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Funktionen, deren Logarithmus darstellbar ist als Differenz

subharmonischer Funktionen1)

Raymond Gygax

Einleitung

Differenzen subharmonischer Funktionen, oder ,,^-subharmonische Funktionen",
gestatten die Einfuhrung algebraischer Strukturen. Dabei ist allerdings mit dem Ver-
lust bedeutender Eigenschaften der subharmonischen Funktionen zu rechnen. Tat-
sàchlich: weder der Konvergenzsatz fur monotone Folgen, noch derjenige fur gleich-
màssig konvergierende Folgen bleibt gûltig. Dann liegt es nahe, ausgehend von den
Grundresultaten von F. Riesz und M. Brelot, neue Kriterien zu untersuchen, wobei
die Théorie der <5-konvexen Funktionen als Wegweiser dienen soll2). Vor zwanzig
Jahren, da eine Neubelebung des Interesses fur Potentialtheorie zu beobachten war,
verôffentlichte M. G. Arsove seine bahnbrechenden Arbeiten ûber (5-subharmonische

Funktionen ([2]).
Exponentialfunktionen von <5-subharmonischen Funktionen - wir werden sie fortan

mit dem Ausdruck ,,exp«" bezeichnen - sind eigentlich Metriken. Nach einem Résultat

von I. G. Reschetnjak [11] lassen sich nâmlich sâmtliche Mannigfaltigkeiten von
beschrânkter Krûmmung - im Sinne von A. D. Alexandrow [1] - durch ein Linienele-
ment von der Form

ds Qxpu(z)\dz\

charakterisieren. In dieser Darstellung ist die Gauss'sche Kriimmung einer hinreichend
regulâren Flâche gegeben durch [3]

Au

exp2w

Dabei beschreibt Au bekanntlich das gemâss dem Riesz'schen Zerlegungssatz [12] u

zugeordnete Radon-Stieltjes'sche Mass /i. Der vorliegende Artikel leitet einige funk-
tionentheoretische Eigenschaften der Funktionen expw her, jedoch ohne auf die
Alexandrow'sche Flâchentheorie einzugehen. §1 und §2 liefern Resultate im Kleinen,
wobei Mittel ûber Kreisperipherien auftreten. Im letzten Abschnitt wird gezeigt, dass

die Menge sâmtlicher Differenzen Qxpux — expw2> wobei ux und u2 darstellbar sind als

Differenzen lokal beschrânkter subharmonischer Funktionen, eine Algebra bildet.

*) Dieser Artikel ist ein Auszug der Dissertation des Verfassers.
2) VgL etwa [4] und [12] fur subharmonische Funktionen, oder den ausgezeichneten Bericht von

T. Radô [10], und [13] fur «J-konvexe Funktionen.
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Was die vorkommenden Begriffe betrifft, begnûgen wir uns vorlâufig mit folgender

DEFINITION. Eine Funktion u heisst <5-subharmonisch in einer offenen Menge
Q, falls ein Paar (v9 w) von subharmonischen Funktionen in Q existiert derart, dass

ùberall wo u in Q - endlich oder unendlich - definiert ist,
(1) sup(i>, w)> —oo

und
(2) u v-w.

Der Definitionsbereich von u wird dann auf die Menge aller Punkte von Q erweitert,
wo (1) gilt.

§1. Ein Mittelwertsatz

SATZ 1. u v — w sei ô-subharmonisch im Gebiet Q der komplexen z-Ebene. Dann

gilt

1 flim— expu(zo + rel<f>) d(p expu(z0) (1.1)
r-o 2n J

0

fiir jeden Punkt zoeQ, wo (v(z0), w(z0))^ (—oo, — oo) ist.

Beweis. (I)
2it

05 ifr-o 2n J
(1.2)

0

Falls w(zo)= — oo ist nichts zu beweisen. Sei also w(zo)> — oo und sei e>0 gcgc-
ben. Es ist

2tc 2n 2n

ji r WL f *\d l [
{2n J °

J =z2n J ° 2n J
o oox exp- 2w (z0 + rel>) d^ ^ (exp 2v (z0) + 8) (exp- 2w (z0) H- e)

fur genûgend kleine r, da exp2t; von der Klasse PL ist und wegen Lemma 13). Daraus

folgt (1.2).
2tt

(II) lim i- f exp u (z0 + rei<f>) dcp^zxpu (z0). (1.3)
f=to* 2tt J

o

3) Nach T. Radô [10, 2.12] soll eine nicht négative Funktion von der Klasse PL heissen - von
,,potentialartigem Logarithmus" -, falls ihr Logarithmus subharmonisch ist. Aus der Konvexitât
der Exponentialfunktion folgt, dass jede PL-Funktion subharmonisch ist.
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Es wird angenommen, dass v(z0) endlich ist.

(1) Wenn w(zo) — oo gibt es zu jeder naturlichen Zahl N einen Radius rN mit
der Eigenschaft, dass w(zo):g —Nfùr \z—zo\<rN. Dann ist fur r<rN

2n 2k

g-~ exp{v(zo + relip) + N2d<p^— expu (z0 + reltp) d<p,
2n J 27U J

o o
J J
o o

da exptf+TV subharmonisch ist Mit N-* oo folgt (1.3).
(2) w(zo)> —oo. Wegen (1.2) gibt es zu e, 0<e<l, ein ro>0 so, dass

il'
0

fur r<rQ.
2îc

if,2»J
0

Sei et :

1

Dann ist,

2ki2n J
0

2tc

0

5xpii(z0 + rO ^^exp«(z0

Wir zeigen: fur genugend kleme r, r<r0, ist

sxp w (z0 + rel(p)

expy(zo)

expw(zo) + £

sobald

îxpw(zo + rel<p)

:xp u (z0 + r^IÇ>) <

2k

xjljexpw
0

*>„-,.

c/ç) —expw(z,

2tt

^>l|exp
0

(z0 + r^l9>) Jç?

w (z0 + r^l<p) (i<p •

— s l>exp — w(

(1.4)

(1.5)

(16)

(1.7)

4) Von der Konvergenz der Mittelwerte einer subharmomschen Funktion gegen den Wert im
Mittelpunkt wurde schon oben Gebrauch gemacht

5) Da e<l und positiv ist impliziert (1 6), dass ei<expw(zo) ist, also

2*

—
2,71 J
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2% 2k

x j— Fexpï(u + w)(zo + reP)dq>\ ~ | expu (z0 + rei<p) dq>1 ^
0 0

^exp-w(z0Hexpt;(z0)--^ exp u (z0 + rel>) d<pt>(l-e) expw(z0).
l 2nJ J

o

Die letzte Ungleichung folgt aus (1.4) und (1.6).
Bemerkung. Aus Satz 1 folgt unmittelbar

lim—2
r-o nr JJ

|z-zo|<r

(u(z0), w(zo))#(—oo, — oo), wobei dO das Flâchenelement bezeichnet. Letztere
Eigenschaft wurde schon von A. Huber [8, Lemma 2] bewiesen.

LEMMA 1. u sei superharmonisch im Gebiet Q. Dann gilt fur jeden Punkt zoeQ
2n

lim—
r-o 2n J

(1.8)

Beweis. (I) Die Halbstetigkeit von u nach unten ûbertrâgt sich auf expw, so dass

2k

l r
lim— I

r-*o 2n j
(1.9)

0

Zeigen wir nun, dass der Limes superior der Mittelwerte expw(z0) nicht ûbersteigt,
falls u(z0) endlich ist.

(II) Der Einfachheit halber wird z0 :=0 gesetzt. Wir beweisen : zu jedem positiven
e lâsst sich ein r3>0 finden, mit der Eigenschaft, dass fur aile r^r3

2%

— I exp«(rel>)#<(l+£)expw(O). (1.10)

o

In einer Kreisumgebung von 0 U0: {z/\z\<r0}czQ gilt die Darstellung von
Riesz [12]

(1.11)

wobei h die grôsste harmonische Minorante von u in Uo bezeichnet, g die Green'sche
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Funktion fur Uo und fi das positive Radon-Stieltjessche Mass, welches u zugeordnet
ist.

Setzen wir

Nach Voraussetzung ist G(0)<oo. Wir zeigen zunâchst: es gibt ein r2>0, das nur
von G(0) und von s abhângt, derart dass

2%

— fexpG(reI>)#^(l+e)expG(O) fur aile r^r2. (1.12)
2tcJ

o

(1) Nehmen wir an, \i bestehe aus einer einzigen Punktmasse in Uo, etwa im
Punkte £*. Ohne Einschrânkung der Allgemeinheit darf man annehmen, dass Ç*

positiv sei (ju({0}) 0 wegen <7(0)<oo). Wir setzen

' Iog(r0/C*)"

Sei rt, 0<rt <r0 so, dass

G(°)

und

(1.13)

r8)G(0)/log(ro/ri) r g(o)\4 <(i+8)Ji / > t. (1.14)

(a) Betrachten wir den Fall, wo C*^>V Aus der Monotonie der Green'schen
Funktion folgt

-^sr. «u0. (1.15)

Weiter ist fur jedes a, O^c
2n 2ïc

If 1 1 f 1

SUD — I 5 r— Q(û x— I —i
0<r<ro J-ft J \T€ —4 I **R> \S J \& —

(L16)

Das Intégral auf der linken Seite von (1.16) ist nâmlich eine stetige Funktion von r,
fallend fur ("^«Co und, als Mittel einer PL-Funktion [10,2.4], wachsend fur
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0<r<£*. Nun ist mit 0^<p^7r/2

^. (1.17)

Dann folgt aus (1.13) bis (1.17)

2îc

1J exp G («*) dcp I f {exp g («**, C*)}"*

0

f * y *
"'

ïï4texpG(O)<(l+e)expG(O), r<r0. (1.18)

(b) Es sei rx <Ç* <r0. Da G positiv und harmonisch ist in {z/\z\ <rx}, gibt es nach
den Harnack'schen Ungleichungen ([4, App.] oder [9, Chapt. X]) ein r2, 0<r2<rî9
so, dass

G(z)<G(0)+log(l+e) (1.19)

fur |z|^r2, und zwar unabhângig von (*. Daraus folgt (1.12).
(2) fi bestehe aus q Punktmassen fit in Çi9 jll2 in Ç2» •••» Vq in Cq> innerhalb Uo. Mit

den Abkurzungen

ist dann £2Œl ^ ^(0), und nach der Hôlder'schen Ungleichung [7, S. 140] gilt

q r 1 f -|«fc/G(0)

^ FF _L {eXpg (ré", Q\GWX°* <^IW> cty (1.20)
»-iL2«J J

0

Das heisst: wir sind auf (1) zurûckgefùhrt!
Durch Verschmierung der Einzelmassen geht man dann zu beliebigen Massen-

belegungen ûber. Die Funktion

G*(r):=2 J min {g (z, C).
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wobei N eine natùrliche Zahl bezeichnet, lâsst sich nâmlich durch endliche Summen
beliebig genau approximieren, und zwar gleichmàssig, so dass

(1.21)

fur beliebige fi. Ein Grenzûbergang fuhrt dann zum Résultat.
Sei nun r3, 0<r3<r2 so, dass

i r

^j exp

o

Dann ist fur

In 2nif Y ri r )2
— exp m (reI(il)) dcp > <— Qxp\_h(rel<p) + iG(reltpY\ dcp> ^In I (271 I

0 0

2it 2k

^ — I exp 2h (rei(p) dcp-— | exp G (rei<p) dcp<(l+e)2 exp 2u (0),
2ti J 2tt J

O 0

woraus die Behauptung (1.10) folgt.

§2. Mass und Mittel

Man kann sich fragen, wie rasch die Mittelwerte um den Punkt z0 divergieren,
falls u(z0) unendlich ist, und wie sie sich verhalten, falls u(zQ) nicht definiert ist. Was

jedoch stets definiert ist, ist ju({z0}): wie man es erwartet, besteht ein enger Zusam-
menhang zwischen den Mittelwerten um z0, fur kleine r, und dem Mass im Punkte z0 -
ein elementares Résultat der Potentialtheorie ist, dass der Quotient des Mittelwerts
einer subharmonischen Funktion durch logl/r gegen das Mass im Mittelpunkt kon-
vergiert (vgl. 2.8) unten).

SATZ 2. u sei ô-subharmonisch in Q, zoeQ. Dann gilt

}). (2.1)

Beweis. (I) Ohne Einschrânkung der Allgemeinheit wird angenommen: zo 0.

2n

limj—
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Zunâchst wird behauptet

-vl/logd/r)

ymj- J expw (re1*) dcp\ grexp/*({()}). (2.2)

o

Sei U0:=={z/\z\<r0} so, dass Uo+dUoczQ, ro<\. Aus der Konvexitât der Ex-
ponentialfunktion folgt die Ungleichung

2n 2n

— I expu (rei<p) dcp^exp— u (rei<p) dcp, (2.3)
2n J 2% J

o o

r<r0. Zerlegen wir u gemâss dem Riesz'schen Darstellungssatz:

W(z) A(z)+J log J^<fe(*c), (2.4)

I/o

zeU0, wobei A harmonisch ist in (70. Nun ist fur ein festes r<r0
In

0 |C|<r
2%

r ri r 1

J \2n J \rei<p-Ç\
ICI<r o

da

In 2% 2k

0 0

J \ [
log- o log- o v0

r r

0 0 0

Aus (2.4) und (2.5) folgt dann

2% 2iz

1 i r ^ ir ^i r n i
~J2n] U r€ Ç~ZJI +2nJ U °Vl>-CI

0 l^o

1 f 1 1
- 4- log — du (ec) (2.7)
r J ICI 'J
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Folglich ist

lim — I u (re

187

(2.8)

und somit ist (2.2) bewiesen. Aus dem xnonotonen Konvergenzsatz folgt nâmlich
([6, §27])

-L | b«I*ws J fur r-0.

(II) Sei e, 0<8< 1. Wir zeigen: fur geniigend kleine r ist

Wâhlen wir r^ 0<r!<^, so, dass {z/|z|^2r1}c:(2, und

(2.9)

(2.10)

wobei n+ die positive Variation von \x bezeichnet, und setzen wir U1 : {0< |C| <2rJ
und e+ : /x+ (C/!). Sei A* die harmonische Funktion

u{z)~ J lOg-i

und sei Af: supjzj^ri exp/z*(z). Sei weiter r2, 0<r2^r1, derart, dass

Nehmen wir an, )U+ bestehe aus ^r Punktmassen/7! in Ci, Pi in C2» •••>Pq m
nerhalb U1. Dann ist nach Hôlder

2% In

\
pk/e+
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Nehmen wir weiter an, Ci sei positiv, und betrachten wir das Intégral
2n

I1 wird nicht kleiner, wenn man ûber den Kreis |z — (Ci — r/2)| r/2 nach einem neuen,
auf Ci —r/2 bezogenen Polarwinkel \j/ integriert. Wegen

,-,/, en|ev—l|^sin^^ —, 0^\l/^~ (2.13)
2 2

ist
2n n/2

V'*. (2.14)

Da dièse Abschâtzung unabhàngig von Ci ist, gilt auch, nach (2.12)
2n

J explf Io8î^âdfl+ (eù] *p*4l+'\{*®1"* "¦'* • (2-15)

0 Vi

Verschmieren wir die Einzelmassen, so gilt (2.15) fiir beliebige Massenverteilungen.
Dann folgt aus (2.10), (2.11) und (2.15)

2k

~ï '^{^ J
log-

0 l/iu{0}

log-
r

fur r^r2y womit (2.9) bewiesen ist. (2.1) folgt aus (2.2) und (2.9).

§3. Eine Algebra

Sei Q eine offene Menge in der komplexen z-Ebene und sei i/die Klasse aller ^-sub-
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harmonischen Funktionen in Q, welche sich lokal als Differenzen beschrânkter sub-
harmonischer Funktionen darstellen lassen6. Betrachten wir

Ho: {ueH/mfQo u>0 fur jede beliebige Teilmenge O0, Qo+dQoc:Q},

und

Es gilt

SATZ3. H0 H1. (3.1)

Beweis. (I) HozdH^ (3.2)

Sei QxpueHl. In einer offenen Umgebung U(z0) von zoeQ gelte die Darstellung
u v — w,v und w subharmonisch und beschrânkt in U(z0), w^.—M dort.

Bekanntlich ist jede naturliche Potenz /" einer nicht negativen subharmonischen

Funktion/wieder subharmonisch:/" ist nàmlich oberhalbstetig und

J
\z\<r

x{ J dO(J J
\x\<r \z\<r

\z\<

{ J dO(z)J l^~ J /"(z)dO(z) (3.3)

\\ \\
fur genûgend kleine r, wenn 0 zum Definitionsbereich von/ gehôrt.

Ferner ist u1u2eH, falls uu u2eH, denn es gilt lokal

(3.4)

wobei vu v2, wt und w2 nicht négative subharmonische Funktionen bezeichnen.

Dann ist

ff (w + M)2 (w + M)*Ul + -———+ v +--> +

^. (3.5,

denn exp(v+M) ist von der Klasse PL, also subharmonisch.

(II) H0<zHx. (3.6)

Sei ueH0.
(1) Zunâchst wird bewiesen, dass logw 5-subharmonisch in Q ist.

6) H umfasst nicht sâmtliche in Q lokal beschrânkten (5-subharmonischen Funktionen! (vgl.
[2, Example 3, S. 354])
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Sei zoeQ und sei

U(zo):={\z-zo\<ro}9 rogl, U(zo)cQ9

eine Umgebung von z0 in welcher u die zulâssige Darstellung u v — w besitzt. Sei

weiter

0<c^u(z)SC, zeU(zo). (3.7)

Wir verwenden ein Kriterium von Arsove [2, Theorem 14, S. 338], und zu diesem

Zweck fiihren wir den Begriff der Wienerschen Variation ein [14] :

Sei / eine in Q fast ûberall endlicb definierte und lokal integrierbare Funktion.
Unter der Wienerschen Variation Wa>(f) iïber Q' — Q' eine messbare Teilmenge von
Q - versteht man die Grosse

r->0 *

wobei (2^ die Menge aller Punkte aus Q' bezeichnet, deren Abstand von dQ grôsser ist
als r. A? bezeichnet den Blaschke-Operator von/[4, Chap. H, §2]:

2k

nr
o

Das Kriterium von Arsove lautet:
Eine fast ûberall definierte und lokal integrierbare Funktion ist genau dann fast

<5-subharmonisch in einer offenen Menge O, wenn ihre Wienersche Variation ûber
aile kompakten Teilmengen von Q endlich ist.

Betrachten wir

): {|z-zo|<ro/2}, z^U'{z0) und r<ro/2.

Dann ist fur jeden Punkt z auf dem Kreis \z—zx\ r

wobei rj(zu z)>c, und
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2k

^ f {uiz. + re^-uiz,)}2
c J

Dann gilt

\Aflogu(zl)\^-\Afu(z1)\
c Tir

und, da

\Af logu (zOl^ M?« (*i)l +^5 Mf«2 (*i)l +| Mf«

dcp (3.10)

(3.11)

(3.12)

Daraus folgt: log m ist fast <5-subharmonisch in Q. Auf die <5-Subharmonizitât

schliesst man mit demselben Argument. Es ist nâmlich - aufgrund von (3.8) und

(3.12)-
lit

— Iogu(z1 + rel<p) d(p-logu(zl)

(3.13)

so dass aile Mittelwerte mit r -> 0 gegen den Wert der Funktion im Mittelpunkt kon-
vergieren ([12, II, S. 344]).

(2) Zeigen wir nun, dass logw darstellbar ist als Differenz beschrânkter subhar-
monischer Funktionen in U' (z0).

Seien n, fi* und v die w, u2 und logw zugeordneten Massenbelegungen, und sei e

eine BorePsche Menge in U'(z0) mit der Eigenschaft, dass

li (de) ii* (de) v (de)=0. (3.14)

Dann gilt wegen (3.12)

e e

(3.15)
Nach [2, Theorems 12 & 13, S. 337] ist nun

und ^(u2)^^ (e), (3.16)
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(b) limf-^ f Afïogu dO v(e). (3.17)

e

Daraus folgt:

^ ^y | (3.18)

Dass (3.18) fur beliebige offene Teilmengen e von U'(z0) und somit fur beliebige
Borel'sche Teilmengen von U'(z0) gilt ist klar (vgl. [10, 4.6-4.14]). Es existiert nâm-
lich ein Punkt z*eU'(z0) mit der Eigenschaft, dass fur sâmtliche Geraden gkn

k k
Re(z-z*) —, Im(z--z*) ~, k ganz, n natûrlich

/^) v(g*)=0. (3.19)

Sei œ eine offene Teilmenge von U'(z0) und sei £>0. Es gibt eine abgeschlossene

Menge a^czœ so, dass

\v\((û-ax)<£. (3.20)

(3.20) gilt auch fur eine abgeschlossene Menge a2, a1aa2<^(o9 welche von Strecken

aus den soeben definierten Geraden gfc berandet ist. Also

i(l + ^\fi\(œ) + \^\(œ)\ + ^ (3.21)

Dann ist gemàss dem Hahnschen Zerlegungssatz

(3.22)

wobei e eine beliebige Borelsche Teilmenge von U' (z0) bezeichnet.

Sei

:=-
J

log

V (zo)

In U'(z0) ist/? — log m subharmonisch, sowie die Funktionen

¦J
V (20)

log|~— d\/i\ (ec)
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und

V (zo)

wobei u2 v* — w* eine zulâssige Darstellung von u2 in U(z0) bezeichnet. Dann ist in
einer hinreichend kleinen Umgebung von z0

und

<(l + )(v + wq) + (v +wq)\^Ml>œ (3.23)

womit Satz 3 bewiesen ist.

Bilden wir

i/'1:={expw1-expw2/w1, u2eH},

so gilt

SATZ 4. H\ //, das heisst: H[ ist eine Algebra. (3.24)

(Vgi. [2, Theorem 25, S. 347]).
Beweis. (I) H[œH.
Dies ist klar, denn QxpuieHoczH, i 1, 2, und H ist eine Algebra.
(II) HaH'v
Sei u v — weH, v und w lokal beschrânkt. Eine Darstellung von u als Differenz

zweier Elemente aus Ho ist gegeben durch

u (max (v, w) +1 — w) — (max (t;, w) H-1 — u), (3.25)

denn max (y, w) ist subharmonisch [12, I, S. 335].
Bemerkung. Zwischen den Aussagen

(A) ,,u ist lokal darstellbar als Differenz beschrânkter subharmonischer
Funktionen in Q"9 und

(B) ,,w ist darstellbar als Differenz lokal beschrânkter subharmonischer Funktionen

in Q",
ist nicht zu unterscheiden. Dass (B) aus (A) folgt zeigt man folgendermassen :

u= V— W bezeichne eine kanonische Darstellung von u in Q - ,,kanonisch" im
Sinne, dass sie der Jordanschen Zerlegung von \i entspricht (dass jedes négative Mass
eine subharmonische Funktion erzeugt, beweist M. Brelot in [5]). Nehmen wir an, es

existiere ein Punkt z0eO, so, dass V in keiner Umgebung von z0 beschrânkt ist. In
U(z0) gelte u=v—w, v beschrânkt dort. Dann ist [2, Theorem 5, S. 331] V v—s,
s subharmonisch in U{zo\ was unserer Annahme widerspricht!
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