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Funktionen, deren Logarithmus darstellbar ist als Differenz

subharmonischer Funktionen?)
RAYMOND GYGAX
Einleitung

Differenzen subharmonischer Funktionen, oder ,,6-subharmonische Funktionen*,
gestatten die Einfithrung algebraischer Strukturen. Dabei ist allerdings mit dem Ver-
lust bedeutender Eigenschaften der subharmonischen Funktionen zu rechnen. Tat-
sdchlich: weder der Konvergenzsatz fiir monotone Folgen, noch derjenige fiir gleich-
massig konvergierende Folgen bleibt giiltig. Dann liegt es nahe, ausgehend von den
Grundresultaten von F. Riesz und M. Brelot, neue Kriterien zu untersuchen, wobei
die Theorie der d-konvexen Funktionen als Wegweiser dienen soll2). Vor zwanzig
Jahren, da eine Neubelebung des Interesses fiir Potentialtheorie zu beobachten war,
ver6ffentlichte M. G. Arsove seine bahnbrechenden Arbeiten iiber d-subharmonische
Funktionen ([2]).

Exponentialfunktionen von é-subharmonischen Funktionen — wir werden sie fortan
mit dem Ausdruck ,,expu‘ bezeichnen — sind eigentlich Metriken. Nach einem Resul-
tat von I. G. Reschetnjak [11] lassen sich namlich sémtliche Mannigfaltigkeiten von
beschriankter Kriimmung — im Sinne von A. D. Alexandrow [1] - durch ein Linienele-
ment von der Form

ds=expu(z)|dz|
charakterisieren. In dieser Darstellung ist die Gauss’sche Kriimmung einer hinreichend
reguldren Fliache gegeben durch [3]
Au

K=-— .
exp2u

Dabei beschreibt Au bekanntlich das geméass dem Riesz’schen Zerlegungssatz [12] u
zugeordnete Radon-Stieltjes’sche Mass u. Der vorliegende Artikel leitet einige funk-
tionentheoretische Eigenschaften der Funktionen expu her, jedoch ohne auf die
Alexandrow’sche Flichentheorie einzugehen. §1 und §2 liefern Resultate im Kleinen,
wobei Mittel iiber Kreisperipherien auftreten. Im letzten Abschnitt wird gezeigt, dass
die Menge samtlicher Differenzen expu, —expu,, wobei 4, und u, darstellbar sind als
Differenzen lokal beschrinkter subharmonischer Funktionen, eine Algebra bildet.

1) Dieser Artikel ist ein Auszug der Dissertation des Verfassers.
2) Vgl. etwa [4] und [12] fiir subharmonische Funktionen, oder den ausgezeichneten Bericht von
T. Radé [10], und [13] fiir é-konvexe Funktionen.
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Was die vorkommenden Begriffe betrifft, begniigen wir uns vorlaufig mit folgender

DEFINITION. Eine Funktion u heisst d-subharmonisch in einer offenen Menge
Q, falls ein Paar (v, w) von subharmonischen Funktionen in Q existiert derart, dass
iiberall wo u in Q — endlich oder unendlich — definiert ist,

(1) sup(v, w)>—o0
und

(2) u=v—w.
Der Definitionsbereich von # wird dann auf die Menge aller Punkte von Q erweitert,
wo (1) gilt.

§ 1. Ein Mittelwertsatz

SATZ 1. u=v—w sei 5-subharmonisch im Gebiet Q der komplexen z-Ebene. Dann
gilt
2n

1 .
lim N f expu (zo+re'®) dp=expu(z,) (1.1)
r—bO 7T

0

fiir jeden Punkt z,€Q, wo (v(z,), w(z0))# (— 0, — ) ist.
Beweis. (1)

2r

— 1 ,
lim 5 | expu (zo+re?)do<expu(z,). (1.2)
r—0 T

0

Falls w(z,)= — 0o ist nichts zu beweisen. Sei also w(z,)> — o und sei ¢>0 gege-
ben. Es ist
2n 2n 2n

1 21
— | expu(zo+re®)do}y <— | exp2v(zo+re®) d(p -
2n —2n

0

x exp—2w (zo+re'?) dop < (exp 20(zp)+¢) (exp—2w (zo) +¢)
fiir geniigend kleine r, da exp2v von der Klasse PL ist und wegen Lemma 13). Daraus
folgt (1.2).
2=n
1 .
(II) lim — | expu(zo+re®) do=expu(z,). (1.3)
F=0 2T .

0

3) Nach T. Radé [10, 2.12] soll eine nicht negative Funktion von der Klasse PL heissen — von
,,potentialartigem Logarithmus‘ —, falls ihr Logarithmus subharmonisch ist. Aus der Konvexitit
der Exponentialfunktion folgt, dass jede PL-Funktion subharmonisch ist.



Funktionen, deren Logarithmus darstelibar ist 181

Es wird angenommen, dass v(z,) endlich ist.
(1) Wenn w(z,)= —co gibt es zu jeder natiirlichen Zahl N einen Radius ry mit
der Eigenschaft, dass w(z,)< — N fiir |z—z,| <ry. Dann ist fiir r<ry

2n 2n
1 . 1 .
exp[v (zo)+N]§§— J exp[v(zo+re?)+N] dgog‘z— jexpu (zo+re®)do,
T T
0 0

da expv+ N subharmonisch ist. Mit N— oo folgt (1.3).
(2) w(zp)> — 0. Wegen (1.2) gibt es zu ¢, 0<e <1, ein r4>0 so, dass

2r

1 .
5, | expu (zo+re?)do=<expu(z,)+e (1.4)
T
0

fir r<ry. Wir zeigen: fiir geniigend kleine r, r<r, ist

2n

1 .
o J. expu(zo+re?)de>(1—¢)expu(z,). (1.5)
T
(0]
Sei g, :
O<g <e . 3 v&)—. (1.6)
expu(zo)+e
Dann ist, sobald
2r
1 .
™ j expw (zo+re?)dp—expw(zy)<e; 4): (1.7)
s
0
2rn 2z
1 . 1 .
. f expu (zo+re?) d(p>§— J expu (zo+re®) do-{expw(zo)} ' x
T T
0 0
2r
1 .
X {5_ fexpw (zo+71e?) d(p——sl}gexp-—w (20) 5)
n
0

4) Von der Konvergenz der Mittelwerte einer subharmonischen Funktion gegen den Wert im
Mittelpunkt wurde schon oben Gebrauch gemacht.
5) Da ¢<1 und positiv ist impliziert (1.6), dass &1 <<expw/(zo) ist, also

2xn

1
—— i i —,
anexp w(zo—+ret?) dp—e1>0.

0
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2 2n
1 . 2 .
X [{—2—7-[ f expi (u+w) (zo+re'?) d(p} ——;—1— J‘ expu (zo+re'®) dqo:lg
T
0 0
2n

=exp—w(zo) {exp v (zo)—% f expu (zo+re’®) d(p}> (1—¢)expu(z,).
0

Die letzte Ungleichung folgt aus (1.4) und (1.6).
Bemerkung. Aus Satz 1 folgt unmittelbar
1
lim —; expu (z) dO(z)=expu(z,),
r-0 nr

lz=zo| <r

(v(zo), w(zo))#(—00, —00), wobei d0 das Flichenelement bezeichnet. Letztere
Eigenschaft wurde schon von A. Huber [8, Lemma 2] bewiesen..

LEMMA 1. u sei superharmonisch im Gebiet Q2. Dann gilt fiir jeden Punkt z,€Q

2n

1 .
lim 5, | exp¥ (zo+re'®) do=expu(z,). (1.8)
r—0Q T
0

Beweis. (I) Die Halbstetigkeit von u nach unten iibertragt sich auf expu, so dass
2n
1 .
lim — | expu(zo+re®) dp=expu(z,). (1.9)
r—0

0

Zeigen wir nun, dass der Limes superior der Mittelwerte expu(z,) nicht iibersteigt,
falls u(z,) endlich ist.

(IT) Der Einfachheit halber wird z,:=0 gesetzt. Wir beweisen: zu jedem positiven
¢ lasst sich ein r; >0 finden, mit der Eigenschaft, dass fiir alle r<r,

2n

—;ifexpu(re“") dp<(1+¢)expu(0). (1.10)

In einer Kreisumgebung von 0 U,:={z/|z]<r,}=Q gilt die Darstellung von
Riesz [12]

W@=h@+ [ DdmE), (1.11)

Uo

wobei 4 die grosste harmonische Minorante von u in U, bezeichnet, g die Green’sche
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Funktion fiir U, und u das positive Radon-Stieltjessche Mass, welches u zugeordnet
ist.
Setzen wir

G(z):=2 f g(z,{)du(e).

Uo

Nach Voraussetzung ist G(0)<oo. Wir zeigen zunichst: es gibt ein r, >0, das nur
von G(0) und von ¢ abhéngt, derart dass

2n

1 .
:2—J.expG(re"")d<p§(1+s)expG(0) firalle r=<r,. (1.12)
T

(1) Nehmen wir an, p bestehe aus einer einzigen Punktmasse in U,, etwa im
Punkte {*. Ohne Einschrinkung der Allgemeinheit darf man annehmen, dass (*
positiv sei (u({0})=0 wegen G(0)< o). Wir setzen

G
108( ofC )

Sei ry, O0<r, <r, so, dass

Wt i=2u({0)=

G(0)
- (ro/r1)<1 (1.13)
und
g) G(0)/log (ro/ry) G (0)

(a) Betrachten wir den Fall, wo {*=<r,. Aus der Monotonie der Green’schen
Funktion folgt

g(z, {*)=<log zeU,. (1.15)

2ry
lz—¢*
Weiter ist fiir jedes a, 0Za<l

2n

1 1
su = dp<oo. 1.16
o<,5m2njlre - do= 2r (8*)” [Iei" 1% o= (1.16)

Das Integral auf der linken Seite von (1.16) ist ndmlich eine stetige Funktion von r,
fallend fiir {*<r<r, und, als Mittel einer PL-Funktion [10, 2.4], wachsend fiir
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O<r<{* Nunist mit 0<¢p<n/2
6 — 1| 2sinp= . (1.17)
- —2
Dann folgt aus (1.13) bis (1.17)

1 . 1 : ‘
2 J exp G (re®) dp=_— f {expg(re, ()} do
0

2n n/2

g 2ro “"d 1 f2r "‘4 2“‘d

=2 ) NP =) T2\ of “°”
0 0

8

i

1

= 7 expG (0)<(1+¢&)expG(0), r<r. (1.18)

(b) Esseir, <{*<r,. Da G positiv und harmonisch ist in {z/|z| <r,}, gibt es nach
den Harnack’schen Ungleichungen ([4, App.] oder [9, Chapt. X]) ein r,, O0<r,<r,,
so, dass

G(z)<G(0)+log(l +e) (1.19)

fiir |z| <r,, und zwar unabhéingig von (*. Daraus folgt (1.12).
(2) p bestehe aus g Punktmassen p, in {;, u, in {5, ..., p, in {,, innerhalb U,. Mit
den Abkiirzungen

ak:=2uk log(rO/ICkl)a k=1: 2a-~-a q,
ist dann ) {_; o,=G(0), und nach der Holder’schen Ungleichung [7, S. 140] gilt

ip (reup, Ck) ak
“f xp G (re )d"’"iif { log(ro/lbkl)} o=

q . @/ G(0)
H i {exp g (re"”, Ck)}G(O)/k’g (ro/1G) do . (1.20)
k=1 27
0

IIA

Das heisst: wir sind auf (1) zuriickgefiihrt!
Durch Verschmierung der Emzelmassen geht man dann zu beliebigen Massen-

belegungen iiber. Die Funktion

GN(Z‘):=2fmin{g(z, (), N} du(e),
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wobei N eine natiirliche Zahl bezeichnet, ldsst sich niamlich durch endliche Summen
beliebig genau approximieren, und zwar gleichmaéssig, so dass

2n

1 .
5 j exp G" (re'®) dp < (1 +¢) exp G (0) (1.21)
T
0

fir beliebige u. Ein Grenziibergang fiithrt dann zum Resultat.
Sei nun r;, 0<r;<r, so, dass

2n

1 .
TJ‘ exp2h(re’®) dp<(1+¢)exp2h(0), r=r;. (1.22)
n
0

Dann ist fiir r<r;

2r 2n
2

{2%! expu (re'®) d(p}2={517—z }[ exp [ (re'”) +4G (re'*)] dfp} <

1 ) 1 )
éi—J exp 2h (re”®) do- - f exp G (re'®) dg<(1+¢)” exp2u (0),
i T
0 ]

woraus die Behauptung (1.10) folgt.
§2. Mass und Mittel

Man kann sich fragen, wie rasch die Mittelwerte um den Punkt z, divergieren,
falls u(z,) unendlich ist, und wie sie sich verhalten, falls u(z,) nicht definiert ist. Was
jedoch stets definiert ist, ist u({z,}): wie man es erwartet, besteht ein enger Zusam-
menhang zwischen den Mittelwerten um z, fiir kleine r, und dem Mass im Punkte z, -
ein elementares Resultat der Potentialtheorie ist, dass der Quotient des Mittelwerts
einer subharmonischen Funktion durch logl/r gegen das Mass im Mittelpunkt kon-
vergiert (vgl. 2.8) unten).

SATZ 2. u sei d-subharmonisch in Q, z,€Q. Dann gilt

2n

1 ) 1/log (1/r)
lim {2—n J expu (zo+re?) d(p} =exp u({zo}). (2.1)
0

r—0

Beweis. (I) Ohne Einschrinkung der Allgemeinheit wird angenommen: z,=0.
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Zunéchst wird behauptet

2n

1 ) 1/log (1/r)
lim {2— f expu (re'?) d(p} =expu({0}).
n
0

r—0

(2.2)

Sei Uy:={z/|z|<ro} so, dass Uy+0U,<=Q, ro<1. Aus der Konvexitit der Ex-

ponentialfunktion folgt die Ungleichung

2n 2n

1 . 1 .
o j expu (re'®) do ge:xpz—7—t f u(re®)do,
0 0

r<ro. Zerlegen wir u gemiss dem Riesz’schen Darstellungssatz:

u (z)=h(z)+J‘ log du(e;),

Uo

1
|z—{|

ze Uy, wobei h harmonisch ist in U,. Nun ist fiir ein festes r<r,
2r

1 1

0 [Ll<r
2n

1 1 1

Kl<r 0

da

2r

Aus (2.4) und (2.5) folgt dann

2z 2n

11 oy 41 -1 1
— u(rw)dq;_.__i[}:(0)+~2—;fUlogl m L] du(ec)}d«)]

log- 9 log - 0 Uo
r

[h (0)+u(ICI<r) 10g1+ J log — :

¢l
log; rslgl<ro

du (e;)]

L pog 1] 1 o) dymtog!
21t |re“” CI " 2n |re“” 1] e"”l —I0B -
0

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)
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Folglich ist
hm—-— — j u(re’) dp=u({0}) (2.8)
r—+0 IOg— )

und somit ist (2.2) bewiesen. Aus dem monotonen Konvergenzsatz folgt nimlich

([6, §27])
1 . [logl]
— f 1og|2_|du(e§) J min {To-g* 1}d| |(e,)—=0 fir r—0.

log;rgmq o<ifl<1

(IT) Sei ¢, 0<e<1. Wir zeigen: fiir geniigend kleine r ist

1 2 ' 1/1og (1/r)
log {-2—7; f expu (re'?) d(p} <p({0})+e. (2.9)
0
Wihlen wir r,, 0<r, <%, so, dass {z/|z| £2r;} =Q, und
€
ut(0<|¢ <2r1)<§, (2.10)

wobei u* die positive Variation von u bezeichnet, und setzen wir U, :={0<|{| <2r,}
und ¢*:= pu* (U,). Sei h* die harmonische Funktion

W (2)=u(z)— f log——l—— du(e), zeUu{0},

|z—{]
0=|L] <2ry
und sei M:=sup,, <,, exph*(z). Sei weiter r,, 0<r,<r,, derart, dass
2n(1—e*
r? < ( ) (2.11)

M4al+e 7_‘ e
2

Nehmen wir an, u* bestehe aus ¢ Punktmassen p, in {;, p, in {3, ..., p, in {,, in-
nerhalb U,. Dann ist nach Holder

2 2n
log —— du* (¢) | d Jf]{ : }pkd
€x (6] T e = J——
LI By YO A Vel ¢
0 U, 0
2r

1 et “1pile*
< _——3 d , r<2ry. 2.12
-',EU {lre“”—ckl} Y] : &)
0
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Nehmen wir weiter an, {, sei positiv, und betrachten wir das Integral

2n

1 e’
Il°=J‘{|rei¢—C1|} d
0

I, wird nicht kleiner, wenn man iiber den Kreis |z— ({; —r/2)] =r/2 nach einem neuen,
auf {, —r/2 bezogenen Polarwinkel y integriert. Wegen

lei*—llzsinw%,ogwég (2.13)
ist
2n n/2
2 1 ) 2% [ (2
I, =<~ — 5 dYy=<4<- —> d
s =l vl [ #
0 0
A2
=(1—¢g*)"t4l*e {5} rf. (2.14)
Da diese Abschitzung unabhéngig von {, ist, gilt auch, nach (2.12)
2z
1 . 41+e+ {TC/Z}I—e" -
JCXP[J logm dﬂ (e,:):ld(pé 1-—-g+ r . (215)
0 Uy

Verschmieren wir die Einzelmassen, so gilt (2.15) fiir beliebige Massenverteilungen.
Dann folgt aus (2.10), (2.11) und (2.15)
2n
1 1 :
—— logs— | expu(re'®)doy <
1 2n
log- 0
r
2r
1 M 1
<——log| — 1 . d do |<
S— og[Zn f eXp{ f 8 % ] ﬂ(eg)} <p]_
log - 0 U1 u{0}

1 M 4t+e" fpoyt-e? .
ogl— { /+} pm@On+enl o (10} +e,
2n 1—-¢

fiir r<r,, womit (2.9) bewiesen ist. (2.1) folgt aus (2.2) und (2.9).
§3. Eine Algebra

Sei Q eine offene Menge in der komplexen z-Ebene und sei H die Klasse aller §-sub-
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harmonischen Funktionen in Q, welche sich lokal als Differenzen beschrinkter sub-
harmonischer Funktionen darstellen lassen ¢. Betrachten wir

H,:={ueH/inf,, u>0 fiir jede beliebige Teilmenge Q,, Q,+0Q,<Q},

und
H,:={expu/ueH}.

Es gilt
SATZ 3. Hy=H,. (3.1)
Beweis. (I) Hy> H,. (3.2)

Sei expue H,. In einer offenen Umgebung U(z,) von z,eQ gelte die Darstellung
u=v—w, v und w subharmonisch und beschrankt in U(z,), w= — M dort.

Bekanntlich ist jede natiirliche Potenz /™ einer nicht negativen subharmonischen
Funktion f wieder subharmonisch: /™ ist ndmlich oberhalbstetig und

f (@é{%}n {Ierf(z) dO(z)}né{#}n-lz‘Lfn(z) d0(z) x

x{ J dO(z)}"ﬂ:;lr—z f 7"(2) d0(2) (33)

z|<r lz| <r
fiir geniigend kleine r, wenn 0 zum Definitionsbereich von f gehort.
Ferner ist u,u,€ H, falls u,, u,e H, denn es gilt lokal

ugthy = (v —wy) (v —w2)=3{{(vy +v,)* +(w +w,)*} +
—{(v1 +w2)* +(wy +0,)*}}, (3.4)

wobei v,, v,, w; und w, nicht negative subharmonische Funktionen bezeichnen.
Dann ist

expu =exp (v—w)=exp (v+M)°{{1

+(w+M)2+(w+M)"'+m}+

2! 4!
w+M) (w+ M)’
—{(w+M)+( 31 ) +( 5 ) +--}}GH0. (3.5)
denn exp (v+ M) ist von der Klasse PL, also subharmonisch.
(1) HycH,. (3.6)

Sei ueH,,.
(1) Zunachst wird bewiesen, dass logu d-subharmonisch in € ist.

6) H umfasst nicht simtliche in Q lokal beschrinkten d-subharmonischen Funktionen! (vgl.
[2, Example 3, S. 354])
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Sei zo€€2 und sei
U(zo):={lz—zol<ro}, re=sl, U(zy)c=Q,

eine Umgebung von z, in welcher u die zulassige Darstellung u=v—w besitzt. Sei
weiter

0<csu(2)C, zeU(zy). 3.7

Wir verwenden ein Kriterium von Arsove [2, Theorem 14, S. 338], und zu diesem
Zweck fithren wir den Begriff der Wienerschen Variation ein [14]:

Sei f eine in Q fast iiberall endlich definierte und lokal integrierbare Funktion.
Unter der Wienerschen Variation ¥, (f) iiber Q' —Q’ eine messbare Teilmenge von
Q2 — versteht man die Grosse

Var (f):=Ti f 42710 (So),

r—0 27'C

wobei 2, die Menge aller Punkte aus Q' bezeichnet, deren Abstand von 092 grosser ist
als r. 47 bezeichnet den Blaschke-Operator von f [4, Chap. II, §2]:

27 (=2 j (f (ctre®)—f ()} do,  If ()] <co.

Das Kriterium von Arsove lautet:

Eine fast iiberall definierte und lokal integrierbare Funktion ist genau dann fast
d-subharmonisch in einer offenen Menge 2, wenn ihre Wienersche Variation iiber
alle kompakten Teilmengen von Q endlich ist.

Betrachten wir

U'(zo):={lz—zol<ro/2}, 2z,€U'(zo) und r<ry/2.
Dann ist fiir jeden Punkt z auf dem Kreis |z—z,|=r

u(@)-u() W@-u@)

logu (z)—logu(z,)= 3.8
( ) ( 1) u(zl) 2"2(21, Z) ( )
wobei n(z,, z)>c, und
2z
1 1 [ {u(zy+ré®)—u(z))¥

21 = a7 — . do. 3.9

A' ogu(zl) u(zl) ru(ZI) ﬂrzf '12 (21: 21+re“’) * ( )
0
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Dann gilt
142 ogu ()| 4% )1+ 5 J {u (21 +7¢)—u (2.} do (3.10)
und, da
() —u ()P =u (2P —u(z, ) —2u(z) (w(@)—u(z,)} (3.11)
142 0gu (2,)IS . 470 (z1)1+ 5 1407 ()1 + 5 147 (21)] =
-! {(1 " g) 142 (1)1 |42 (zl)l}. (3.12)

Daraus folgt: logu ist fast §-subharmonisch in Q. Auf die §-Subharmonizitit
schliesst man mit demselben Argument. Es ist namlich — aufgrund von (3.8) und
(3.12) -

<

2r
1 .
,E— J logu (zy+re’) do—logu(z,)
T
0

2 {(129)| [ eteerer o

2n
1 .
+-—| J u?(zy+re®) do—u®(z,) },
c 2c
0

(3.13)

so dass alle Mittelwerte mit » — 0 gegen den Wert der Funktion im Mittelpunkt kon-
vergieren ([12, II, S. 344]).

(2) Zeigen wir nun, dass logu darstellbar ist als Differenz beschrankter subhar-
monischer Funktionen in U’ (z,).

Seien p, p* und v die 4, u* und logu zugeordneten Massenbelegungen, und sei e
eine Borel’sche Menge in U’ (z,) mit der Eigenschaft, dass

p(0e)= p* (0e)=v(0e)=0. (3.14)
Dann gilt wegen (3.12)
fAf logu (z,)d0(z,) g% {(1 +§)J!Afu ()1 d0(zy) + 21_cJ‘ |4Pu? (z,)| dO(zl)} .

(3.15)
Nach [2, Theorems 12 & 13, S. 337] ist nun

(a) V. (u)slul (e) und v.(u?)<IH¥ (e, (3.16)
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(b) }ﬂ(-%)ﬁaf logu d0=v (e). (3.17)

Daraus folgt:

b {(1 + )l @+ 5, " (e)}. (3.18)

Dass (3.18) fiir beliebige offene Teilmengen e von U’ (z,) und somit fiir beliebige
Borel’sche Teilmengen von U’ (z,) gilt ist klar (vgl. [10, 4.6-4.14]). Es existiert nim-
lich ein Punkt z*e U’ (z,) mit der Eigenschaft, dass fiir simtliche Geraden g&

n?

Re(z—z* = Im (z— z*)=5 k ganz, n natiirlich

u(gh)=n*(gn)=v(gh)=0. (3.19)

Sei w eine offene Teilmenge von U’(z,) und sei ¢>0. Es gibt eine abgeschlossene
Menge a, cw so, dass

(w—a;)<e. (3.20)

(3.20) gilt auch fiir eine abgeschlossene Menge a,, a; —a, = w, welche von Strecken
aus den soeben definierten Geraden g berandet ist. Also

b @IS (@)]+h@-a)l<- {(1+9) I @)+ i (w)}+s (3.21)

Dann ist geméss dem Hahnschen Zerlegungssatz

v (st {(1 +S ) ety " (e)}, (3:22)

wobei e eine beliebige Borelsche Teilmenge von U’ (z,) bezeichnet.
Sei

p(z):=— J log

U’ (z0)

P dv™ (e;).

In U’ (z,) ist p—logu subharmonisch, sowie die Funktionen

q(2):=v(z)+w(z)+ J log d |yl (e)

U’ (zo)

1
|z—{]
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und

q* (2):=v* (2)+w* (2)+ j log

U’ (z0)

1 *
z—{] dip’| (e;),

wobei u? =v* — w* eine zuldssige Darstellung von #? in U(z,) bezeichnet. Dann ist in
einer hinreichend kleinen Umgebung von z,,

1

C 1
p;—{<1+-) (v+w—q)+£(v*+w*—q*)}gM1>-—oo (3.23)
c c

und

logu=p—(p—logu),
womit Satz 3 bewiesen ist.
Bilden wir

H':={expu, —expu,/u,, u,eH},

so gilt

SATZ 4. H'\=H, das heisst: H', ist eine Algebra. (3.24)

(Vgl [2, Theorem 25, S. 347]).

Beweis. (I) Hy < H.

Dies ist klar, denn expu,e Hyc H, i =1, 2, und H ist eine Algebra.

(II) Hc H,.

Sei u=v—weH, v und w lokal beschriankt. Eine Darstellung von u als Differenz
zweier Elemente aus H|, ist gegeben durch

u=(max (v, w)+1—w)— (max (v, w) +1—0), (3.25)

denn max (v, w) ist subharmonisch [12, I, S. 335].

Bemerkung. Zwischen den Aussagen

(A) ,,u ist lokal darstellbar als Differenz beschrankter subharmonischer Funk-
tionen in Q*, und

(B) ,,u ist darstellbar als Differenz lokal beschrinkter subharmonischer Funktio-
nen in Q°,
ist nicht zu unterscheiden. Dass (B) aus (A) folgt zeigt man folgendermassen:

u=V—~ W bezeichne eine kanonische Darstellung von « in Q - ,,kanonisch® im
Sinne, dass sie der Jordanschen Zerlegung von u entspricht (dass jedes negative Mass
eine subharmonische Funktion erzeugt, beweist M. Brelot in [5]). Nehmen wir an, es
existiere ein Punkt z,€£, so, dass ¥ in keiner Umgebung von z, beschriankt ist. In
U(z,) gelte u=v—w, v beschrinkt dort. Dann ist [2, Theorem 5, S. 331] V' =v—s,
s subharmonisch in U(z,), was unserer Annahme widerspricht!
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