Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 49 (1974)

Artikel: Scalar Curvature, Non-Abelian Group Actions, and the Degree of
Symmetry of Exotic Spheres

Autor: Lawson, H. Blaine jr. / Yau, Shing Tung

DOl: https://doi.org/10.5169/seals-37991

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-37991
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

232

Scalar Curvature, Non-Abelian Group Actions,
and the Degree of Symmetry of Exotic Spheres

H. BLAINE LAWSON, JR.1) and SHING TUNG YAU

Abstract

It is proved that if a compact manifold admits a smooth action by a compact, connected, non-
abelian Lie group, then it admits a metric of positive scalar curvature. This result is used to prove that
if Z'» is an exotic n-sphere which does not bound a spin manifold, then the only possible compact
connected transformation groups of X' are tori of dimension < [(» -+ 1)/2].

§1. Introduction and Statement of Results

It has been known for several years that if a compact spin manifold M admits either
a non-trivial S* action or a metric of positive scalar curvature, then 4 (M)=0; and it
has been at times conjectured that these hypotheses are directly related, in particular,
that the existence of an S'-action implies the existence of a metric of positive scalar
curvature. This conjecture turns out to be false because of the following two results.

THEOREM 1.1. (N. Hitchen [3].) Let Z" be any exotic sphere which does not
bound a spin manifold. Then X" does not admit a riemannian metric of positive scalar
curvature.

For n=1 or 2 (mod8), the exotic n-spheres which bound spin manifolds form a
subgroup BSpin, of index 2 in the group @, of homotopy n-spheres.

THEOREM 1.2. (G. Bredon [2].) For n=2 (mod8), the spheres "€ ©,—BSpin,
admit non-trivial S* actions.

The idea of the proof of Theorem 1.1 is that by Atiyah and Singer [1] the di-
mension of the space of harmonic spinors (mod2) on a compact, riemannian spin
manifold M can be identified with a certain KO-Theory invariant « (M) of the spin-
cobordism class of M. This invariant was introduced by Milnor and shown by Milnor
and Adams to give a non-trivial homomorphism a:0,— Z, for n=1 or 2 (mod8).
(See [0], [9].) However, by a result of Lichnerowicz [ 8], if the metric of M has positive
scalar curvature (in fact, k>0 and #0), then there are no harmonic spinors.

In [9] Milnor actually constructes compact spin manifolds of type M®"*!=
=N®x §! for n=1 and 2 such that a«(M3"*1)50. Consequently, it is not even true
that a free S'-action implies the existence of a metric of positive scalar curvature.

1) Research partially supported by the Sloan Foundation and NSF Grant GP-34785X.
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This failure of the above conjecture motivates the principal result of this paper.

MAIN THEOREM. If a compact manifold admits a smooth, effective action by any
compact, connected, non-abelian Lie group (that is, if it admits a non-trivial S action),
then it admits a riemannian metric of strictly positive scalar curvature.

Thus, we have the following diagram of results.

3 an S! action

Jan $? action\ &1—: A=0 (for spin manifolds)

3 a metric with
k>0
We now recall an elementary differential topological invariant.

DEFINITION 1.3. The Hsiang index of symmetry of a smooth n-manifold M"
is the integer

S(M")=sup {dimgG:G is a compact subgroup of Diff (M")}.

It is known that S(M")<4n(n+1) with equality if and only if M"=5" or RP".
Furthermore it has been proven by Wu-Yi Hsiang [5] that if 2"€®,, n>40, is an
exotic sphere, then

SE)<int+1. (1.1)

This result is sharp since from the Brieskorn representations one can easily see
one that the Kervaire spheres X", n=4k+1, have & (2")=$n*+3. However, if
considers exotic spheres which do not bound parallelizable manifolds, the estimate
(1.1) can be improved [4], [6]. Furthermore, R. Schultz [11], [12] has shown that
there exists an infinite family of homotopy spheres for which & (2")<3%n. As a con-
sequence of our main theorem and Theorem 1.1 we have the following

THEOREM 1.4. Let X" be an exotic n-sphere which does not bound a spin manifold.
Then the only compact, connected transformation groups of X" are tori. In particular,

("< [”_;r—l] .

We reiterate that ©,/BSpin,=Z, for n=1 or 2 (mod8).
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Proof of Theorem 1.4. The first conclusion is an immediate consequence of the
main theorem and the discussion above. The second conclusion can be seen as follows.
If n is even, any toral transformation group 7* must have a fixed point set, and the
induced linear action on the normal spaces to the fixed point set must be effective. Thus,
k<n/2. For n odd, we refer to the work of Ku [7].

Theorem 1.4 raises the question of allowable torus actions on exotic spheres. There
are results of this type due to R. Schultz who has a method of proving the non-existence
of (Z,)" actions on exotic spheres in @, for n=2p*—2p—2 and p a prime [13]. In
particular it can be shown that there are three exotic 10-spheres for which
18 (2')<2

As a final note, we point out that the conclusion of Theorem 1.4 holds for any
compact spin manifold M for which «(M)+0. Since the a-invariant is additive with
respect to connected sums of manifolds, it is always possible to change the differentiable
structure of M, in dimensions =1 or 2 (mod8), to make a (M )#0.

§2. The Basic Construction

Let G be a compact, connected, non-abelian Lie group acting differentiably (and
effectively) on a compact manifold M. The purpose of this section is to outline
a method of using this action to construct a metric of positive scalar curvature
on M.

We begin by considering the simplest possibility, namely, when the action is free.
In this case we have a principal G-bundle n: M —- M’'= M/G. Any invariant metric
on M gives us a connection, i.e., an invariant field of horizontal planes, and we lift
to these planes a fixed riemannian metric from M. Let & be the Lie algebra of G with
some Adg-invariant inner product, and carry this inner product over to M by the
canonical identification ¥ <X,,. Now for each >0 we have a riemannian metric
g.=gy+1%gy where g, and g, are the horizontal and vertical inner products defined
above.

LEMMA 2.1. The orbits of G in the metric g, are totally geodesic submanifolds.

Proof. Let B denote the second fundamental form of a fixed orbit. Choose any
Xe% Xy and let H be an invariant horizontal field. Then, since <X, H)=0 and
[X, H]=0,

(B(X, X), H)={VxX, Hy= —(X, VxH)= —{X, VyX)= —1H| X|*=0
(where (.,.) denotes any of these metrics and V is the associated riemannian connec-
tion), and the statement is proved.

We shall now apply the O’Neill identities for the curvature of a riemannian sub-
mersion with totally geodesic fibers [10]. Let n: M — M’ be any riemannian submer-
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sion2) and let ()", (-)” denote orthogonal projection onto the horizontal and vertical
subspaces respectively of T, M at any point. Then the fundamental tensor of the sub-
mersion is a (2, 1) tensor which assigns to each XeX,, a section 4y of Hom(TM)
given by

Ax (V)= (Vg Y*) + (Vi V)" (2.1)

for YeX,. If X and Y are both horizontal, then 45 (Y)=—A4,(X)=3[X, Y]’

We now consider the family of metrics g, constructed above on the principal
G-bundle n: M — M, and for each ¢ we let A* denote the fundamental tensor of r for
the metric g,. For any X, YeT M we let K' (X A Y) denote the sectional curvature of
the (X, Y)-plane in the metric g,, and similarly we let K'(-) denote the sectional
curvature of the common, submersed metric on M’. Let H, H' be local, orthonormal
horizontal fields on M and let ¥, ¥V’ be canonical vertical fields which are orthonormal
in the metric g;. Set ||| =g, (-, *). Then it follows easily from O’Neill [10] and the
formula for curvature of a biinvariant metric on G, that:

K (HAH') =K' (n HAm H')— 32| [H, H']I?, 2.2)
K (HAV) =12 |44 (V)12 (23)
K'Y AV)= 5 IV VI, (2.4)

Since G is non-abelian, it is clear that for all ¢ sufficiently small the metric g, has
positive scalar curvature.

For a general action of G on M the procedure is much more complicated and the
estimates more delicate. The outline of our construction is as follows.

Step 1. Introduce a G-invariant metric on M.

Step 2. Let G carry a biinvariant metric b and consider the free G-action ¢ on
G x M given by ¢,(h, x)=(g"h, g(x)).

There is a natural map n°:Gx M — M given by projection along the orbits.
(n*(g, x)=g ' (x).) We now introduce a family of metrics g, on G x M very much as
we did above. Using the product metric on G x M we have defined an invariant field of
normal planes to the orbits of the ¢-action. We lift the metric of M to these planes via
n®. Along the orbits we introduce the metric #2b via the inclusion ¥ <X, given
by ¢. By Lemma 2.1 the orbits of ¢ in the metric g, are totally goedesic.

2) This is defined as follows (cf. [10]). Let n: M — M’ be a submersion between riemannian mani-
folds. For xe M there is an orthogonal splitting 7-M = V; @ H; into vertical and horizontal sub-
spaces where ¥V is the tangent space to the fiber n~1(n(x)) through x. Then = is called riemannian if
7ty | Hz: Hz—TrzM’ is an isometry for all x.
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Step 3. Each metric g, on Gx M is invariant under the G action y where
Y, (h, x)=(h-g™", x). Hence, there is a metric &, on M for which the right hand projec-
tion n:G x M — M is a riemannian submersion.

We shall show that if the original metric (Step 1) is appropriately chosen near the
fixed-point set of G, then for all ¢ sufficiently small the metric g, will have positive
scalar curvature.

§3. Curvature Estimates away from the Fixed-Point Set

In this section we shall compute the scalar curvature of the metrics g, on M away
from the fixed point set M°. Actually, since sectional curvatures increase under a
riemannian submersion (cf. Samelson [15], or [10, Cor. 1]), and since we are only
interested in finding a positive lower bound, it will suffice for us to compute the average
horizontal sectional curvature for the submersion n:G x M — M.

We assume we are in the situation set up in the beginning of Step 2 above. Fix a
point xe M —MS. Then there is an orthogonal splitting ¥=%, @Z, where ¥, is the
Lie subalgebra of the isotropy subgroup G, of x. There is a natural embedding
i.:?,.sT,M given by the action of G on M. Let ¢, denote the orthogonal complement
of i,?,in T M. Then

Te.n(GXxM)2%,07,.0i,7,Pt,.

The canonical embedding ¥ T, ,,(G x M) is given, with respect to the above split-
tings of these spaces, by (d, e)— (d, e, i.e, 0). We now choose an orthonormal basis
{e, ..., &} of 2, (in the biinvariant metric of G) so that {i,e; i.e;>=0;8;; where

;>0 for all i. Then for each ¢>0 there is a basis &, of T, ,,(Gx M) as follows

~

1 1 1 1, B N
ﬂ;'—-{; Nisoees p Nies —t‘fp o C1s €15 vvs 615 M +ovs '7'"}

where for each i:
ni€%, fiet, &=e+ie, Ei=(0izei_ixei)/°'i(l+°'i2)s

where the n; and 7; form orthonormal bases of ¢, and ¢, respectively in the product
metric. Note that the #; and ¢; come from fields canonically associated by ¢ to an
orthonormal basis of ¥, and, furthermore, that {n%$¢;, n3&;>=4,; for all i, j. (To check
this second fact note that n® (g, x)=g ! (x), and so for g=identity, we have 7% (e, v)=
= —i,e+v.) Thus, we have the following.

Fact 3.1. % is an orthonormal basis of T, ,,(G x M) in the metric g, constructed
in Step 2. The elements in &, denoted above with a tilda span the horizontal space for
the submersion n® (and those without a tilda span the vertical space).
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Notice that the splitting into horizontal and vertical spaces for the submersion
n® is independent of ¢. This is not true of the submersion 7, which we must now con-
sider. Let A;=0;(1+07), and set

1 1
V;:-:{_t L/ETRERY) _t N> vtl’ T U;},

r;f;:={ﬁl’ cees Fims tla cres h;}

where for each i,

U§=(5i+'1igi)/\/l‘2+li2,
K= (A&~ 128 )t/ 22 +12.

The following is straightforward to check.

Fact3.2. ¥ and &, form orthonormal bases respectively of the vertical and
horizontal subspaces of T, ,,(G x M) in the metric g, for the submersion 7 defined in
Step 3.

The remainder of this section is devoted to finding a positive lower bound for the
average of the sectional curvatures of the metric g, over the space Hj=span#~.

To compute the curvature of the metric g, we must know the riemannian connec-
tion V*. Actually, it will suffice to relate the curvature for time ¢ to those for time 1,
and we now make the notational convention that: items indexed by t will have the
index deleted for the case t=1. The first step in doing this relative computation is the
following.

LEMMA 3.3. Let C4(Y)=VyY—V.Y for X, YeXgxy. Then
CL(Y)=(1=t2)[Vgn ¥+ VyuX*T"

where (-)* and (-)" denote orthogonal projection onto the horizontal and vertical sub-
spaces respectively for the submersion n®.

Proof. 1t is straightforward to check that the connection V* I y—C! is torsion
free and satisfies V'g,=0.

Now for each t>0 we have the curvature transformation

fo, Y= fo, Y] [V}, tr] ’

and the fundamental tensor A’ (cf. §2) of the submersion n? in the metric g,. We note
that

Cx (¥)=(1—1%) (Ax (Y)+ 4y (X))".

A straightforward computation now gives the following.
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COROLLARY 3.4. For all t>0,

Ry, y=Ryx,y+(VxC*)y—(VyC*)x—[Cy, Cyl, (3.1)
AL (V)= Ay (V)= (1= 1) (Veu X" (32)
It is not difficult to check that

[(VxC)y(Z2)]'=A4x(Cy(Z)), [Cx, Cy]"=0.

Using these identities and Equation (3.1) or using O’Neill’s identities and Equation
(3.2) one can without difficulty establish the following result.

PROPOSITION 3.5. Let x, y, z, w denote vectors which are vertical and %, 7, Z, W
denote vectors which are horizontal for the submersion n®. Then for all t>0 we have
the following identities.

(R, 2, Wh=12(R,, 2, W) (3.3)
(R, 42, W),=0 \ (3.4)
(RS, 52, Wy =1 (Rg 52, w) + 12 (1—1%) {[4s, 45] (2), WD (3.5)
CRE &, W =12 Ry 7, wy—1* (1= 1) (A (W), 4: (¥)) (3.6)
(R332, wh=1" Ry 52, W) (3.7)
(R, 5% Wy=(Ry, 5%, W)+ (1= 1*) [2{4: (5), 4: (W))

+(A4;(2), A; (%)) —<4;(2), 4: (W)>]. (3.8)
In particular, from (3.8) we have the following identity on sectional curvature.
K'(ZAP)=KEAr$)+3(1—1%) |4:(P)I*. (3.9)

Recall that we are interested in computing the “horizontal” scalar curvature of
the metric g,. Hence, we need to compute terms of the form: K*(h; A h}), K* (ki Aff;)
and K*(#; Afj;). We begin with the most complicated term.

K (i A #y)=<Rie, n ey B3
1

=t4 (Az+t2) (A~,2+t2) <R;‘§i—!2;"i, }._,gj—zzfjaifi_ tzgi, }’Jéjnt EJ)!
i J
1 s . -
=t4 (2.-2+t2) ().2-+t2) {Aizj-}? <R: jis et t° <R%,}i, I
i J

0 0 3
224, KR, o= 2238 RYE, e+ 250t KR, 51, I
— 22,88 (RS 51, oy —21% CRE 51, JDe+ 220 jt* CRE, iy
+ AP (R 50, D+ At CRY, i IO
where for notational convenience we have replaced £; by i and &, by 7.

(3.10)
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Now from Proposition 3.5 we have that the second two terms in this expansion are
zero. Furthermore, as ¢]0, the second curvature term in the expansion is O (1) and
all other curvature terms are O(t?). We combine this with the following elementary
observations. For #>0,

A2

SIS |
A+

and if A7 +¢2<1, then

A2
Ai2<i?—i—t3<1. (3.11)
Furthermore,
At
m<% ; (3.12)
2
arpst (3.13)

Finally, we observe that (R; ji,j>=|[e; e J-]Hi, where || - ||, is the original biinvariant
metric on G. Putting this all together, we have the following.
PROPOSITION 3.6. For eachi,j=1,...,1,
1 A3
2 (2 +47) (£ +17)

K (KA K)= I[e: €;11%+0 (1)

as t}0.

In a similar fashion, we have that

K' (K nfij)= {42 R 5, J>e+ 1* (R 58, ] = 22487 CRY 51, )} =0 (1).

(3.14)

2 (A2 +12)
Combining this with Equation (3.9) we have proved:

PROPOSITION 3.7. For all i, j, K*(H;Afi;)=0(1) and K*(fj; Afj;)=0(1) as t} 0.

Without any loss in generality we may assume that G=SU(2) or SO (3) since any
connected, non-abelian Lie group has such a subgroup. We normalize the biinvariant
metric b to have (constant) sectional curvature 1. Then the term | [e;, ¢;] |2 in Proposi-
tion 3 equals 1 for all i, j. Moreover, at each point xe M —M¢ we have dim#_>2
since G has no subgroups of codimension one. Consequently, if at each x we index the
1, so that A, >4, >..., then for each open neighborhood U of the fixed point set M€
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we have a constant ¢c=C(U)> 0 such that 4, > 1, >c throughout M — U. Thus, from
Propositions 3.6 and 3.7 we have the following.

THEOREM 3.8. Let G=SU(2) or SO (3) and let U be any neighborhood of the
fixed-point set of G in M. Then there exists t(U)>0 such that for all t<t(U), the
metric g, constructed in §2 (Step 3) has positive scalar curvature in M — U.

§4. Time Independent Estimates near the Fixed-Point Set

In light of Theorem 3.8, it remains for us to construct a G-invariant metric y on
M with the property that there is some neighborhood U of M ¢ and some ¢,>0 such
that all the metrics g,, 0 <7<, constructed from 7y as in §2, have positive scalar cur-
vature in U.

To construct this metric we must consider the geometry of the fixed point set M©.
Let F be a component of M and let p: N — F be the normal bundle of Fin M. Then
G acts naturally on N by linear transformations in each fiber. Furthermore there is a
natural G-equivariant difftomorphism of N onto a neighborhood U, of F in M.
Therefore, if we can construct a metric with the desired properties on the total space
of N, we will be done, since we can extend the metric given on U, to all of M without
changing it in a smaller neighborhood U of F, and then average the extended metric
to make it G-invariant outside U. From here on we shall confine our attention to N.

We may assume that N carries an inner product for which the action of G in each
fiber is orthogonal. If we fix a point xeF and an orthonormal basis &={e,, ..., e,}
in the fiber N,=p~!(x), we get a natural homomorphism

ig:G—0(q)

given by the action of G in ¥,. It follows from the equivariance of exp, that the con-
jugacy class of i, (G) in O(q) is independent of x and &, and that, since G acts ef-
fectively, each i, is an embedding.

We shall now introduce an explicit, invariant riemannian metric on N in which the
fibers of p: N— F are totally geodesic and have positive sectional curvature near zero.
To do this we must make some preliminary observations.

Let P(N)— F be the principal O(g) bundle of orthonormal frames in N. G has a
natural induced action on P(N) which commutes with the standard action of O(q).
Hence we may introduce a G-invariant connection in P(N). It is easy to see that at
any xeF, the action of G in N, commutes with the holonomy transformations of this
connection at x. Consequently, we can reduce the structure group of N to the cen-
tralizer of G in O(q). Specifically, for a fixed frame & at x, let i,:G— O(q) be the
embedding discussed above, and let Z(G) be the centralizer of i;(G) in O(q). Then
there is a principal Z(G) bundle p': P’ (N)— F such that N is the bundle associated
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to the representation of Z(G) on R? given by the inclusion Z(G)=O(q). That is,
N=(P’(N)xRYZ(G)) where the G-action on N comes from the representation i, of
G on R? in the product.

We want to construct a G-invariant metric on N. This is done as follows. Intro-
duce any metric on F and lift it to the horizontal spaces of the connection on P’ (N).
Then carry a biinvariant metric on Z(G) over to the vertical fields as before. Let R?
carry the metric o, of constant curvature c obtained by stereographic projection from
S That is,

4 |dx|?
0, =— ————s.
e (1+x?)?

We set N=P’(N)xR? and give N the product metric. There is a natural action
®,:Z(G)—Isom(N) given by

®,(g) (w,v)=(u-g7 ", gv).

We give N=N/®, the submersed metric. Note that the fibers of the map N — F are
totally geodesic since the fibers of N — F are.
There is a natural action ®,:G — Isom (G x N) given by

D, (8) (h, u, v)=(g"h, u, is(g) (v)).

This action commutes with @;, and defines an action on G x N which is exactly the
diagonal action ¢ used in Step 2 of the construction in §2.

We now introduce a family of metrics g, on G x N by modifying along the orbits of
&, exactly as in Step 2. These metrics will be @, invariant and will therefore determine
a family g, of submersed metrics on G x N. This is exactly the family of metrics ob-
tained by modifying our original metric on G x N by the procedure of Step 2.

Now each of the metrics £, is a product of a (modified) metric on G x R? with the
fixed metric on P’ (N). Furthermore p': P’ (N)— F is a riemannian submersion with
totally geodesic fibers. From this one can easily deduce the following about the metric
g, on N obtained by projecting the metric g, as in Step 3, §2.

(4.1)

LEMMA 4.1. For all t>0 the projection p: N — F with the metric §, on N is a
riemannian submersion with totally geodesic fibers. Furthermore, the submersed metric
on F is independent of t; and for fixed t, the fibers N,=p~'(x), xeF, are all isometric
to each other.

We are now in a position to state the main result of this section.

THEOREM 4.2. Let G=SU(2) or SO(3). Then there exist numbers ¢>0, t,>0 and
a neighborhood U of the zero-section of N such that the metric §, (=£,(c)) has positive
scalar curvature in U for all te(0, t,].
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Proof. From Lemma 4.1 together with the O’Neill formulas applied to the sub-
mersion p: N — F one can easily see that it suffices to prove the following.

LEMMA 4.3. Let N, be a fiber of p: N — F with the induced metric §,(=g,(c)),
and let ko> 0 be given. Then there exist ¢>0, t,>0 and a neighborhood U, of 0 in N,
such that for all te(0, t,] the scalar curvature of g, is >, throughout U,.

Note. The scalar curvature in this lemma is that of the manifold N,.

Proof of Lemma 4.3. The metric g, on N, is obtained as follows. We begin with a
product metric b x 6, on G x R?; we modify as in Step 2 to get g, and then submerse
this metric by right projection onto N,. The metric &, is obtained by submersing the
product metric b’ X g, on Z(G)x R%, where b’ is biinvariant and ¢, is given by (4.1),
along the orbits of the Z(G) action &,.

We first observe that there is a bounded neighborhood U, of 0 in R? in which
G, has all sectional curvature >c¢/2. To see this note that the vertical space above 0
in the projection 7%':Z(G)xR?—R? is just Z(G)x {0} since Z(G) fixes 0 in R
Hence, by the O’Neill formula (2.2) ([10, Cor. 1]) the sectional curvatures &, at 0
are > those of g, at 0, i.e., they are >c¢. So we can find U, as claimed.

Recall now that the metric g, is constructed by lifting 6. to the normal spaces to
the orbits of the diagonal G action ¢ on G x R? and introducing ¢2b along the orbits.
It follows again by formula (2.2) that there is some ¢’ >0 such that for all #e(0, ¢']
the sectional curvatures of g, in these normal spaces (i.e., the horizontal sectional
curvatures for the submersion n®) are > ¢/3 throughout G x U,. In the terminology of
§3, we have

K (In))=(RE 5% )=

wio

in Gx U, for 0<zt<1t’'.

We must now closely examine the formulas (3.10) and (3.14) for the horizontal
sectional curvatures of the projection n. Again it will suffice to show that the average
of these will be as large as desired in G x U, since submersion increases curvature.
We now fix the value of 7 and begin by examining Equation (3.10). Note that the values
of the A,;’s go uniformly to zero as x — 0 in R Furthermore, since G is acting linearly
on R% we see from the form of the metric &, that the two largest eigenvalues 4, >4,
satisfy A,/4; > 0> 0 in the neighborhood U, of 0 in R% Now the first term of (3.10) for

(5j)=(1,2)is

1 R

2
2 (4 22) (P +A2) Iles, e2]llx 4.2)

and since G=SU(2) or SO (3) with curvature 1, we have ||[e,, e,]||2= 1. The expres-
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sion (4.2) is greater than or equal to

214
/(}'1) t (t 12)2

Consequently, the term (4.2) will dominate all the possibly negative terms in the sum
we are considering, plus k,, provided that

()= rz"—i-f‘Gsug IR + 417+, (4.3)

where R' is the curvature tensor of g,. The inequality (4.3) will hold provided that

Al/ét /(1-—£—t>. (4.4)

/

If we assume ¢ <g/2r, then (4.4) will hold provided that

r
AMB=2-1.
0

Hence, we are reduced to the case where all A; satisfy

2r
A <\/ 13254 (4.5)
(Y

where the second inequality holds for any ¢ satisfying < (g/2r)>.

We can now consider the sum (3.10) in detail. Observe first that the last two terms
in the sum are positive by (2.3) (or [10, Cor. 1]) and can therefore be neglected.
(This is also true of the first term, of course. ) The third and forth terms are zero. Recall
now that the remaining curvature expressions are all bounded by t%r’ in G x U, for
some r’'>0 and for all ¢z. Thus, the sixth and seventh terms are bounded above by
2" (or 2A;r')<2t*%r’. The fifth and eighth terms are bounded by products of
expressions of type

24t 134
7‘1‘—5 r’<2 —3 r'=2t1/4r' o
A +1t t

Thus, for all ¢ sufficiently small, these terms will be uniformly small in the critical

region where (4.5) holds. However, in this region we clearly have the second term of
(3.10) bounded below by

%(Rf jl .’>t/12
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for all t<¢t’. Consequently for c sufficiently large and for all >0 sufficiently small, the
contribution from terms K* (h; A h}) is >k, in the critical region.

Exactly the same analysis applies to Equation (3.14) to give a similar conclusion
for the terms K (h; A #f;). Of course, the terms K’ (#j; Afj;) are already >c/3 for ¢<t’.
This concludes the proof of Theorem 4.2. Theorems 3.8 and 4.2 together give the main
result of this paper, stated in the introduction.
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