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Cancellation Properties of H-Spaces

GuiDO MisLIN D)

One defines the genus of a homotopy type X to be the set G(X) of all homotopy
types Y such that the p-localizations X, and Y, are homotopy equivalent for all primes
p [11]. To have a good notion of p-localization, we will work throughout this paper
in the homotopy category of nilpotent, connected, pointed CW-complexes [1, 7, 14].
Notice that all H-spaces are nilpotent spaces whereas H'-spaces are in general not
nilpotent unless they are 1-connected. We call X quasi-finite, if H;(X; Z) is finitely
generated for all i and zero for i big enough. It is not known whether a quasi-finite
H-complexes is necessarily of the homotopy type of a finite complex.

It was observed by many authors [5, 8,9, 10, 11, 13, 15] that H-spaces, cancellation
phenomena and the genus of a space are closely related. The oldest example expressing
this relation is the H-manifold E,,, of [6] for which one has

G(E7,)=G(Sp(2))  (see[11])
and

E;,xS3~Sp(2)xS* (see[6]).

More complicated examples of the same nature, involving the Lie group G,, were
discussed in [8].

Our main results (Proposition 1 and 2) give conditions under which one can cancel
factors in a product or summands in a wedge respectively. When applied to H-spaces,
this yields a converse of a theorem of Zabrodsky [15], giving a very simple character-
ization of the genus of an H-complex (Theorem A below).

For a quasi-finite H-complex X one has by Hopf’s theorem H* (X ; Q) H* (S" x

X -+ x S™; Q); the array (ny, ..., n;)=1(X) is called the type of X. We will prove

THEOREM A. Let X and Y be quasi-finite H-complexes. Then the following are
equivalent

Al: G(X)=G(Y)

A2: Xx(J] s™)~Yx(J] S™)
©(X) «(¥)

1) The author was partially supported by NSF Grant GP-29544 X.
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Dually, if X is a quasi-finite nilpotent H’'-complex then 7, (X)®Q=n, (S™ v
v v S™)®Q and we call (my,..., m;)=1"(X) the cotype of X ; notice that if X is
not 1-connected, then X is of the form S* v ¥, and the nilpotency of X implies X ~ S*.
Then one has

THEOREM B. Let X and Y be quasi-finite nilpotent H'-complexes. Then the fol-
lowing are equivalent

Bl: G(X)=G(Y)
B2: Xv(V S")~Yv(V S™)
) v(¥)

(X

It was proved in [15] that in the 1-connected case Al implies A2 and B1 implies B2
(under the conditions stated). Since these proofs easily extend to the nilpotent case,
we will not repeat the arguments here. In order to get the converse, we proceed very
much in the way one would argue in an “abelian” situation [2, 4]. We show that if
the homotopy endomorphism set [ X, X'] has a suitable “local” structure, then X-fac-
tors or X-summands may be cancelled. More precisely

DEFINITION 12). The set End X = [ X, X] is called H-local (or n-local) if for all
/> g€End X which are not homotopy equivalences, H, f + Hyg# Idin End (H, (X ; Z))
(or n, f +74eg+#1d in End (n,X) respectively).

For example it is obvious that S, and K (Z,, n) are both n-local and H-local for
all n>1 and all primes p. (Z, denotes the integers localized at (p)).

LEMMA 1. Let A be a retract of X x Y and suppose that End A is n-local. Then
A is aretract of X or Y.

Proof. There are maps f:A— X x Y and g:X x Y — A such that go f ~1Id,. Let
Jx=pryof, fy=prycfand gy=g l X, gy=8 | Y. Then 7y (gxo fx) + 74 (gyo fy)=1d.
Hence, since End A4 is n-local, g4 fx or gy° fy must be a homotopy equivalence and
therefore A is a retract of X or Y.

Dually one has

LEMMA 2. Let A be a retract of X v Y and suppose that End A is H-local. Then
A is aretract of X or Y.
The proof is completely analogous to that of Lemma 1, with n, replaced by H,.

DEFINITION 2. X is called irreducible, if X has no non-trivial retracts.

2) H, denotes reduced homology.
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Examples of irreducible spaces are S”", S,, K (Z, n), K(Z,, n), CP", HP", BS?,
SU (r) etc.

DEFINITION 3. X is called completely reducible (resp. completely coreducible) if
X is a finite product (resp. finite wedge) of irreducible spaces.

Notice that if X is an H-complex and Y a retract of X with retraction map
@:X—>Y, then X~fib(p)x Y and Y as well as the “fiber” fib(p) are H-spaces.
Hence, if in addition X is quasi-finite, one arrives after finitely many steps at a de-
composition X ~ X, x --- x X,, with X irreducible for 1 <i <n. By essentially the same
argument we see that for a quasi-finite H-complex X the p-localization X, is com-
pletely reducible. Similarly, if Y is a quasi-finite H'-complex then Y and Y, are both
completely coreducible.

DEFINITION 4. X is called balanced if for all f, ge End X with fo g a homotopy
equivalence both f and g are homotopy equivalences.

If X is nilpotent and of finite type (i.e. ;X or equivalently H, X is finitely generated
for all i ) then X is balanced. This follows easily by checking induced maps in homology.
Similarly, if X is nilpotent and of finite type, then X, is balanced for p a prime of 0.

PROPOSITION 1. Let Y be a completely reducible space and A a balanced space
with End A a n-local set. Then X x A~Y x A implies X~ Y.

Proof. For a map g:U x V —»S xT we write g(U, T): U - T for pryo goiny. Let
f:XxA-Y x A be a homotopy equivalence. We will distinguish two cases

1) f (4, 4) is a homotopy equivalence. Then one has in homotopy
Saldy A)o f i (Y, A)+ fu (X, A)o f 3" (¥, X)=0
fe(A, Y)of 1 (Y, A)+ £ (X, Y)o f £ 1 (Y, X)=1d

Hence

(X Y)=fu(4, Y) (fu (4, A) 7" fu (X, A))o f5 ' (Y, X)=1d.

Similarly

[0 X) (e (X Y)— £ (A, Y) (fu (4, )7 fu (X, A))=1d

It follows that f ~! (Y, X): Y — X is a homotopy equivalence.

2) f (4, A) is not a homotopy equivalence. Then, since 4 is a balanced space,
f (4, A)of (4, A) is not a homotopy equivalence. But f ' (4, 4)o f,(4, A)+
+ f+*(¥, A)o f,(4, Y)=1Id and End 4 is n-local. Therefore f ~* (¥, 4)o f (4, Y) is
a homotopy equivalence and we conclude that A4 is a retract of Y. Now Y is com-
completely reducible: Y~Y, x---x Y, with Y; irreducible 1<i<n. It follows by
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Lemma 1 and induction that A is a retract of one of the ¥;’s. More precisely, for some
i, =priof (4, Y):A— Y, has a homotopy left inverse. Since Y, is irreducible, we
conclude that ¢ is actually a homotopy equivalence. We consider now the auto-
morphism

6: YXA"") YXA7 6(}/’1,..., yios'--s ym a)= (yls---a (Pa,---, ym (p—lyio)

and form the new homotopy equivalence f'=80- f. It is immediate that f (4, 4)=
=¢ 'o@=1Id,. Hence, by replacing f by f, we are back in case 1.

If we replace, in this proof, induced maps in homotopy by induced maps in homol-
ogy and using the nilpotency of the spaces involved, we will get the following dual
proposition.

PROPOSITION 2. Let Y be a completely coreducible space and A a balanced
space with End A an H-local set. Then X v A~ Y v A implies X ~ Y.

Remark. In the proofs of Lemma 1 and 2 as well as Proposition 1 we made no
use of the nilpotency of the spaces involved. Therefore these results remain true if the
spaces are only assumed to be pointed connected CW-complexes. However for Prop-
osition 2 and the following applications we have to restrict to nilpotent spaces.

COROLLARY 1. Let Y be a finite product of quasi-finite H-complexes and
spheres. Then G(X x S")=G (Y x S") implies G(X)=G(Y).

Proof. Suppose G(X xS")=G(Y xS"). Then X,xS,~Y,xS, with Y, com-
pletely reducible, End S, n-local and S, balanced. Hence we conclude by Proposition 1
that X,~ Y, for all primes p.

COROLLARY 2. A2 implies Al in Theorem A.

Namely one has only to observe that A2 implies 7 (X)=1(Y), by checking rational
cohomology. Then the result follows by iterated application of Corollary 1.

Similarly one has in the dual situation

COROLLARY 3. Let Y be a quasi-finite H'-complex. If G(X v S")=G(Y v S")
for some n>1, then G(X)=G(Y).

COROLLARY 4. B2 implies Bl in Theorem B.
Notice that Theorem B is trivial in case Y is not 1-connected, because then ¥ ~ S*.
We can also use Proposition 1 to find. new H-complexes. For instance one has:

COROLLARY 5. Let Y be a quasi-finite H-complex. Then X x S™ x -+« x §™ =~
~Y X S™x .- x S™ implies that X is a quasi-finite H-complex.
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Proof. Corollary 1 implies G(X)=G(Y) or XeG(Y). Notice that X is of finite
type. Since Y is a quasi-finite H-complex, the same is true for X (cf[7]).
It is known [3] that for a finite 1-connected H-complex X there can be only finitely
many finite H-complexes Y € G(X ). The following examples should illustrate that the
set G(X) can still be quite big.

EXAMPLE 1 (compare also [10] and [16]). Let p denote a prime and consider the
principal fibration SU (p)— SU (p+1)— S??*! classified by y=a+ fen,,SU (p),
where f is of order p and « of order prime to p. Define X, as the total space of the
principal SU (p)-fibration over S2?*! classified by o +#f. Then it is easily seen that
X,~X,, if and only if n= +m(p) and, if n#£0(p) then X,eG(SU (p+1)). Hence we
conclude

G(sU @+

and, by Theorem A, X,xS3xS5x -+ xS?* 1 ~SU (p+1)xS3x§3x .- x §2P+!
if n#0(p).

EXAMPLE 2 (compare also [12]). Let p be a prime and Y,=S> |, ¢***!
where yen,,S? is of order p. Then Y,, is a H'-space since 7y is a primitive element.
Furthermore it is easy to see that Y,,~ Y, if and only if m= +n(p). Hence

—1
|G(Y1)|>T

and, by Theorem B, Y; v S?v §??*1a Y, v 83 v S??* L if m#0(p).
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