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The Theory of Foliations of Codimension Greater than One

William Thurston

In this paper I will develop a construction which translates the problems of
existence and classification of foliations, up to concordance, into homotopy theory. The
main resuit is in close analogy to the theory developed by Haefliger for foliations of
open manifolds [4, 5]. The technique ofproof is différent, however, since the Gromov-
Phillips theorem concerning maps transversal to a foliation is not available for closed

manifolds.

Many interesting foliations can be constructed as corollaries of the main resuit.

For example, every plane field of codimension greater than one is homotopic to a

completely integrable C° plane field (Theorem 2), and a sphère Sn has a C00 foliation in
codimension k, when 1 <k^n/2, if and only if it has a fc-plane field (Corollary 2).
The corresponding resuit for sphères when k 1 is known by the work of Reeb [10], for
« 3, Lawson [6], for n of the form 2*+ 3, and Durfee [2] and Tamura [11], for
gênerai n.

Section 1 gives the définition of Haefliger structures from the point of view needed

later, and states the main results.

Section 2 defines the notions of a plane field transverse to, and in gênerai position
with respect to, a smooth triangulation and gives an outline which puts the proof
together.

Section 3 concerns the main step of the construction : given a nice foliation on ail
but one of the hyperfaces of a simplex, to construct a nice foliation on the simplex.

Section 4 fills in a hole in the foliation constructed in Section 3. This is the only

part of the construction which does not work for codimension 1.

Sections 5 and 6 hâve to do with technical aspects of plane fields transverse to a

triangulation.
For an excellent récent survey giving background on foliations, see Lawson [7].
I want to express many thanks to André Haefliger for asking me ail the right

questions relating to this work and for his interest and encouragement. I also want to
thank Blâme Lawson for discussing and helping me understand this idea when it was

still in an incipient form.

1. We will think of Haefliger structures as foliated micro-bundles. More precisely, a

C-Haefliger structure 3tf of codimension fcona manifold Mn is given by

(1) a differentiable R* bundle, v#-, called the normal bundle of Jf, together with
a section Z, the "zero-section" ;

(2) a foliation J*> of codimension k defined in a neighborhood U of Z in v*.
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!Fx is required to be transverse to the fibers of v*. Two such foliations ^^ and &'#
are considered équivalent if they agiee on some smaller neighborhood of Z. Haefliger
structures are the same thing as restructures, where Trk is the groupoid of germs of
Cr diffeomorphisms of Uk, cf. Haefliger [3 or 5]. restructures were first introduced by
Haefliger; they arose in his study of codimension one analytic foliations.

Given a codimension k, C foliation !F of Mn, a Haefliger structure Jf? {&) is

associated in a canonical way as follows. There is a \ector bundle v<F v(^(e^"))
over Mn consisting of vectors normal to the leaves of &. The exponential map
exp maps v^ into Mn; in a neighborhood U of the zero-section Z, exp restricted to a

fiber of v is transverse to & so a foliation of U, ^>(jF)=^r is induced.
The converse is not true. Given a Haefliger structure «^f, it is of the form J^{^)

if and only if Z is transverse to ^#> in which case <3 is the foliation induced on Z by

&#. In such a case we will say the Haefliger structure 3tf is a foliation, namely <&.

Notice that whenever a Haefliger structure ffî is a foliation, that fact gives a pièce

of information about bundles : that is, it gives a bundle monomorphism i# : v^

Two Haefliger structures «^ and 3fF2 are homotopic if there is a Haefliger structuref onMx/such that 3? restricts to give «^ and 3tf2 on Mx0 and Mx 1. Haefliger
structures can easily be defined over complexes instead of manifolds.

Haefliger showed [4 or 5] that there is a classifying space BF[ for codimension
fc, C, Haefliger structures, so that homotopy classes of codimension k, C, Haefliger
structures on a space ^correspond 1-1 with homotopy classes [X, BFr^\ of maps of
X to Brrk

THEOREM 1. Let Mn be a manifold, 3tf a C Haefliger structure [l<r<oo] of
codimension > 1 over Mn, and i a bundle monomorphism

Then, there is a Cr foliation & ofMn homotopic to Jf? with ipîti. (Hère we identify

THEOREM 1, RELATIVE VERSION. IfJf is already a foliation in a neighborhood

ofa closed subset K ofM, and ifi^i* in this neighborhood, then !F can be taken

to agrée with 3tf in a somewhat Smaller neighborhood of K, and the homotopies of $f
to y and i to i# can be taken as homotopies relK.

Theorem 1 for codimension one foliations in its absolute version is unknown, and

in its relative version is false.1) The counterexamples corne from the Reeb stability
theorem [10].

Theorem 1 says nothing about analytic foliations. Haefliger proved [3] that simply

*) See note added in proofon p. 231.
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connectée! closed manifolds do not hâve codimension one analytic foliations, so even
the absolute version of Theorem 1 for analytic codimension one foliations is false.

Little seems to be known about higher codimension analytic foliations or Haefliger
structures.

COROLLARY 1. IfMn has a k-frame field <p, (k> 1) (le., k linearly independent

vector fields), then q> is homotopic to a frame field spanning the normal plane field ofa
C00 foliation & ofM".

Proof There is a trivial Haefliger structure 3tf with v^« Uk x Mn where the leaves

of tFtf are xxMn, xeUk. (p détermines a bundle monomorphism i\v#>-*T{Mn).

COROLLARY 2. A sphère S" has a foliation in codimension k, provided k<n/2,
iffSn has a k-plane field.

Proof For k=\ this is already known, by Reeb [10], Lawson [6], and Durfee

[2] or Tamura [11].
In gênerai, the hypothesis implies that Sn has a /c-frame field, as D. Husemoller

pointed out to me : Consider the clutching map for T(Sn),

A A>plane field corresponds to liftings of/to O(k)xO(n — k)9 and Wrame fields

correspond to liftings to O(n — k):

O(n-k)

y
O(k)xO(n-k)

/ *' y
> O(n)

There is a fc-plane field iff [/] in 7rn_1(O(«)) lies in the image of nn-1(O(k)
xO(n—k)) nn-.1(O(k))xnn-l(O(n—k)) and there is a /c-frame field iff [/] lies

in the image of nn-x{O(n — k)). But since n — k^k, the image of nn-1(O(k))9 and
therefore the image of nn.1{O{k))xnn^{O{n-k)) is contained in the image of
nn-i(O(n-k)).

Corollary 2 now follows from Corollary 1.

COROLLARY 3. Every C00 2-plane field x2 on a manifold Mn, n>3, is homo-
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topic to a completely integrable C °° planefield. This is also true rel K, ifK is a compact set
such that t2 is already completely integrable in a neighborhood of K.

Proof This follows from the theorem, announced in [12] and due to Mather
[8, 9] when Jt=l, that n(k+l)(Br?)œ0.

Remarks. A proof of Corollary 3 by itself was the starting point leading to
Theorem 1.

John Wood [14] proved that every transversely orientéeplane field t2 on a manifold
M3 is homotopic to a foliation. I now hâve a proof of this for a gênerai plane field t2

on a 3-manifold. However, this is false in the relative version: (S2 x/)#M3, where

M3^S3, does not hâve a foliation with the boundary components leaves, by the
Reeb stability theorem [10].

THEOREM 2. Every plane field of codimension > 1, is homotopic to a C°,
completely integrable plane field, giving a foliation with C00 leaves.

This theorem follows from some still unpublished work of mine concerning
Lipschitz foliations, using the method of proof of Theorem 1 (which is not stated to
include C° foliations). The proof of Theorem 2 will not be given hère.

Theorem 2 should be compared with Bott's vanishing theorem [1] which says that
ail polynomials in the real Pontrjagin classes of total dimensions greater than 2k
vanish for a plane field vk homotopic to the normal plane field of a C2 foliation.

In Haefiiger's classifying theorem for foliations on open manifolds Un [4 or 5],
such foliations are classified, up to integrable homotopy, by homotopy classes of pairs

(Jf, i:Vjr-+T(Un)). This is false on compact manifolds Mn, since if two foliations

J^ and @r1 of Mn are integrably homotopic, then they are conjugate by a diffeo-

morphism isotopic to the identity. A statement about concordance classes can be

made, however. Two bundle monomorphisms i0, it : v -» T(Mn) are concordant if there

is a bundle monomorphism ï:vxI-+T(MnxI) such that !t it for t=0, 1. Two
codimension k foliations ^"0 and #\ are concordant if there is a codimension k
foliation of M" x /, transverse to Mn x 0 and Mn x 1 and inducing there ^0 and J^.

COROLLARY 4. Concordance classes offoliations correspond 1-1 with homotopy
classes of Haefliger structures £F together with concordance classes of maps i:v#>

-+T(Mn).
Proof Immédiate from the relative version of Theorem 1.

Going further, one can build a space of concordances of codimension k foliations
of Mn9 C^k(Mn)9 by a semi-simplicial construction: namely, the 0-simplices of
Cpk(Mn) are foliations of Mn; the 1-simplices are foliations of Mn x I transverse to
Mn x 0 and Mn x 1 ; and so on. They'-simplices are foliations of Mn x Aj transverse to
each Mn xA\ where A1 is a face of Aj. The attaching maps for the simplices are ob-
vious.
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Similarly, one builds a space of concordanœs of À>plane fields on Mn, CVk(Mn).
The O-simplices are fc-plane fields on Mn; in gênerai, the>simplices are fc-plane fields
on M" x AJ, tangent to each Mn x A\ where A1 is a face of AJ.

There are maps

and

where BFk is the classifying space for codimension k Haefliger structures, and XMn

désignâtes the space of maps of Mn to X. In fact, we hâve a commutative diamond :

\
COROLLARY 5. Cfk(M") is the homotopyfiber product ofCvk(Mn) and (Brk)u"

over (BOk)Mn.

Proof. Given a pair of simplicial complexes (K, L), with a homotopy-commutative
diagram :

then, the dotted arrow can be fitted in skeleton by skeleton using Theorem 1. This is

the defining property of the homotopy fiber product.
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I will now outline the construction specified by Theorem 1, postponing some of
the steps and technicalities to later sections.

A foliation will be constructed from a Haefliger structure by a simplicial process.
In order for this process to work nicely, simplex by simplex, it is necessary to hâve a

plane field or a foliation, transverse to a smooth triangulation. A plane field xn~k is

transverse to a triangulation a of a manifold Mn if xn~k is transverse to each simplex
ol\ of a, when l^k, and the subspace xn~k@T(<xll) of T(Mn) along a\ has dimension

(«-£) + /, when l^k. A foliation J5" is transverse to a triangulation a if its tangent
plane field T^ is transverse to a. (See Fig. la.)

A more refined notion is also needed: a plane field xn~k is in gênerai position with
respect to a triangulation a, if, for each n-simplex a" of a, and for each point xea",
the linear projection defined by xnx~k

_»-*.

takes each fc-face of a" to a non-degenerate fc-simplex in R\ (See Fig. lb.) This condi-

r /5 tr&nsverse

/7 gênerai position

t must be m hère

fSampie projection Lx

C) r is aviitzed

r is well-behaved
m a tubular neighbor hood
oF each simplex

Fig. 1
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tion guarantees that xn~k is transverse to a, and it also puts a restriction on the amount

t can wobble in any simplex. It guarantees that many qualitative features of the
projection Lx, such as the subset of a? projecting to the boundary of the image in Uk,

remain unchanged as x varies through a".

In Section 5, it will be shown that for any C° plane field x and any smooth triangulation

a, there is a subdivision a' of a which can be slightly jiggled to obtain a triangulation

a" in gênerai position with t. Some people (including me) can accept this in-
tuitively without proof.

The setting for the construction is this. We begin with a Haefliger structure 3tf

over Mn, as well as a bundle monomorphism i:v#>-±T(Mn). This means that the

tangent plane field xn T(&r#>) of the associated foliation of v#> is homotopic to a

plane field x\ transverse both to the zero-section Z of v^, and to the fibers of (v^).
Such a x\ defines a projection of the tangent space of the fibers to T(Z)&T(Mn);
and the spécification that this projection equals / then completely détermines t", along
Z. The space of ail plane fields transverse to the fibers is contractible : this gives us a

homotopy t", which we assume constant in a neighborhood of f 0, and constant in a

neighborhood of v# | K (K is where Jf is already a foliation). Form the plane field
fB+1 xt®(d/dt} on Vjr x [0, 1]. Then tn+1 is completely integrable in a neighborhood

|

Now choose a fine product triangulation a of v^ x / which can be jiggled to give a

triangulation /?, in gênerai position with respect to f. Z x 1 should be a subcomplex
of a', and the jiggling should take Z x 1 to itself, so Z x 1 is a subcomplex of a". This
is made possible by the fact that f is transverse to Zx 1. Also, each simplex of a"

intersecting Kx [0, 1] should be contained in the neighborhood where f is completely
integrable.

Let G= v#> | Kx [0, l]uv^x0. We will construct a homotopy of f relCr among
plane fields transverse to a", to a completely integrable plane field. Then the resulting
homotopy, and foliation, will be transverse to each «-simplex of Zx 1. But since

Z x 1 is a differentiable submanifold, this implies they are transverse to Z, and the

construction will be finished.

First, we perturb f in a neighborhood of the fc-skeleton until it is integrable in a

smaller neighborhood and still remains in gênerai position. This is possible roughly
because f intersects a fc-simplex in a 0-dimensional plane field : which is integrable.
A careful construction is contained in Section 6.

From now on î will not be changed in some small neighborhood of the fc-skeleton.

Next, as in Section 6, f is perturbed to be civilized : it will remain civilized from

now on. (See Fig. le.)
The rest of the construction has to do with collapsing. The point is that the

triangulation j8 collapses to G, since it is a product triangulation. Collapsing means

removing, one by one, the interior of a simplex pljt together with the interior of one
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hyperface pl^~\ with the restriction that fa~* must not be a face of any other simplex
still remaining. The séquence {/J of dimensions is more or less random. We reverse the

collapsing procédure, and "inflate" v^ x [0, 1] from G. A foliation ^, and a civilized
homotopy of f to TW> is constructed inductively as simplices of dimension greater
than k are inflated. Then only one step, inflating a foliation with a simplex is needed

to complète the construction. This step will be stated precisely in the next section, and
it will be the subject of the next two sections.

There is one more technicality of the construction, namely, the extension of a
civilized homotopy of a plane field t on a simplex /?{ to a civilized homotopy in a

neighborhood of jSj. This is done in Section 6.

3. Inflation

Now it is time to analyze the main inductive step referred to in Section 2:
"inflating" a foliation on a simplex.

Refer to Section 6 for the définition of "civilized". It dépends on the choice of a

codimension k plane field t in gênerai position, as well as the choice of tubular neigh-
borhoods of simplices.

Let pk+l+1 be a fc + /+ 1-simplex [/^0]; let fik0+l be a face of it. Let X be the union
of the other (fc + /)-faces of pk+l+l.

INFLATION LEMMA. Civilization leads to inflation. More precisely,
(1) Let ^ be a civilized foliation of X. Then there is a civilized foliation IF1 of

pk+l+1 extending^.
(2) If there is a civilized homotopy {zt} oftnX to T&", then 3F' is constructed so

that there is a civilized homotopy {%[} ofTnPk+l+1 to T&', extending {tJ.
Proof In the case 1=0 any civilized line field on pk+1 homotopic to t defines such

a foliation J5"'. The gênerai proof also works, if we consider the sphère S'1 to be the

empty set.

In gênerai, first we need to round the corners of dpk+l+1 so we can see what's
going on. In Section 6, we chose nice tubular neighborhoods N(P™) of the simplices

ff] of each m. Then let/: dph+1+1 -> /?* + '+1 be a homeomorphism close to inclusion such

that/O) is in the normal fiber through x, for xeN(P?)- \Jp<m (Jy N{fi})9 and the

image of/, ôbh+l+i is a smooth convex hypersurface.
For each xepk+l+i we hâve the linear projection Lx:pk+l+i->pk+l+1/Tx<=: Uk (the

inclusion in IRfc is defined only up to affine transformations). The image of Lx is convex,

and by the assumption that t is in gênerai position, its boundary has a natural,
linear triangulation. (Since no k +1 vertices j8? project to the same hyperplane, each

point in d (Image Lx) is a unique convex combination of the Lx($) lying in ô (Image
Lx)). Then Lxl (d Image Lx) is a k— 1 sphère Sk"1 which is a subcomplexof
I*"1 does not dépend on x.
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(bk+l+1) is almost as big as Lx(pk+l+1) by assumption on/r is transverse to
vej-ywhere except within UXLXX (ô Image Lx(k+l+1)) which we may assume

is contained in N(Z). [If t is not transverse at y, this means Ty{dbk'¥l+l) projects
degenerately by Ly; since this hyperplane lies on one side of dbk+l+19 Ly(y)czdLy

It follows that every civilized plane field a is transverse to dbk+l+i except in
1): it is transverse outside of N(k— 1-skeleton) because / restricted to /?k+J,

[;>0], préserves <rnf}k+J; yet a agrées with t in iV(fc-skeleton).
There is exactly one vertex /$ of pk+l+1 which is not a vertex of fio+l. Let x be an

arbitrary point of j8*+I+1. There is one case when it is very easy to inflate a foliation
on j8*+I+1: when Lx{f0) lies in the interior of Lx(pk+l+i) so that Lx(pk+l+1)=

Lx(jSo+I) Lx(A). (See Fig. 2a.) To handle this case, first chop out a neighborhood
U of I9 contained in N(I) and containing ail points where t is not transverse to ôb,

chopping along the leaves of the foliation given by t in N(I). Thèse leaves are ail
disks Dl+1, by the construction of Af. Let b'=b—U: V has corners, so differentiably
b'—lfix Dl+1, with a projection to Dk coming from Lx. f(Po+l) intersects each factor
Dî+1 x y in a disk Dl (at least if/was chosen nicely). Now chop out a tubular neigh-

Easy Case

sees the tulï *

hetght oFJ3k+l+1

~b) General Case

The wmdow J3q*1
may not see the
full height oF

Xl1

Fig. 2

A simplex /?*+ï+1 before inflation. In (b), one must eut along k for the construction
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borhood of df(pk0+l)=df(X) to obtain b" with the structure DkxDlxD1 where

DkxDlxl c/(A) and Dk x Dl x -1 af(pk0+l). Straighten out the ZJ'-factors so they
are tangent to normal fibers in N(PJ)—[Jp^m {JtPf, and so that the projection
p:DkxDlxDx-+DkxDlx\ takes each N(PJ) to itself for jS^cA. Then we set

^'z^p*^ and xft=p*tt in b'; elsewhere &' and t' are determined, using the tubular
neighborhoods by the condition of being civilized.

Refer to Fig. 3 for the gênerai case. The complication is that in the product structure

of b'=Dk x Dl+19 a factor yxDl+i does not intersect p^+l unless y is in the image
of Lx(Pq+1). The hyperface fik0+l is like a window in pk+l+1 which does not extend the

ho le to àe fitied m
-V*(Sl-f*l)*D1

Collaron
dDl

Collar^
ondD*

Fig. 3

Opening the window
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full height (when k= 1). The first step is to eut open X and extend the window in this
eut. To do this, we observe that the région Lx(pk+l+1)-Lx(Po+l) has a natural
triangulation, namely, the join of v0 with the natural triangulation of the part of
d(Lx(p^+l)) visible from v0. This région lifts simplicially in a unique way to j8*+/+1,

defining there a subcomplex k, homeomorphic with a A>disk and meeting p^+l in a

(A:-l)-disk. Choose a tubular neighborhood N'(ic)czN(K)ndpk+l+1 and form the
union N'(k)kj0o+19 obtaining a new "window" y. Unfortunately &' is determined in
part of y (in N' {k)) since this is part of A; in fact, &> is a trivial foliation there, in-
duced from a projection to Uk along the normal fibers of N(k). Let X' X-N'(k).
Chop out from b a neighborhood of £ along leaves of^", and chop out a neighborhood
of ôX\ as before, to obtain b' with a product structure

bf=DkxDlxD1

where DkxDlxlc:f(X') and DkxDlx -le/(7). Again, straighten out the Z)1-

factors to agrée with the tubular neighborhood structure. J*" is defined in a neighborhood

off(X)uf(N'(K))vd(DkxDl)xD1. & is trivial in f(N'(K)) and (dDk)xDl
xD1, since thèse parts corne from the fc-skeleton of pk+l+1. (See Fig. 3.) In
d(DkxDl)xD19 & is induced from projection to d(DkxDl)x 1. Let S1'1 xi be a

collar neighborhood of D K We will fili in !F' except for a hole. If F is a small
neighborhood of Lx(k) in Lx(pk+l+i)9 the hole to be filled in later is Vx (S1 xl)x D1. To
fill in y except for the hole, let <pt be an isotopy of Uk supported in interior
(LJk+l+1)n F and such that <p± carries Lx($>+1) to almost ail of Lx(pk+l+l). Then
define a foliation &" in DkxDlxD\ where Dk&Lx(pk+l+1)9 by pushing J^ along by
q>t: 1.^., there is a projection

/>' : Dk x D1 x D1 -> Dk x D1 x {1}

defined by

where we reparameterize D1 [—1, 1] by the parameter fe[0, 1], t(s)=\/2—s/2.
Then we fit ïF" inside Z>'-(collar neighborhood), stretching it out a little around its

boundary so it becomes civilized. Sinceq>1 squashes Lx{k) to a small neighborhood of
dLx (Pk+l+1), where & is trivial, we obtain a foliation &' consistent with& and defined

everywhere except in the hole.

y around the boundary of the hole, Vx(Sl"1)xI)xDi does not dépend on the
S1'1 factor at ail: it is induced from projection to factors Vx t, and the leaves of this

foliation, going once around S1, trace out the isotopy q>v
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4. Filling the Hole

There is a hole in Section 3 of the form Vx(Sk~1 xI)xD\ where Vcz Mk, with a

foliation !F' around its boundary is induced from projection to VxIxD' =VxD2.
The foliation around Vx ôD2 =VxS determined by the compactly supported isotopy
{<?,} of V.

To make the construction more elementary, we will choose more explicitly a {cpt}

meeting the spécifications of Section 3. This is exactly the place where the construction
fails for codimension k= 1.

Toward this purpose, let Dk"1 xS be imbedded in Rk9 and let d/dO be the unit
length vector field tangent to the S^factors (where S1 has length 2n). Let/be a C00

function onD*'1 which is 0 in a neighborhood of d/)*"1, 1 in the middle of D*"1, and
bounded between 0 and 1. Let X=f(d/dO), and let \j/t be the flow of X. We can take

cpt to be conjugate to ij/t. (See Fig. 4.)
{^Jo<f<i defines a codimension k foliation «/ of Rk x S1 which is trivial (induced

from projection to Uk) outside of {Dk~x x S1)x S1. If we extend this foliation to a

codimension k foliation J' of Uk x D2 which is trivial outside of (Z)*"1 x S1) x D2, this
will sufîîce to fill in the hole (after conjugating everything so \j/t goes to (pt).

Since \fft préserves the circles xxS1 in Dk~1xS1, the codimension k foliation
determined by \j/t on (Dk~1xSl)xSl is actually the union of a (k— l)-parameter
family of codimension one foliations of the torus S1 x S1. We will extend each foliation
in this family to a codimension one foliation of S1 x D2, in a way so that it dépends

differentiably on the parameters. We will meet the boundary conditions (that the

foliations are trivial for parameters near dDk~x), so the union of this family of
codimension one foliations will fill in the hole.

Let S1 x D2 be parameterized (q>, r, 9) where (r, 9) are polar coordinates for D2;
and let x be a parameter for D*"1. Jx, J'x, œx and œ'x will designate the codimenson

one foliations and integrable one forms on the slices x x S1 x 1 x S1 and x x S1 x D2.

Then for x very near dDk"1, œx can be taken as d<p; in gênerai, cox=d(p—f(x) d9 is a

closed form, defining the linear foliation J>x of x x S1 x S1.

Let g(x) be a C00 function which is 0 in a neighborhood of dDk~l and 1 in sup-
port(/).

Let {Ao, A1/2, Ax} be a partition of unity for the unit interval [0, 1] with Ar= 1 in a

neighborhood of t.

Then we define

Hère, œx is a closed form defined on S1 xD2 except for r<0, by the same formula

cox=d<p-f(x)d9.
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â) Example of the image Lx (J3k

where k-2 and l *J

b) A flow Vt supported
on an annulus
The vectorfield is

C) The Flow %
it is conjugate to

d) The image yAL^

Fig.4

Observe first that (o'x agrées with cox near x x S1 x S1. (When g(x)^ 1, note that
a>x~d(p.) Second, œx is non-singular, since either œx(d/d(p) or œx(d/dr) is non-zero.
Third, cox is integrable, since near any point in D2 x S1 it can be written in terms of at
most two variables in D2 x S1. (Locally, away from r=0, cox is dh for some function
h.)

Note. The original, less elementary, construction was to use the theorem (see

[12]) that for any compactly supported isotopy {<pt}9 and for any compactly supported
isotopy {&t} such that ^ #id., q>t is a product of conjugates of^ in such a way that
the isotopy {(pt} is up to homotopy relative end points the product of the conjugates
of the isotopies
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5. Jiggling Triangulations

We need the following lemma for Section 2 :

JIGGLING LEMMA. Let Mn be a manifold and K a compact subset of Mn. Let
xn~k be a C° plane field on M", and let abe a triangulation ofMn. Then there is a
subdivision ol' ofa and a jiggling a" ofoc' which is in gênerai position with respect to x in a
neighborhood ofK.

Actually, some further conditions are required. Thèse will be discussed at the end

of the section.

Proof For simplicity, consider first the case Mn W.
Let the vertices meeting some bounded neighborhood oîKbt indexed vi9 O^i^M.

We will look at a séquence of crystalline subdivisions a1 of a. (cf. Whitney [13,

pp. 358-360] for a similar subdivision which would serve hère.) For each «-simplex
<i?;0,..., viny where io<ii<~'<in, there is a linear map/to the cube {(xt...xn):

l} defined by the condition

»-/) l's

Now subdivide the cube into /„ little cubes, and subdivide each little cube in the

standard way into simplices. The standard way to subdivide the cube {(xu...9xn):
0<xf<l} is into ni «-simplices pa where or is a permutation of {1,...,«} and

pa {(x9..., xn) : 0 < xai ^ • • • < xffn < 1}. The standard subdivision of a little cube cornes

from {f}ff} by a contraction followed by a translation, sending the big cube to the

little cube. Our simplex <t;l0,..., vin} inherits a crystalline subdivision from ail this,
and thèse crystalline subdivisions fit together to give a subdivision a1 of a. Note that
when «^3, a1 dépends, in an essential way, on the ordering of the vertices.

There are two properties of the séquence of subdivisions a1 that we will need. The
first property is that there are a finite number of model «-simplices fit in IR", such that
for any /, each «-simplex in ol1 can be obtained from a model simplex by a contraction
with a factor of 1// followed by a translation. The second property (a conséquence of
the first) is that there is a uniform bound P to the number of simplices in the link of
a vertex in ol1. Let S be a number such that for each i and for each choice of points (Oj

in the ôt bail about they'th vertex of ni9 co09..., con do not lie on a common hyperplane:

i.e., they détermine a nondegenerate «-simplex.
It follows that for each choice of points x'm in the ô/l bail about the wth vertex xm

of a', the x'm détermine a triangulation ce'1 of most of the région coveied by a. Indeed,
there is a map, linear on each simplex, al-+Un sending xm to x'm; it sends each «-

simplex to a non-degenerate «-simplex with the same orientation, so it is a local
homeomorphism within ô/l of the identity, except on the boundary of the région.
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Let d be a metric on the Grassmannian G(l, n) of /-planes in Un9 and let \x be the
function on G(l, n) xG(q9 n) defined as

/z(t, P) g.\.b.{d(r9 %'):%' is not transverse to fi}.

Hère, when we say two subspaces t' and fi of a vector space are transverse, we mean

-«, 0).

For each model simplex \il9 for each vertex cOj of//„ for each #-face <co70,..., cûJp}

of /^, [#_& — 1], not incident to co,, for each choice of w'Jo9..., w^ in the (5-balls about

coJoi..., wJq9 and for each {q+n —k) plane tt in Un containing (œ'Jo...cQfJqy consider the
sector Se of Un consisting of ail points on q + n—fc-planes %' through (co'Jo9..., co'Jqy

such that ^(tt, nf)<e. The measure of the intersection of Ss with the (5-ball about cûj
decreases to zéro with s. Since ail the above choices ranges over a compact set, we can
choose s so that this measure is less than \jP times the measure of the bail of radius 6.

We define inductively a séquence {sq} for 0<#<fc, as follows. Let s0 oo, ei=e.
When eq has been defined, choose sq+1>0, sq+l^ej2 to satisfy the condition that
whenever tl512 are («—fc)-planes satisfying d(zl9 t2)<£€+i, and when a is a #-plane
satisfying fi(rl9 ot)^eq/39 then d^x^oc, T2®a)^£.

For each vertex x in oc1 define JVX to be the ô/l neighborhood of the star neighbor-
hood of x (so that the star neighborhood of any open simplex in a jiggling of a0 is

contained in some Nx). Let / be great enough that for every m, v in Nx9 d(ru9 tt?)<efe/3.

Assume, by induction on p9 that x[,..., x'p hâve been chosen, with x\ eBô/l (xt)9 so

that for every ^-simplex /?=<xl0,..., xlq) [0<#^fc] of a', where 0^io< — <iq^p,
the jiggled simplex fir^(xrlQ9...9 x'lq> satisfies fi(xx9 pr)^2sj39 for xeNXiQ. When
q—09 this condition is automatically satisfied. Now if fi is in the link of xp+l9 and if t
is any plane such that d{%9 Tx)^2e€+1/3<e€/3 for some xeAT^then ^(t, fif)>pi{tx9 fif)
— d{%9 tx)^8€/3. As t varies over ail such choices it varies within a radius of
ek/3+2eq+i/3^eq+1 from a fixed xx9 so by the choice of eq+l9 (t®/T) varies by a
distance at most e. By the choice of e there is some point x'p+1 in Bôfl (xp+1 not lying on

any plane through /?' parallel to t®/T, for any choice of /T in the link of xp+l9 and t
as above. Consider / <X0,..., x'lq9 xp+ly. y' is transverse to each such t. Since the
choices of t contain a 2e€+1/3 neighborhood of tx for xeNXi it follows that
MT*> y')>2zq+il3 f°r ^eiV,, Thus the inductive hypothesis is true for every simplex
containing xp+l9 so the inductive argument is complète.

The triangulation a' required in the lemma we take as a1, and a" we take as the

triangulation determined by the x'j.
This complètes the proof for Ûn.

To do this for arbitrary M", the best way, which Haefliger suggested to me, is to
imbed M" in UN (for N large). Triangulate Mn (smoothly) and subdivide until the
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triangulation is the projection of PL-approximation to Mn along the normal fibers of
a tubular neighborhood of Mn. Now everything is the same : do a fine crystalline
subdivision of the PL-approximation, jiggle, and project back to Mn.

This complètes the proof of the Jiggling Lemma.
There are two further conditions required for Section 2. The first is that a' be a

product triangulation; this is no problem since the product triangulation coming from
a crystalline triangulation of v^ and a crystalline triangulation of / satisfies the two
properties (p. 227) used in the proof. The second property is that the submanifold
Zx 1 be invariant under the jiggling. This is also easy to satisfy: Imbeded v^ x/ in
UN so that Z x 1 is the intersection with IRM. Then take ô, s and / in the proof so that
they work for the induced plane field on Z x 1 as well as the plane field on v#, x /, and
order the vertices of och for the inductive jiggling, so that the vertices lying on Z x 1

corne first. They they can be jiggled in such a way as to leave Z x 1 invariant.

6. Civilisation

In this section, we will first do carefully the construction of perturbing a plane field
in gênerai position to be integrable in a neighborhood of the A>skeleton. Then we will
give the rules for a "civilized" plane field and show that civilized homotopies can al-

ways be extended.
So let Tn~k be a plane field on Mn in gênerai position with respect to a triangulation

p. Assume inductively that xn~k has been perturbed in a neighborhood of the (/— 1)-
skeleton to be integrable in a smaller neighborhood, 0</^k. Then for each /-simplex
P\, imbed p\ x Dk~l transverse to x in a small neighborhood of j8|, with p\ x 0 imbedded

by the identity map. The foliation in a neighborhood of df$\ defines a tubular
neighborhood structure for (a neighborhood of dpli)xDk~\ the leaves of the foliation
being the normal fibers.

Extend this tubular neighborhood structure over p\xDk~l, making the normal
fibers tangent to t along p\ xDk~\ and straighten out t to be tangent to the normal
fibers in a smaller neighborhood. The homotopy can be small enough that t remain in
gênerai position with respect to p (since this is an open condition).

In the course of the inductive procédure, outlined in Section 2, for the construction
specified by Theorem 1, it is necessary to extend a homotopy of a plane field f defined

on a simplex to a homotopy in v^ x [0, 1]. There is a simple example (see Fig. 5)
which shows this is not always possible, if we are working with plane fields transverse

to the triangulation. There are similar examples where ï is kept fixed in a neighborhood
of the &-skeleton. Therefore, we must find a subset of the plane fields transverse to a

triangulation, civilized plane fields, among which such extensions are always possible.
Let Mn be a manifold, jS a smooth triangulation and xn~k a plane field in gênerai

position with respect to p, and integrable in a neighborhood of the fc-skeleton. Then
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for each simplex fi\ choose a small tubular neighborhood N($), diffeomorphic with
ftxD"-1, sothat

(i) N($)nN(ffî)czN(ft*) where fi\ is the largest common face of fi\ and fif.
(ii) If fi\ is a face offij and ifxefi, yefij are such that xxDnt'1 intersects yxDn~m,

then x x Dn" ' cj; x D""m.

Fig. 5

There is a homotopy of a to t, transverse on the bottom simplex, but this homotopy can not be
transverse in a neighborhood of b. Civilized plane fîelds are controlled in the normal directions to a

simplex so this problem does not occur

(iii) If /<k then t is tangent to the normal fibers xxDn l of N(filt)9 and integrable
there. If l^k9 then the normal fibers of N(fili) are tangent to t along fi\.

If r is completely integrable in a neighborhood of a subcomplex K, then we add
another condition.

(iv) If ficK, l^k, then t is integrable in #($), and the normal fibers of N(fi\) are

tangent to t.
Now % can be homotoped, reli\f(fc-skeleton uK), so that it remains in gênerai

position with respect to fi, and in N(fi\) [/^fc], x is induced from fi\ by projection:
that is, t consists of ail vectors which are taken to tn fi\ by the derivative of the
projection N(fi\) -? $.

If a plane field a is transverse to fi9 agrées with t in N (fc-skeleton), and if in
#($) [/^fe] o- is induced from fi\ by projection, then a is civilized.

Thus, given a civilized codimension k plane field <r on a subcomplex L, it defines a
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unique, differentiable, civilized codimension k plane field xn~k in a neighborhood
T(L). Furthermore, xn~k is integrable iff a=xn~knL is integrable.

A civilized homotopy is a homotopy among civilized plane fields.

PROPOSITION. Given a civilized plane field xn~k and Mn9 a civilized homotopy
ofxn~knL, where L is a subcomplex, extends to a civilized homotopy of xn~k.

Proof. Very easy. Induction on simplices fi\<=:Mn — L of dimension l>k. Let
L* Lu/-skeleton of Mn — l We are given to begin a civilized plane field on Lk.

Assume that we hâve extended the homotopy to L1. This defines a homotopy in N(Ll).
Now for each /+l-simplex /?j+1 we hâve a homotopy in N(dp\+1)9 which can be

extended to a homotopy on $+1. Piecing together, we hâve a homotopy defined on
Ll+1.

Remark. The extended homotopy can obviously be kept fixed in N(L')9 where

L'is a subcomplex of Mn9 if the original homotopy is constant on L'n L.

Added in proof: I now hâve a proof of Theorem 1 in codimension 1. Thus if Mn is

closed and /(Mw) 0, Mn has a C00 codimension 1 foliation. The relative version is

more complicated.
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