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Fortsetzung von Spezialisierungen: ein idealtheoretischer Zugang

URrs SCHWEIZER (Mathematisches Institut Basel)

§1. Einleitung

Sei 4,, (resp. P,) der m-dimensionale affine (resp. projektive) Raum iiber einem
algebraisch abgeschlossenen Korper k und seien U< A4,,, V<= A,, W<P, irreduzible
algebraische Mengen. Mit f (resp. g) bezeichnen wir die Projektion von V'x U auf
U (resp. von W x U auf U).

Jeder algebraischen Teilmenge A< ¥V x U (resp. B Wx U) ordnen wir A'<U
(resp. B'=U) zu. Dabei soll A’ (resp. B’) der topologische Abschluss beziiglich der
Zariskitopologie von f(4) (resp. g(B)) in U sein. Bekanntlich gilt in dieser Situation:

(i) Es gibt eine echte algebraische Untermenge A" von 4’ mit 4" L f(A)=A'.

(ii) B'=g(B).

(ii) besagt, dass g fiir jedes U eine abgeschlossene Abbildung ist, d.h. dass der
projektive Raum komplett ist (vgl. Mumford [2, p. 104]). (i) besagt, dass f(4) fast
abgeschlossen ist, genauer gesagt, dass sich f(4) von A’ hochstens um eine algebrai-
sche Menge niedriger Dimension unterscheidet.

Eine einfache Ueberlegung zeigt, dass es geniigt, (i) und (ii) fiir irreduzible alge-
braische Mengen 4 und B zu beweisen. Dann besitzen aber U, V, W, A und B gene-
rische Punkte (u)=(uy,..., 4,), (0)=(V1s---s U,)s (W)=Wo, ..., W,), (@)=(ay,-.., Ayim)
und (b)=(by, -, b,+,) in den entsprechenden Rdumen iiber einem Universalkorper
Qok vonk.

Ein Punkt (#') von U liegt im Bild von f (resp. g) genau dann, wenn sich die Spe-
zialisierung k[u] —k[«'] endlich fortsetzen ldsst auf k[u, v]—k[u, v'] mit einem
geeigneten (v") (resp. homogen fortsetzen ldsst auf k[u, w] — k[u', w'] mit einem ge-
eigneten (w')).

Der Beweis von (i) und (ii) kann mit Hilfe von altbekannten Fortsetzungssitzen
fiir Spezialisierungen gefiihrt werden (vgl. [3, Samuel, Chap. I, §§1-3]).

Das Problem, Spezialisierungen fortsuzetzen, kann auch idealtheoretisch formu-
liert werden. Sei Ry=k[u], R=Ry[X;,..., X,] ein Polynomring, p={FeR/F(v)=0}
und qo={FeR,/F(u')=0}, dann sind p = R und g, = R, Primideale und es gilt p " R,
=(0). Die Spezialisierung k [u] — k[u'] ldsst sich genau dann auf k[u, v]—>k[u', v']
fortsetzen, wenn es ein Primideal q < R gibt mit qn Ry=q, und q=p.

Die idealtheoretische Formulierung des Problems, Spezialisierungen homogen
fortzusetzen, lautet: Sei R'=R,[X,,..., X,] mit der Graduierung des Polynomrings
versehen, R, wie vorher, p’'={FeR’'/F(w)=0}, dann ist p’ ein homogenes Primideal,
welches das Ideal X=(Xy, ..., X,) nicht enthilt und es gilt p n R,= (0). Die Spezia-
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lisierung k[u] — k[u'] lasst sich genau dann homogen fortsetzen auf k[u, w] - k[u/,
w'], wenn es ein homogenes Primideal q’ = R’ gibt mit ' " Ry=qy, ¢’>p’ und X¢q’.

In der vorliegenden Arbeit werden die Fortsetzungssitze fiir Spezialisierungen in
grosser Allgemeinheit idealtheoretisch bewiesen. Diese liefern zusammen mit dem
Hilbertschen Nullstellensatz neue Beweise fiir (i) und (ii).

Als Anwendung wird schliesslich ein dimensionstheoretisches Resultat fiir noe-
thersche Ringe hergeleitet. Ist R, ein Ring, so bezeichnen wir seine Krullsche Dimen-
sion mit dim R, und verstehen darunter das Supremum aller Lingen von Primideal-
ketten in R,. Ist po<= R, ein Primideal, so definieren wir dimp, als Supremum aller
Langen von Primidealketten in R,, die von p, aufsteigen, d.h. dimp,=dim R,/p,.
Schliesslich soll der Rang von p,, abgekiirtz rgp,, das Supremum aller Lingen von
Primidealketten in R, zwischen (0) und p, sein, d.h. rgp,=dim R,,,, wobei R,,, die
Lokalisierung von R, bei p, ist.

Man sagt, R, erfiille den Rangsatz, wenn R, noethersch ist und fiir jedes Primideal
Po< R, rgpo+dimp,=dim R, gilt.

In dieser Situation beweisen wir fiir jeden Polynomring R=R,[X;,..., X,] iiber
R, und jedes Primideal pcR: rgp+dimp>dim R—1. D.h. das Bestehen des Rang-
satzes vererbt sich bei Adjunktion von Unbestimmten beinahe. Dies mag erstaunen,
haben doch andere dimensionstheoretische Regelméissigkeiten diese Eigenschaft
nicht. So zum Beispiel gibt es Ringe, die katenarisch aber nicht universal katenarisch
sind. Dabei heisst ein Ring R, katenarisch, wenn fiir je zwei Primideale p,=q,<= R,
Jjede unverfeinerbare Primidealkette zwischen p, und q, die gleiche Linge hat, und
universal katenarisch, wenn mit R, auch jeder Polynomring iiber R, diese Eigenschaft
besitzt. Nagata hat ein Beispiel fiir einen noetherschen Ring gegeben, der zwar
katenarisch, aber nicht universal katenarisch ist (vgl. [1, Matsumura, pp. 87-88)].

Ich mé6chte an dieser Stelle Herrn Prof. Dr. W. Habicht danken fiir seine Anregun-
gen und sein Interesse an dieser Arbeit.

§2. Inhomogener Fortsetzungssatz

Sei R, ein noetherscher Ring und R=R[v,,..., v,] eine iiber R, endlich erzeugte
Algebra, die R, als Unterring enthalt.

DEFINITION 1. Das Fortsetzungsproblem heisst beziiglich des Primideals p =R
losbar fiir ein Primoberideal qo = R, von po=p N R, genau dann, wenn es ein Primober-
ideal q < R von p gibt mit q "\ Ry =q,. '

Das Fortsetzungsproblem ist bekanntlich nicht immer 1sbar (Beispiel: Ry=k[X],
R=R,[Y],p=(XY—1)und qo=(X)). Aber es gilt:

SATZ 1. Es gibt ein echtes Oberideal a, von po mit der Eigenschaft, dass das Fort-
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setzungsproblem beziiglich p hochstens fiir diejenigen Primideale g, nicht losbar ist, die
a, umfassen.

Dieser Satz liefert sofort (i). Sei ndmlich p= Ry [ Xy, ..., X,]|=k[u] [ X, ..., X,] das
zu A gehorige Primideal, d.h. p={ f(4, X)eR: fiir alle (v, v") aus 4 gilt f (', v')=0}.
Dann gehort p,=p N R, zu A’ und das Nullstellengebilde A” = U des Ideals q, erfiillt (i).

Man iiberlegt sich leicht, dass Satz 1 nur fiir Polynomringe R=R,[Xj,..., X,]
bewiesen werden muss. Wir schicken dem Beweis zwei Lemmatas voraus.

LEMMA 1. Sei (R, m) ein lokaler Integrititsbereich mit Maximalideal m und
Quotientenkorper K. Ist fe R[ X |,¢ mR[ X ], ge K[ X ] und fge R[ X], so liegt g schon in
R[X].

Beweis. Seif=Y a,X'(a;eR),g=) b;X’(b;eK)undfg=) c¢.X*(c,eR).

Ist a, der hochste Koeffizient von £, der nicht in m liegt, so gilt fiir die b; folgendes
Gleichungssystem :

a, bn+ap+1bn-—1+"' =Cp+n
ap—lbn+ap By &+ =Cp+n-1

"+ap b1+ap+\1b0=Cp+l
"’+ap_1b1+ap b():Cp.

Wegen der Wahl von p liegt die Determinante dieses Gleichungssystems nicht in m,
ist also eine Einheit in R. Daraus folgt fiir j=0, ..., n b;e R, wobei n der Grad von g ist
und das Lemma ist bewiesen.

LEMMA 2. Sei wiederum (R, m) ein lokaler Integrititsbereich mit dem Quotien-
tenkorper K. Ist fe R[ X |, ¢ mR [ X] und irreduzibel iiber K, so ist p=fR[X] ein Prim-
ideal. Das Fortsetzungsproblem beziiglich p ist losbar fiir m, falls ein Koeffizient von f
von positivem Grad nicht in m liegt.

Beweis. fK[X] ist ein Primideal, da K ein Korper und f irreduzibel iiber X ist.
Lemma 1 besagt, dass das Primideal fK[ X] n R[ X] schon von f aufgespannt wird und
die erste Behauptung ist bewiesen.

Die Losbarkeit des Fortsetzungsproblems fiir das Maximalideal m ist gleich-
bedeutend mit a=mR[X]+fR[X]3# R[X]. Jedes Polynom aus a, das nicht schon im
Ideal mR[ X] liegt, hat einen Koeffizienten von positivem Grad, der Einheit ist in R.
Also enthilt a die Eins nicht und somit ist auch die zweite Behauptung bewiesen.

Beweis von Satz 1. Wir verwenden Induktion iiber die Variablenanzahl n. Sei n=1.
Wir kénnen ohne Beschrinkung der Allgemeinheit p,=(0) annehmen. Ist p auch (0),
so kann das Fortsetzungsproblem fiir jedes Primideal qo <R, vermége qoRo[X]
gelost werden und die Behauptung ist in diesem Fall mit a, = R, bewiesen.

Andernfalls gibt es ein f#0 in p von kleinstem Grad. fist irreduzibel iiber K, dem
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Quotientenkorper von Ry. Sei f=Y ;50 @, X%, ap=) ;>0 Ra; und qo = R, ein Primideal,
welches a, nicht umfasst. Wir lokalisieren nach g, und kénnen annehmen, (R,, q,)
sei lokal. Lemma 2 liefert die Losbarkeit des Fortsetzungsproblems fiir g, und die
Induktionsverankerung ist bewiesen.

Sei also n grosser als 1. Wiederum diirfen wir p=(0) annehmen. Es gibt ein Prim-
oberideal p’ <R von p vom Rangn mit p’ n Ry=(0). Haben wir ein a, gefunden, wel-
ches Satz 1 fiir p’ statt fiir p erfiillt, so tut es dies auch fiir p. Wir konnen deshalb
zusétzlich rgp =n voraussetzen.

Sei p=pnR[X;,..., X,_;]. Dann gibt es nach Induktionsannahme ein Ideal
bo<=Ry, bo#(0), sodass das Fortsetzungsproblem beziiglich § fiir alle Primideale
Go < R, losbar ist, die b, nicht umfassen.

Weiter gibt es nach Induktionsverankerung ein Ideal cc R=R,[X,..., X,_,]
welches P echt umfasst, derart, dass das Fortsetzungsproblem beziiglich p fiir alle
Primideale q < R, welche zwar §, nicht aber ¢ umfassen, 16sbar ist. Wegen rgp =n gilt
rgPp=n—1, somit cNRy=c,#(0), also auch ay=by N ¢y # (0).

Sei qo<=R, ein Primideal, welches a, nicht umfasst. Zundchst umfasst q, erst
recht b, nicht. Also gibt es ein Primoberideal q < R von $ mit q N Ry=(q,. G, umfasst
aber auch nicht ¢,, also umfasst g erst recht nicht ¢ und es gibt ein Primoberideal g = R
von p mit q n R=gq, woraus qn R, =q, folgt und Satz 1 ist vollstindig bewiesen.

§3. Homogener Fortsetzungssatz
Sei R=@ ;>0 R, ein noetherscher graduierter Ring.

SATZ 2. Das Fortsetzungsproblem ist beziiglich jedem homogenen Primideal p = R
und fiir jedes Primoberideal o = R, von po=p N R, losbar durch ein homogenes Prim-
ideal < R mit dimqR,,=dim p R,,,.

Dieser Satz liefert sofort (ii). Sei ndmlich Ry=k[u], R=Ry[X,,..-» X,], P<R
das zu B gehorige homogene Primideal. Dann ist po=p R, das zu B’ gehorige
Primideal. Es gilt X=(Xy,..., X,) ¢p, also dimpR,, > 1. Entspricht q, einem Punkt
(w') von B’, d.h. go > Py, so liefert das q des Satzes die Existenz eines Punktes (w')e W
mit (w', u’)e Bund damit (w')eg(B).

Beweis von Satz 2. Da R noethersch ist, besitzt das homogene Ideal @ ;. o R, eine
endliche R-Basis aus Formen, a,,..., a,. Hat q; den Grad e;, so ist R ein graduierter
Restklassenring von R'=R,[X{' ..., X;"]. Esist deshalb klar, dass Satz 2 nur fiir Ringe
der Gestalt R’ gefiihrt werden muss. :

Ausserdem kann ohne Beschrankung der Allgemeinheit p,=(0), rgqo/po=1 und
(Ry, qo) lokal angenommen werden. R, ist als eindimensionaler lokaler Integritdts-
bereich ein Cohen-Macaulay-Ring und somit universal katenarisch (vgl. [1, Matsu-
mura, pp. 108-109]).
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Sei reqg, r#0. Da p homogen ist und r in g, liegt, folgt p +rR# R. Also gibt es ein
minimales Primoberideal q von p +rR, welches notwendigerweise homogen ist. Dann
folgt " Ry=q, und rgq/p=1 (vgl. [1, Matsumura, p. 77]). Weil R katenarisch ist,
heisst das fiir ¢'=qo®(D ;>0 R;) rgq’=rgp+dimpR, +1=rgp+rgq/p+dimqR,,
und somit dimqR,,=dim pR,,.

§4. Anwendung

SATZ 3. Sei R=Ry[X,,..., X,] ein endlich dimensionaler Polynomring mit
notherschem Koeffizientenring, p < R ein beliebiges Primideal undp,=p N R,. Dann gilt:

rgpo+dimpy+n—1<rgp+dimp <rgpo+dimpy+n.

Dieser Satz liefert sofort die in der Einleitung erwidhnte Vererbung des Rangsatzes
bei Adjunktion von Unbestimmten. Man beachte, dass der Satz nicht verschirft wer-
den kann. Zunichst ist klar, dass fiir gewisse p die rechte Ungleichung zur Gleichung
wird.

Aber auch die linke Ungleichung kann fiir gewisse p zur Gleichung werden, wie das
folgende Beispiel zeigt. Sei Z der Ring der ganzen Zahl und peZ eine Primzahl,
Ry=2Z,;, R=Ry[X] und p=(14+p+pX)R. Dann gilt rgp+dimp=1+0=rgp,+
+dimpo+n—1.

Beweis von Satz 3. Es gilt rgp=rgpo+rgp/poR (vgl. [1, Matsumura, p. 79)].
Zusammen mit dimpyR=dimp,+n>rgp/poR+dimp folgt daraus sofort die zweite
Ungleichung.

Die erste Ungleichung beweisen wir induktiv iiber dimp,. Ist dimp,=0, so
rgp+dimp=rgp,+rgp/poR+dimp=rgp,+n (vgl [1, Matsumura, p. 92]).

Ist dimpy=1, so rgp+dimp=rgpo+rgp/poR+dimp>rgp,+rgp/poR+
+dimpR,,=1gPo +n.

Sei also dim p, > 1 und a, < R, das Ideal, dessen Existenz in Satz 1 bewiesen wurde
Entweder ist a, = R,, dann ist das Fortsetzungsproblem beziiglich p fiir jedes Primideal
(o> P, losbar, insbesondere fiir ein qo mit dimqg,=dimyp,— 1. Sei q die Losung. Sie
erfiillt nach Induktionsannahme rgq+dimq >rgqo+dimqge+n—1,alsorgp+dimp=
=rg8Po+18P/Po R+ dimp=1gpo+18p/Po R+dimq + rgq/p=rgpo + 18qo/Po +
+1gq/qo R+dimq=rgpo+1+dimgo+rn—1=rgpo+dimpy+n—1, weil R, /poR,,
ein Cohen-Macaulay-Ring ist (vgl. Beweis von Satz 2) und wir sind in diesem Fall fertig.

Oder es ist ay # R,. Finden wir trotzdem ein Primoberideal g, = R, von p,, welches
a, nicht umfasst mit dimq,=dimp,— 1, so konnen wir gleich schliessen wie im Fall
ao=R,.

Nun gibt es aber hochstens endlich viele Primideale qo = po mit dimqy,=dimpy—1
und g, >a,, denn jedes solche ist ein minimales Primoberideal von a,. Mit Lemma 3
ist deshalb Satz 3 vollstindig bewiesen.
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LEMMA 3. Sei R ein endlich dimensionaler noetherscher Integrititsbereich mit
dim R> 1. Dann gibt es unendlich viele Primideale in R von der Dimension dimR—1.

Beweis. Sei mc R ein Maximalideal mit rgm=dim R. Ohne Beschrinkung der
Allgemeinheit diirfen wir annehmen, (R, m) sei lokal. Sind p,,..., p, Primideale in R
der Dimension dim R—1, so gibt es wegen dim R>1 ein Element aem, ¢p; U... Up,.
Dieses Element erfiillt dim R/laR=dimR—1 (vgl. [1, Matsumura p. 78]). Also liegt
aR in einem Primideal q mit dimg=dim R— 1. Dieses q ist verschieden von p,,..., p,
und das Lemma ist bewiesen.
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