —
|x4]

is in BMO. For dimensions n>2 let us define ve BMO by
v(x)=10og™ 1/|x;| h(x;)... h(x,-1) &(xn)

with
1 x| <1,
h(x)=12—|x| 1<|x]| <2,
0 |x| =2,

v then has compact support and v(x)= g(x,)log* 1/|x,] for |x,|<1, i=1,...,n.
Finally, for r >0 let v, be defined by

o, (x)=u(fr).

Certainly ||v,« = ||v]l4, since the space of BMO-functions is invariant under dilations.
With a=(ay,..., a,)eR} (i.e. a;>0, i=1,...,n) we associate the sets U, ,=
={x:|x;|<a;r,i=1,..., n} and the functions

_ an,rl_lvr(x) xEUa,r
Par=10 otherwise

and

‘/’a,r= I‘Pa.rl'
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LEMMA 8. If he L'(R"), then there exists a sequence r; converging to 0 such that
ae.inR"

lim @, , *h(t)=lim | @,, (x)h(t—x)dx=0

j— oo j— oo
Rn
and
lim y, ., * h(t)=c,h(t)
j o
with
ca=ft//a,,dx= :f lvo(x)| dx.
Rn® Ug, 1

¢, is a continuous function of aeR’. For a=(«y,..., ¢,_;, 1), a;<1, ¢, can easily
be calculated:

c,=%(1—loga,). (3.4)

For the proof of Lemma 8 consider the differences

dy ()= 4+ h (1)~ 0= f @ar (%) (R(t—%)— h (1)) dx
and "

dy ()=t 5 b (1) = coh (1) = f Varr (x, (A (t=x)— (1)) dx.

They satisfy

r—0
R” R®

tim [ |d, ()] de<lim !//a,,(x)f|h(t——x)—h(t)|dtdx=0.
r—0
R'l

k=1, 2 because

lim | |A(t—x)—h(2)| dt=0

x*ORn
and ¥, , has its support in U,,,. For some sequence r; with lim;_, r;=0 the diffe-
rences d; and d, will therefore converge pointwise a.e.

For any rotation ¢ of R set ¢, , . (¥)=¢, (¢ 'x), U,,.,=¢ '(U,,,) and
vy, (X)=0v,(e™'x)=0(g ™ x/r). Observe that |v, ,|4=Iv],, since BMO is invariant
under rotations. We think of ¢ as being given by an element in O(n), the group of
orthogonal » x n-matrices. As an immediate consequence of Lemma 8 let us note:
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COROLLARY. Let {g;} and {a,} be countable dense subsets of O(n) and R",
respectively. If he L'(R"), then for any pair g, a,, there exists a sequence {r;} with

lim;_, , r;=0 such that

lim @, 4., % h(t)=0 (3.5)
Jj= o

and
lim Yo, 4,.r,* B ()=c,, (1) (3.6)
Jj=roo

for all teR™\N, where N is a set of measure zero which is independent of the pair ¢,, a,,.
The proof of Theorem 3 consists in showing that supscgn ¢=1 [F(x) &|"<
<K detF(x)a.e. in R (F(x) is the Jacobian matrix of f at x.) This clearly is a local
property. Based on our hypothesis and on the corollary to Lemma 8 we can assume
that at x=0 the following conditions are satisfied:
i) fis (totally) differentiable
i) J r=det F#0, in view of the remark following Theorem 3

iii) (3.5) and (3.6) hold for h(x)={gf(x) {i:;

A, 0
F can be written in the form F =gDgo, where g, ceO(n) and D= ( N > is a di-

0 A,
agonal matrix with A,>1,... >4,>0 (this is true for any nXxn-matrix M with
det M#0). Let us exclude the case deto= —1 by possibly interchanging the order of
the coordinates. If we compose f with the rotation ¢, then the resulting mapping
g=0"1of still satisfies the assumptions of Theorem 3 and the three additional condi-
tions above. Note that J,=J, and that the Jacobian matrix of g at 0 is G=¢D. The
same is true if we consider the mapping ¢f, ¢>0, instead of f (with J,,=c"J,). There-

2 0
fore we can assume without loss of generality, that F =D with D= ( AN ) and
0 A,
A1=245... =24,=1. We then have to show that A1 <KJ,... 4,.
With this in mind let us choose ¢; and a,,=(2,,, ..., %,,) in such a way that

llkamk_ll<8 k=1,...,n (3.7)
Icam_%(l —logaml)l <e (38)

(cf. (3.4)) and such that for r small enough, say r <d,, U;=fU,, , , contains the
cube S ={z:|z;/<r(1—¢)} and is contained in the cube Q={z:|z;|<r(l +¢)}. We
remind that U, , , was defined by U, , ,=¢ *{x:|x;|<ra;, i=1,..., n}.
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By the main hypothesis (3.1) w,=ug,,of‘1 is in BMO and |w,|l«<C| ]« So
with

vo=fwn@as

Q
Jf o (2) ol dz <1517 [ o, () wol d:
Uy Q

1+e\" 1+eY’
< (:@) j}: lw, () —wol d2<<i—_—g> Cllvlls.
Q

In this inequality we can replace w, by the mean value
ﬁ,=:{: w,(z)dz
U,
if we instead write

Jf w, (2) =3, dz<2(%f—:) Clol.

U'r

Due to the absolute continuity of f with respect to n-dimensional Lebesgue measure

U ,

T),=l——lg—‘l’T‘:—l”‘—"—1 :5: Vgr () I o (x) dx
IU 1,am,rl

="'“r_i]~,—|— Qis Gm, I * h (0)

so by the corollary to Lemma 6

lim ,,=0.
jo o

Hence there exists d,>0 (0, <J,) such that for r =r;<d,
1+eY"
:[: Iw, (2)| dz<s+2(1-———é) Clvll. (3.9)
v,

On the other side

U
J( v, (=) dz:L’f"i}'?‘T’—'l Vewom s 1 (0)
v
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so by (3.6)

lim :F lw,, (2)l dz=(J,(0)) ' ¢, J,(0)=c,, . (3.10)

j= oo
Combining the two results (3.9) and (3.10) with (3.8) we conclude that for j bigenough

$(1-logay,)—e< J( i, (2) dz<a+2<i——}j)" C lols.-
U’,-J
Together with (3.7) this implies
1 +logl, <4 C|v|x

since £€>0 was arbitrary. The inequality A}<KA,... 4, therefore holds with
K=en—DEC|vlla-1)

4. A Local Version

The object of this section is a local version of the Theorems 2 and 3. If G is a
domain in R" we denote by BMO (G) the subspace of BMO consisting of all functions
ueBMO with support in G (the support of a locally integrable function ueL;, (R"
is the complement of the largest open set O =R” with u(x)=0 a.e. on O).

LEMMA 9. If ueL;, (R") and if suppucG, then

lulle <4 SuP:f lu(x)—upl| dx,
J

where the supremum is extended over all cubes P with dia P<4n'/? diaG.

G is contained in a ball B with radius diaG. If QG #0 for some cube with
dia Q >4n'/? dia G, then there exists a cube P = Q with side length n~!/? diaP =2 dia B
such that PNnB=QnB>Q0nG. With N={xeP:u(x)=0}, |[N|=|P|-|G|=
=>(1-27")|P|, we obtain

flu—upl dx=|P|—1f|uPl dx+|P|™! f lu—up| dx
P N

" P\N

which shows that

lupl<(1=27")"1 f lu—up| dx.
P
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Finally

Ji lu—ug| dx<2f |u—up| dx
Q Q

<2i0"! f jup dx+2IQI"qu—upl dx
Q\P P
<2(1-—2—")—1J:|u—u,,| dx

and the proof is complete.

THEOREM 4. Assume that f:G — R" is a (orientation preserving ) homeomorphism,
f€ACL, and that fis differentiable a.e. Then f is a quasiconformal mapping if and only if
every point x€G has a neighbourhood U such that ¢:u—u'=uof " is an isomorphism
of BMO (U) onto BMO (fU) which satisfies

12| < Collull

for all ueBMO (U) with a fixed constant C, independent of U.

The proof for the quasiconformality of a homeomorphism f: G — R”" satisfying all
the above hypotheses is contained in the proof of Theorem 3. In order to show that a
quasiconformal mapping gives rise to local isomorphisms of BMO (U) onto BMO
(U"), U’'=fU, the full strength of the Lemmata 2 and 4 has to be used.

For xeG we choose a neighbourhood U in such a way that

4n'2(1 +2k) dia U’ <dist(U’, 8G"),
where k is the constant of Lemma 4. If P’ is a cube with dia P’ <4n'/? dia U’ and with
P'nU'#0, then

dist(P’, 0G’) 2 dist(U’, 3G')—diaP’>diaP’(1 +2k)—diaP’ =2k diaP".
Hence by Lemma 4 there exists a cube Q<G with fQ=0Q’'> P’, |Q’| =k"s"*|P’| and
with

dist(Q', 0G')>diaQ'. (4.1)

For a given function ue BMO (U) with «’ =uof ™! we can then proceed as in the proof
of Theorem 2. Condition (4.1) ensures the validity of Lemma 2. It follows (see (2.11))
that

f |u’ (2)—up| dz<C |lull,
s

and this inequality holds for all P’ with diaP’<4n'/? diaU’. Therefore by Lemma 9
' ll « <4C|ull 4= Collul
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