Partitions of Graphs into Coverings and Hypergraphs into Transversals

Autor(en): Werra, D. de
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 49 (1974)
PDF erstellt am:
29.04.2024

Persistenter Link: https://doi.org/10.5169/seals-37986

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Partitions of Graphs into Coverings and Hypergraphs

into Transversals

D. de Werra

Abstract

A covering of a multigraph G is a subset of edges which meet all vertices of G. Partitions of the edges of G into coverings $C_{1}, C_{2}, \ldots, C_{k}$ are considered.

In particular we examine how close the cardinalities of these coverings may be. A result concerning matchings is extended to the decomposition into coverings. Finally these considerations are generalized to the decompositions of the vertices of a hypergraph into transversals (a transversal is a set of vertices meeting all edges of the hypergraph).

Introduction

In this note a multigraph $G=(X, U)$ consists of a finite non-empty set X of vertices and a set U of edges.

A covering C in G is a subset of edges such that each vertex of G is adjacent to at least one edge of C. Given a multigraph G we will consider partitions of the edges of G into coverings $C_{1}, C_{2}, \ldots, C_{k}$. (Such a partition exists only if each vertex x has degree at least k, i.e. if any x is adjacent to at least k edges). The cardinality of C_{i} will be denoted by c_{i}.

We will first examine the following question: given a multigraph G when does a given finite sequence $c_{1} \geqslant c_{2} \geqslant \cdots \geqslant c_{k} \geqslant 0$ represent the cardinalities of a partition of U into coverings?

A similar problem concerning partitions into matchings (i.e. subsets of nonadjacent edges) has been solved in [1] and [2].

In §2 the problem is formulated in terms of hypergraphs; we now have partitions of the vertices into transversals and we examine in particular how close the cardinalities of transversals in a partition can be.

All notions not defined here can be found in [3].

§1. Partitions into Coverings

Let us call covering index $i(G)$ of G the largest k for which there exists a partition of the edges of G into k coverings $C_{1}, C_{2}, \ldots, C_{k}$.

To each such partition we associate a sequence $c_{1}, c_{2}, \ldots, c_{k}$ where c_{i} is the cardinality of C_{i} and where the indices are chosen in such a way that $c_{1} \leqslant c_{2} \leqslant \cdots \leqslant c_{k}$.

We may now formulate a theorem which is quite similar to the matching case.

THEOREM 1. If the sequence $c_{1}, c_{2}, \ldots, c_{k}$ corresponds to a partition of the edges of G into coverings, then any sequence $\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{k}$ with

$$
\begin{aligned}
& \bar{c}_{1} \leqslant \bar{c}_{2} \leqslant \cdots \leqslant \bar{c}_{k} \\
& \sum_{i=1}^{r} \bar{c}_{i} \geqslant \sum_{i=1}^{r} c_{i} \quad r=1, \ldots, k \\
& \sum_{i=1}^{k} \bar{c}_{i}=\sum_{i=1}^{k} c_{i}
\end{aligned}
$$

corresponds also to a partition of the edges of G into coverings.
Proof. We only have to prove that any couple of coverings C_{i}, C_{j} with $c_{i}-c_{j}=$ $=K \geqslant 2$ may be replaced by two disjoint coverings \bar{C}_{i}, \bar{C}_{j} with $c_{i}-c_{j}=K-2$ and $\bar{C}_{i} \cup \bar{C}_{j}=C_{i} \cup C_{j}$; then by repeated transformations of this type we will obtain any sequence $\bar{c}_{1}, \bar{c}_{2}, \ldots, \bar{c}_{k}$ satisfying the above condition.

Let $G_{i j}$ be the graph formed by the edges of $C_{i} \cup C_{j}$; in $G_{i j}$ we construct an alternating chain (i.e. its edges belong alternately to C_{i} and C_{j}) and extend it as far as possible (it may happen that this chain goes through the same vertex several times). We remove it from $G_{i j}$ and we construct another alternating chain which is as long as possible in the remaining graph. We remove it and continue until we obtain an alternating chain Q starting and ending with edges in C_{i} (such a chain must exist since $c_{i}-c_{j}=K \geqslant 2$). We interchange the edges of $Q \cap C_{i}$ and $Q \cap C_{j}$ and obtain two subsets \bar{C}_{i}, \bar{C}_{j} with $\bar{c}_{i}-\bar{c}_{j}=K-2 . \bar{C}_{i}$ and \bar{C}_{j} are still coverings: at each endpoint of Q there were (before the interchange) more edges of C_{i} than of C_{j} (i.e. at least 2 edges of C_{i}), so after the interchange \bar{C}_{i} and \bar{C}_{j} have at least one edge at each endpoint of Q as well as at any other vertex of G.

Now if we are interested in knowing how close the cardinalities of coverings in a partition can be, we have the following immediate consequence of the theorem.

COROLLARY. For any $k \leqslant i(G)$, there exists a partition of the edges of G into coverings $C_{1}, C_{2}, \ldots, C_{k}$ with cardinalities $c_{1}, c_{2}, \ldots, c_{k}$ satisfying: $\left|c_{i}-c_{j}\right| \leqslant 1 i, j=$ $=1, \ldots, k$.

Remark. The proof of Theorem 1 may be adapted to the case of p-bounded colorations [4] for which a similar result holds.

§2. Transversals in Hypergraphs

A hypergraph $H=(X, U)$ consists of a finite set X of vertices and a family U of nonempty edges $E_{j}(j=1, \ldots, m)$ satisfying $\bigcup_{j=1}^{m} U_{j}=X$.

A transversal is a subset T of vertices such that $T \cap E_{j} \neq \emptyset$ for $j=1, \ldots, m$.
$H(p)$ will denote any hypergraph in which any vertex belongs to at most p edges.

Let $T_{1}, T_{2}, \ldots, T_{k}$ be a partition of the vertices of a hypergraph $H(p)$ into transversals and let $t_{1}, t_{2}, \ldots, t_{k}$ be their cardinalities. If $p=1$, all edges are disjoint; in this case it is easy to obtain from $T_{1}, T_{2}, \ldots, T_{k}$ a partition $\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{k}$ with $\left|\bar{t}_{i}-\bar{f}_{j}\right| \leqslant 1$ $i, j=1, \ldots, k$.

Hence we will assume that $p \geqslant 2$ in the remainder of the note.
LEMMA. Any two transversals T_{i}, T_{j} of $H(p)$ with $t_{j}>(p-1) t_{i}+1$ may be replaced by two transversals \bar{T}_{i}, \bar{T}_{j} with $\bar{i}_{i} \leqslant \bar{t}_{j} \leqslant(p-1) \bar{t}_{i}+1$.

Proof. Consider the subhypergraph $H_{i j}=\left\langle T_{i} \cup T_{j}\right\rangle$ spanned by $T_{i} \cup T_{j}$ (its edges are $\left(T_{i} \cup T_{j}\right) \cap E_{r}$ for $\left.r=1, \ldots, m\right)$.

We will associate to $H_{i j}$ a graph $G_{i j}$ whose vertices are those of $T_{i} \cup T_{j}$; its edges which will be called heavy edges are obtained as follows:
initially there are no heavy edges. We examine consecutively all edges E of $H_{i j}$ (note that for each $E, T_{i} \cap E \neq \emptyset$ and $T_{j} \cap E \neq \emptyset$)
a) if in edge E no pair of vertices x, y with $x \in T_{i} \cap E$ and $y \in T_{j} \cap E$ is joined by a heavy edge, then we pick up one such pair (x, y) and it becomes a heavy edge.
b) if in edge E there is already a pair x, y with $x \in T_{i} \cap E$ and $y \in T_{j} \cap E$ which is a heavy edge, we simply examine the next edge of $H_{i j}$.

By construction, $G_{i j}$ is bipartite; besides no vertex in $G_{i j}$ has a degree greater than p (since no vertex belongs to more than p edges of $H_{i j}$).

Assume now that $t_{j}=t_{i}+M>(p-1) t_{i}+1 . G_{i j}$ has at most $t_{i} \cdot p$ edges and $2 t_{i}+$ $+M \geqslant t_{i} \cdot p+2$ vertices, hence it cannot be connected.

So there must exist a connected component $G_{i j}^{\prime}$ of $G_{i j}$ with $t_{i}^{\prime}<t_{j}^{\prime}=t_{i}^{\prime}+L \leqslant(p-1) \times$ $\times t_{i}^{\prime}+1$ where t_{i}^{\prime} and t_{j}^{\prime} are the cardinalities of the subsets T_{i}^{\prime} and T_{j}^{\prime} of vertices of $G_{i j}^{\prime}$ belonging to T_{i} and T_{j} respectively.

We now interchange the vertices of T_{i}^{\prime} and T_{j}^{\prime}, thus T_{i} and T_{j} are replaced by subsets \bar{T}_{i}, \bar{T}_{j}. We have to show that \bar{T}_{i} and \bar{T}_{j} are transversals of $H_{i j}$ and consequently of $H(p)$.

Notice that each edge of H contains exactly one heavy edge of $G_{i j}$ and possibly isolated vertices of $G_{i j}$ (it may occur that a heavy edge belongs to several edges of H).

So changing the colour of an isolated vertex of $G_{i j}$ will still give two transversals \bar{T}_{i}, \bar{T}_{j}. Furthermore by interchanging the colours of the vertices in a connected component of $G_{i j}$ we also obtain transversals: all edges containing a heavy edge of $G_{i j}^{\prime}$ will still be met by \bar{T}_{i} and \bar{T}_{j} and the edges containing only nonadjacent vertices of $G_{i j}^{\prime}$ must contain a heavy edge of another component of $G_{i j}$; hence they will also be met by T_{i} and T_{j}.

Finally observe that

$$
0<L \leqslant(p-2) t_{i}^{\prime}+1 \leqslant(p-2) t_{i}+1<M
$$

So the cardinalities \bar{t}_{i} and \boldsymbol{t}_{j} satisfy

$$
\begin{aligned}
& t_{i}<\bar{t}_{i}=\bar{t}_{i}+L<t_{i}+M=t_{j} \\
& t_{i}=t_{j}-M<t_{j}-L=\bar{t}_{j}<t_{j}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \max \left(\tilde{t}_{i}, t_{j}\right)<t_{j} \\
& \min \left(\tilde{t}_{i}, t_{j}\right)>t_{i}
\end{aligned}
$$

Let us choose the indices so that $\bar{t}_{j} \geqslant \boldsymbol{t}_{i}$; if we still have $\bar{t}_{j}>(p-1) \bar{t}_{i}+1$, we may repeat the interchange procedure; we will ultimately obtain transversals \bar{T}_{i}, T_{j} satisfying
$\bar{t}_{i} \leqslant \bar{t}_{j} \leqslant(p-1) \bar{i}_{i}+1$.
We denote by q_{H} the greatest number k of transversals $T_{1}, T_{2}, \ldots, T_{k}$ in a partition of H.

THEOREM 2. For any $k \leqslant q_{H}$, there exists a partition of the vertices of $H(p)$ into transversals $T_{1}, T_{2}, \ldots, T_{k}$ with cardinalities $t_{1}, t_{2}, \ldots, t_{k}$ satisfying: $\max _{i}\left(t_{i}\right) \leqslant(p-1)$ $\min _{i}\left(t_{i}\right)+1$.

Proof. The theorem follows directly from the previous lemma: as long as we have in the partition two transversals T_{i}, T_{j} satisfying $t_{j}>(p-1) t_{i}+1$ we perform the interchange procedure described in the lemma. Finally we will obtain a partition with cardinalities $t_{1} \geqslant t_{2} \geqslant \cdots \geqslant t_{k}$ satisfying $(p-1) t_{k}+1 \geqslant t_{1}$.

Remark. The partitioning problem of $\S 1$ is in fact a problem of transversals in the dual hypergraph H of G : each edge of G is a vertex of H; to each vertex x of G we associate an edge E_{x}; it contains all vertices corresponding to edges of G which are adjacent to x. Clearly no vertex of H belongs to more than 2 edges. Coverings in G correspond to transversals in H.

Since $p=2$, interchanges may be performed whenever $\left|t_{j}-t_{i}\right|>1$, this means that Theorem 1 holds.

REFERENCES

[1] Folkman, J. and Fulkerson, D. R., Edge colorings in bipartite graphs, in: Combinatorial Mathematics and its applications (University of North Carolina Press, Chapel Hill, 1969).
[2] de Werra, D. On some combinatorial problems arising in scheduling, Canadian Op. Res. Soc. J. 8, No. 3, Nov. 71, p. 165-175.
[3] Berge, C. Graphes et hypergraphes, Dunod, Paris, 1970.
[4] DE WERRA, D. Equitable colorations of graphs, Revue française d'informatique et de recherche opérationnelle, No R-3, (1971), 3-8.

Received 20. 7. 1973
Département de Mathématiques
EPFL,
26, Av. de Conr,
1007, Lausanne,
Switzerland

