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Uber den ersten Eigenwert des Laplace-Operators

auf kompakten Riemannschen Flachen

Heinz HUBER (Basel)

1. Einleitung

1.1. Es sei M, die Menge der kompakten Riemannschen Flichen vom Geschlecht
g>2. Auf jeder Fliche # € M, gibt es genau eine Riemannsche Metrik mit konstanter
Kriimmung —1, welche mit der konformen Struktur von & vertrdglich ist. Es sei
4 & der Laplace-Beltrami-Operator beziiglich dieser Metrik und A, (&%) der kleinste
positive Eigenwert von 4 4. (Das Spektrum von 4 4 ist diskret; A,=0 ist ein einfacher
Eigenwert, alle iibrigen Eigenwerte sind positiv [1]). In der vorliegenden Arbeit soll
gezeigt werden:

(A) A,(g)=sup{A(F) | FeM,} <.
(B) l_i.l;lAl(g)<71f-

g

1.2. Wir fiihren jetzt den Beweis von A und B auf zwei Hilfssdtze zuriick.
Die Differentialgleichung

(x*=1) F"(x)+2xF' (x)+uF(x)=0, ueR, (1)
besitzt genau eine Losung
F,eC?*[1,0), F,(1)=1. (2)

Fiir u>% besitzt F, Nullstellen in [1,00). (Siehe 3.1). Es sei a(u)>1 die kleinste
dieser Nullstellen und

a(p) 5 a(u)
0G)=( [ Faas) | [ Frax. ()
1 1
Wir werden zeigen:

LEMMA 1. Fiir u>3%, FeM,, g>2 gilt:

#2h(F) (1"2(1((:31))’
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LEMMA 2. Fiir u>2 gilt: q(u)<6p/(p—2)>
Wegen Lemma 2 gibt es eine Zahl u,>2 derart, dass

_ 4 (ko)
2(g-1)
Dann folgt aber aus Lemma 1:

M(F)<L2py VFeM,, g22.

=% Vg=2.

Damit ist A bewiesen. Wegen

q(p) q(n)
- >0 Vg>14—-, >
2(z=1) g 5 n>%
folgt aus Lemma 1:

s ves1+4¥) sy

9w 2
2(g-1)

Daraus ergibt sich: HEM A,(g)<}.

1

4,(g)<

2. Beweis von Lemma 1

2.1. Wir betrachten ein festes u >}, schreiben F, a fiir F,, a(¢) und definieren:

f={€1+“ in [1,d] (4)

in [a,00), O<e<l.
Dann gilt:
feC'[1,0), (5)

f" ist stetig in [1,00) mit Ausnahme von a. An dieser Stelle ist aber f"(x)=
=0(|]x—a]~*~?) und somit gilt:

freP[1, ). (6)

Daher kann man mit dem Glittungsverfahren von Friedrichs eine Folge {f,},>1
mit folgenden Eigenschaften konstruieren:

f,eC®[1,®), f,=0 in [2a, x0), (7
Li=fifi=f gleichmissig in [1,00), (8)

f]j:,”—-f”l dx—0. 9)
1
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Definieren wir

L=(x2—1)£—i—25+2xd%, (10)
so gilt:

L(f)eZL'[1, ), (11)

JiLu-L(rnas—o. (12)

Aus (4) und der Differentialgleichung (1) ergibt sich leicht:

L(f)+(1+8) w0 in [1,m). (13)
2.2. Mit Hilfe von f, f, definieren wir gewisse Funktionen in der hyperbolischen
Ebene. Als Modell dieser Ebene wihlen wir den Einheitskreis

H={zeC||z|<1}

versehen mit der Riemannschen Metrik

2, ldz)?
=4

welche die Kriilmmung —1 besitzt. Fiir die hyperbolische Distanz ¢(0, z) ergibt
sich dann:

1 2
Cose(0, z)= f_i:;:—z : (14)

Fithren wir im Nullpunkt geoditische Polarkoordinaten
e=0(0,z), Y=argz
ein, so wird
ds* =dp? +Sin? o dy/?.
Daher erhilt man fiir das Fldchenelement und den Laplace-Beltrami-Operator:

dw=Sing dg dy (15)

1 0 i 1 92
—A=—— —|Sing — |+——— —;. 16
Sin g do ( me 69)-I_Sin2 o oY (16)
Jetzt definieren wir

9(2)=f(Cose(0,2)),  9,(2)=1a(Cose(0, 2)). (17)



254 HEINZ HUBER

Da Cosg wegen (14) eine C®-Funktion auf H ist, so folgt jetzt aus den in 2.1 auf-
gezihlten Eigenschaften von £, £, und aus (15), (16):

|2 =(£—i)l/2} : (18)

8eCo(H), 9eC*(H-y), v={z

49= —(Lf) (Cosg)e £ (H), (19)
49<(1+e)ud in H-—y, (20)
3,€Cq (H), (21)
3,—9 gleichmissigauf H, (22)
f 148, ~ 48] do — 0, (23)
H

f&dw=2an1”dx. (24)
H 1

2.3. Es sei jetzt FeM,, g=2. Dann wird H zur universellen Ueberlagerungsfliche
von & durch eine konforme Projektion IT: H — . Mit dieser Projektion k6nnen wir
die Differentialgeometrie von H auf % verpflanzen. Der Einfachheit halber bezeich-
nen wir den Laplace-Operator und das Flidchenelement auf % wieder mit 4 und do.
Die zur Projektion IT gehorige Deckgruppe I' hat folgende Eigenschaften:

(I) Die Elemente TelI sind Isometrien von H. Verstehen wir unter 79 die Funk-
tion z— 3(7T(2)), so gilt daher

AT=TA VTerl.

(II) I' wirkt stark diskontinuierlich auf H: Sind K,, K, Kompakta in H, so ist
die Menge

{Tel | T(K;)n K,#0}

endlich.
(III) I besitzt einen kompakten Fundamentalbereich 4 = H, und es gilt:
fdco=f do=4n(g—1). : (25)
4 ¥

Da 9, 9, kompakten Support in H besitzen, konnen wir nun wegen (II) definieren:

=Y T9, 0,=Y T8,. (26)

Tel Tel
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Diese Funktionen sind offensichtlich automorph beziiglich der Deckgruppe I
Daher gibt es auf # eindeutige Funktionen ¢, ¢, derart, dass

9oll=0, @, ol=0,. 27)
Aus (27), (26) und (18)~(23) ergibt sich nun:
eeC(¥), ¢eC*(F-II(y)), (28)

(II(y) ist eine geschiossene Kurve auf %, welche endlich viele mehrfache Punkte
besitzen kann),

dp<(1+e)up auf F—II(y), (29)
dpe £V (F), (30)
PaeC* (F), (31)
¢, ¢ gleichmdissig auf % (32)
f |dp,—Ap| dw — 0. (33)

Das beruht alles, wie leicht einzusehen, auf den Eigenschaften (I)-(III) von I' und
auf der Tatsache, dass 3, 3, kompakten Support in H besitzen. Aus (32), (33) ergibt
sich noch

fﬂond¢ndw—>f<pA¢ dw, (34)
F

F

denn:

f @, 4@, do— f @ 4¢ dwi= f ¢, (4¢,—49) dw+f 40 (¢,— ) dw!
F F

F
<||A<p,.—A<plll sgplfp,.l+||A<pll1-sgpl<p..—tpl-

2.4. Fiir den Beweis von Lemma 1 ist es von grosser Bedeutung, dass man die Integrale
iiber & von ¢ und ¢? recht explizit berechnen bezw. abschitzen kann:

fgadw f@dw > [reda

Tel 4

=z f .9dco=f9dw.

Tel T(4)



256 HEINZ HUBER

Somit erhalten wir wegen (24)

a

f¢dm=2an”°dx (35)
F

1

Es wird im folgenden sehr wichtig sein, dass der Wert dieses Integrals unabhéngig
ist von der Wahl der Fliche #eM,. Das Integral von ¢? ist dagegen von & ab-
hingig; man kann aber eine von & unabhingige untere Schranke angeben: Wegen
93>0 gilt ndmlich

0*=(Y T9?*= Y (S9)(T9= Y TH.

Daraus folgt nun wie oben:

a

f ¢*dw>2n f F20+9 gy (36)

F 1

2.5. Der Eigenwert 4, (#) kann bekanntlich durch eine Extremaleigenschaft charak-
terisiert werden (siehe z.B. [1]):

f v Ay do> i, (F) f v? do (37)
g ¥
Yy e C” (&), fn// do=0 (38)
¥
Wegen (31) und (25) erfiillt
1
‘ll=(pn—am anzm Pn do

die Voraussetzungen (38). Somit folgt aus (37) wegen (& 4¢, do=0:

J;cp,.mp,. dozA (F) (iwﬁ dw—-‘i;(;——_-f) (J% dw>2)-

F

Fiir n— oo folgt daraus wegen (32) und (34):

quq; do>1, (f)(iq»z dm—‘ﬁT;_—ﬁqq; dco)z). (39)

F
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Wegen ¢ >0 und (29) gilt aber

(1+s)ujg02 dw)fqu(p do.
g ¥

Somit folgt aus (39):
- 2~
(o)
1

(1+e)u=i (F)| 1- z
- F J
Daraus und aus (35), (36) ergibt sich:
- a D)
(fFl'l'e dx)
1 1
l4e)p2d (F)| 1—
( +8)[l 1( ) 2(g—1) a
fF2(1+s) dx
- 1 J

Jetzt konnen wir noch & gegen 0 gehen lassen und haben damit Lemma 1 bewiesen.
3. Beweis von Lemma 2
3.1. F, ist eine Legendresche Funktion erster Art. Man sieht das sofort, wenn man

die Differentialgleichung (1) in der Legendreschen Normalform schreibt:

(1=x?) F"=2xF'+v(v+1) F=0
v=—%+ix, x=@—-3"*>0 fir u>}1.

Die éinzige Losung FeC?[1,00) mit F(1)=1 ist bekanntlich die Legendresche
Funktion erster Art P,:

F,=P,. (40)
Aus der Darstellung (38) in [2] pag. 208 ergibt sich leicht:
F,(x)=cx""?(cos(x log(2x)+a)+0(x"%)), x—>+o0,

Tgnx\'? I (ix)
={2 , a=arg-————, >1.
¢ ( X ) g1’(4}+ix) >4

Daraus folgt, dass F, fiir u>3} Nullstellen in [1,0) besitzt. (Aus der Integraldar-
stellung (122) in [2] pag. 272 ergibt sich, dass F, fiir 0<u<% keine Nullstellen in
[1, c0) besitzt).
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3.2. Wir betrachten nun ein festes > % und schreiben wieder F, a fiir F,, a(n). Wir
haben dann

F(1)=1, F(a)=0, F>0 in [l,a), a>l. (41)

Aus der Differentialgleichung (1) berechnet man sofort:

()= _F 2
F(1)=~3 (42)
F'(1)=4pu(p+2) (43)
F'(a)=— ;;3 F'(a). (44)

Aus (1) und (41) folgt
d
a(xz-—l)F’<0 in (1,a)

und daher
(x*-=1)F'<0 in (1,4a].
Daraus ergibt sich wegen (42):
F'<0 in [1,4d]. (45)

3.3. Wir zeigen jetzt:
F'>0 in [1,d]. (46)
Zunichst folgt aus (43)-(45):
F"(1)>0, F"(a)>0.
Gibe es nun x,€(1, @) mit F"(x,)<0, so gibe es x,, x, derart, dass
l<x,<xy<x,<a,
F"(x,)=F"(x,)=0, (47)
F'<0 in (x, x;).
Dann gibe es aber
e(xy, x2) (48)
mit F” (¢)=0. Aus der Differentialgleichung (1) folgt:
4LF" (&)= —(u+2) F' (&)
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Die linke Seite dieser Gleichung ist wegen (47), (48) negativ, die rechte Seite aber
positiv wegen (45). Damit ist (46) bewiesen.

3.4. Aus (42) und (46) ergibt sich
p no
F'(x)= —5 in [1, a]
und somit wegen F(1)=1:
F(x))l—g(x—-l) in [1,ad]. (49)
Daraus ergibt sich fiir x=a:

2
14+-<a.
7

Da die rechte Seite der Ungleichung (49) im Teilintervall [1, 1+ 2/u] nicht negativ
ist, so folgt aus (49):

a 1+2/p 1+2/u

2
2
Jdex> f F*dx> J (1—‘—‘(x—1)) dx=_. (50)
2 3u
1 1 1

Aus (1) und (46) folgt
2xF'+uF<0 in [1,a].
Daraus ergibt sich wegen F(1)=1:

F(x)<x™?* in [L,4d].

Somit wird
—-nf2 —u/2 2 .0
Fdx<| x dx< | x dx=————§ fir u>2.
“—-
1 1 1

Daraus und aus (50) folgt Lemma 2.
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