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Ûber den ersten Eigenwert des Laplace-Operators

auf kompakten Riemannschen Flâchen

Heinz Huber (Basel)

1. Einleitung

1.1. Es sei Mg die Menge der kompakten Riemannschen Flâchen vom Geschlecht

g^2. Auf jeder Flâche «f€Mg gibt es genau eine Riemannsche Metrik mit konstanter
Krùmmung — 1, welche mit der konformen Struktur von !F vertrâglich ist. Es sei

A & der Laplace-Beltrami-Operator beziiglich dieser Metrik und A^^) der kleinste
positive Eigenwert von A&. (Das Spektrum von A& ist diskret; Âo — 0 ist ein einfacher
Eigenwert, aile ûbrigen Eigenwerte sind positiv [1]). In der vorliegenden Arbeit soll
gezeigt werden :

(A) AL(g
(B) lim

g->oo

1.2. Wir fûhren jetzt den Beweis von A und B auf zwei Hilfssâtze zuriick.
Die Differentialgleichung

(1)

besitzt genau eine Lôsung

F,eC2[l,a>), F,(l)=l. (2)

Fur fi>i besitzt F^ Nullstellen in [l,oo). (Siehe 3.1). Es sei tf(ju)>l die kleinste
dieser Nullstellen und

a(n) a(fi)

JI Fldx. (3)j
Wir werden zeigen :

LEMMA 1. Furn>i,^eMg9g^2gilt:
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LEMMA 2. Fur n>2 gilt: ?(/i)<6/^/0*-2)2.
Wegen Lemma 2 gibt es eine Zahl fio>2 derart, dass

Dann folgt aber aus Lemma 1 :

A1(^")<2//0 V^eMg, g>2.

Damit ist A bewiesen. Wegen

folgt aus Lemma 1 :

Daraus ergibt sich: lim^^ At

2. Beweis von Lemma 1

2.1. Wir betrachten ein festes fi>i, schreiben F, a fur F^ a(pt) und definieren:

fjFl+e m tl9 à]
J

[0 in [a, oo), 0<e<l. W

Dann gilt:

Uoo), (5)

/" ist stetig in [l,oo) mit Ausnahme von a. An dieser Stelle ist aber /"(*)=
O(\x-a\"a"É)) und somit gilt:

U*). (6)

Daher kann man mit dem Glâttungsverfahren von Friedrichs eine Folge
mit folgenden Eigenschaften konstruieren:

/.€C-[l,oo), /n=0 in [2a, oo), (7)

fn-+fJn -*/' gleichmâssig in [1, oo), (8)
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Definieren wir

L-(,"-l)£+Jx£. (.0,

so gilt:

l.°o), (11)

•0. (12)

î

Aus (4) und der Differentialgleichung (1) ergibt sich leicht:

in [l.oo). (13)

2.2. Mit Hilfe von /,/„ definieren wir gewisse Funktionen in der hyperbolischen
Ebene. Als Modell dieser Ebene wâhlen wir den Einheitskreis

versehen mit der Riemannschen Metrik

welche die Kriimmung — 1 besitzt. Fur die hyperbolische Distanz q (0, z) ergibt
sich dann :

'""l- (14)

Fûhren wir im Nullpunkt geodâtische Polarkoordinaten

q=q(0,z), \l/

ein, so wird

Daher erhâlt man fur das Flâchenelement und den Laplace-Beltrami-Operator:

do Sin q dq dx// (15)

A 15/. d\ i d2

Jetzt definieren wir

S(z)=/(Cose(0,z)), S,,(z)=/B(Cose(0,z)). (17)
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Da Cosq wegen (14) eine C°°-Funktion auf H ist, so folgt jetzt aus den in 2.1 auf-
gezâhlten Eigenschaften von /,/„ und aus (15), (16):

9eC2(H-y), y (18)

(19)

in i/-y, (20)

(21)

9n -> 5 gleichmâssig auf #, (22)

f |JS,-J3| Jcd->0, (23)

a

fs<fo 27r f F1+edx. (24)

2.3. Es sei jetzt iFeM^g^l. Dann wird i/ zur universellen Ueberlagerungsflâche
von 3F durch eine konforme Projektion IJ.H-^^. Mit dieser Projektion kônnen wir
die Differentialgeometrie von H auf & verpflanzen. Der Einfachheit halber bezeich-

nen wir den Laplace-Operator und das Flâchenelement auf & wieder mit A und dœ.

Die zur Projektion FI gehôrige Deckgruppe F hat folgende Eigenschaften :

(I) Die Elemente TeF sind Isometrien von H. Verstehen wir unter 79 die Funk-
tion z-»3(r(z)), so gilt daher

AT^TA VTeF.

(II) F wirkt stark diskontinuierlich auf H: Sind Kl9 K2 Kompakta in H, so ist
die Menge

{TeF \T{K1)nK2*$}

endlich.

(III) F besitzt einen kompakten Fundamentalbereich A a H, und es gilt:

jî dœ= dco=4n(g-l). (25)

A &

Da#, 9n kompakten Support in #besitzen, kônnen wir nun wegen (II) definieren:

0=1 T9, 0n=I TV (26)
TeT TeT
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Dièse Funktionen sind offensichtlich automorph bezûglich der Deckgruppe F.
Daher gibt es auf J5" eindeutige Funktionen cp, <pn derart, dass

(poll 0, (pnon Gn. (27)

Aus (27), (26) und (18)-(23) ergibt sich nun:

(peC2(^-n(y)), (28)

(77 (y) ist eine geschlossene Kurve auf «^", welche endlich viele mehrfache Punkte
besitzen kann),

auf ^-n(y), (29)

(30)

(31)

(pn-+(p gleichmâssig auf !F (32)

\Acpn-A(p\dœ-+0. (33)

Das beruht ailes, wie leicht einzusehen, auf den Eigenschaften (I)—(III) von T und
auf der Tatsache, dass #, 9n kompakten Support in H besitzen. Aus (32), (33) ergibt
sich noch

(pnA(pndœ-> (pAcpdco, (34)

denn:

J (pnA<pndœ-\ (pA(pdco= I (pn(A(pn-A<p) dco+ i A(p((pn-(p) dœ

2.4. Fur den Beweis von Lemma 1 ist es von grosser Bedeutung, dass man die Intégrale
ûber & von cp und cp2 recht explizit berechnen bezw. abschâtzen kann:

\ çdco= \ G dw=y I TSdco

f 9dco= S dco.

Ter TU) H
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Somit erhalten wir wegen (24)

a

f <pda> 2n f Fl+Bdx (35)

y î

Es wird im folgenden sehr wichtig sein, dass der Wert dièses Intégrais unabhângig
ist von der Wahl der Flâche tFeMg. Das Intégral von cp2 ist dagegen von !F ab-

hângig; man kann aber eine von !F unabhângige untere Schranke angeben: Wegen

S^Ogiltnâmlich

TeT S, TeT TeT

Daraus folgt nun wie oben:

a

f ç2dco>2n f F2(i+e)dx. (36)

2.5. Der Eigenwert Xx {&) kann bekanntlich durch eine Extremaleigenschaft charak-
terisiert werden (siehe z.B. [1]):

f ij/ A4f dco>Xt (JF) f il/2 dco (37)

d(û=O (38)

Wegen (31) und (25) erfùllt

die Voraussetzungen (38). Somit folgt aus (37) wegen \& Acpndco=0:

f w x/f 2
1 /f ,\2\

ç>n J<p,, aco^Xi («^J I q>* do) - 1 I q>n dco I
J \J 47t(g-l)VJ //

Fur n-+ oo folgt daraus wegen (32) und (34):

f //Ta / f V\
I (ù A(ù dco^Ài (S^i I I 0 dco 1 I 0 dco I I. (39)

J \J 47r(g-l)U //^ ^ ^"
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Wegen ç^O und (29) gilt aber

(1 + e) fi <p2 dœ^ cp Acp dœ.

Somitfolgtaus(39):

1-

Daraus und aus (35), (36) ergibt sich:

1-
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dco

J
i j

Jetzt kônnen wir noch e gegen 0 gehen lassen und haben damit Lemma 1 bewiesen.

3. Beweis von Lemma 2

3.1. Fp ist eine Legendresche Funktion erster Art. Man sieht das sofort, wenn man
die Differentialgleichung (1) in der Legendreschen Normalform schreibt:

fur

Die einzige Lôsung FeC2[l,oo) mit ^(1)=! ist bekanntlich die Legendresche

Funktion erster Art Pv :

(40)

Aus der Darstellung (38) in [2] pag. 208 ergibt sich leicht:

nx J

112

a=arg
r(ht)

Daraus folgt, dass FM fur n>i Nullstellen in [l,oo) besitzt. (Aus der Integraldar-
stellung (122) in [2] pag. 272 ergibt sich, dass F^ fur 0</j<£ keine NulJstellen in
[l,oo) besitzt).
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3.2. Wir betrachten nun ein festes ju>i und schreiben wieder F, a fur F^ a{jx). Wir
haben dann

1, F(a) O, F>0 in [1,0), a>\. (41)

Aus der Differentialgleichung (1) berechnet man sofort:

*"(l)=-~ (42)

F" (l)=ifi(fi+2) (43)

rw-^n.). (44)

Aus (1) und (41) folgt

und daher

(x2-l)Ff<0 in (1,0].

Daraus ergibt sich wegen (42):

F<0 in [1,0]. (45)

3.3. Wir zeigen jetzt:

F">0 in [1,0]. (46)

Zunâchst folgt aus (43)-(45):

Gâbe es nun xoe(l, a) mit ir/'(^:0)<0, so gâbe es x1? x2 derart, dass

I<x1<xo<x2<a,

F>(Xl)=r(x2)=09 (47)

F"<0 in (xl9x2).

Dann gâbe es aber

te(x»x2) (48)

mit Fm(^)=0. Aus der Differentialgleichung (1) folgt:
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Die linke Seite dieser Gleichung ist wegen (47), (48) negativ, die rechte Seite aber

positiv wegen (45). Damit ist (46) bewiesen.

3.4. Aus (42) und (46) ergibt sich

*'(*)>-£ in IU à]

und somit wegen /r(l) 1 :

^(x-l) in [l,fl]. (49)

Daraus ergibt sich fiir x a:

2

Da die rechte Seite der Ungleichung (49) im Teilintervall [1,1+2/ju] nicht negativ
ist, sofolgtaus(49):

a 1+2/fi 1+2/fi

F2dx> j (l-ï(x-i)j dx ^. (50)J
1

Aus (1) und (46) folgt

in [l,tf].
Daraus ergibt sich wegen F(l) 1 :

F(x)<x"M/2 in IU à].

Somit wird

a a oo

f f -u/2 f -a/2 2
F dx^ x M/ ax< jc M/ ax fur u>2.

J J J A*-211 î

Daraus und aus (50) folgt Lemma 2.
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