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Partitions of Graphs into Coverings and Hypergraphs

into Transversals

D. DE WERRA

Abstract

A covering of a multigraph G is a subset of edges which meet all vertices of G. Partitions of the
edges of G into coverings Ci, Cs,..., Cr are considered.

In particular we examine how close the cardinalities of these coverings may be. A result concern-
ing matchings is extended to the decomposition into coverings. Finally these considerations are
generalized to the decompositions of the vertices of a hypergraph into transversals (a transversal is a
set of vertices meeting all edges of the hypergraph).

Introduction

In this note a multigraph G= (X, U) consists of a finite non-empty set X of vertices
and a set U of edges.

A covering C in G is a subset of edges such that each vertex of G is adjacent to at
least one edge of C. Given a multigraph G we will consider partitions of the edges of
G into coverings C,, C,,..., C;. (Such a partition exists only if each vertex x has
degree at least k, i.e. if any x is adjacent to at least k edges). The cardinality of C; will
be denoted by c;.

We will first examine the following question: given a multigraph G when does a
given finite sequence ¢; >c¢,>--- >, =0 represent the cardinalities of a partition of
U into coverings?

A similar problem concerning partitions into matchings (i.e. subsets of nonadjacent
edges) has been solved in [1] and [2].

In §2 the problem is formulated in terms of hypergraphs; we now have partitions
of the vertices into transversals and we examine in particular how close the cardinali-
ties of transversals in a partition can be.

All notions not defined here can be found in [3].

§ 1. Partitions into Coverings

Let us call covering index i(G) of G the largest k for which there exists a partition
of the edges of G into k coverings C,, C,, ..., C,.

To each such partition we associate a sequence c¢,, ¢,,..., ¢; Where c; is the car-
dinality of C; and where the indices are chosen in such a way that ¢; <c, < <¢;.

We may now formulate a theorem which is quite similar to the matching case.
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THEOREM 1. If the sequence cy, c,,..., ¢, corresponds to a partition of the edges
of G into coverings, then any sequence ¢y, C,, ..., C; With

i=1 i=1
k k
Z -I=Z Ci
i=1 i=1

corresponds also to a partition of the edges of G into coverings.

Proof. We only have to prove that any couple of coverings C;, C; with ¢;—c;=
=K>2 may be replaced by two disjoint coverings C;, C; with ¢;—¢;=K~2 and
C;uC;=C;uCj; then by repeated transformations of this type we will obtain any
sequence ¢, C,, ..., ¢, satisfying the above condition.

Let G;; be the graph formed by the edges of C;u C;; in G,; we construct an alter-
nating chain (i.e. its edges belong alternately to C; and C;) and extend it as far as
possible (it may happen that this chain goes through the same vertex several times).
We remove it from G;; and we construct another alternating chain which is as long as
possible in the remaining graph. We remove it and continue until we obtain an alter-
nating chain Q starting and ending with edges in C; (such a chain must exist since
¢;—c;=K>2). We interchange the edges of Q n C; and @ n C; and obtain two subsets
C;, C; with ¢,—¢;=K—2. C; and C; are still coverings: at each endpoint of Q there
were (before the interchange) more edges of C; than of C; (i.e. at least 2 edges of C,),
so after the interchange C; and C; have at least one edge at each endpoint of Q as well
as at any other vertex of G.

Now if we are interested in knowing how close the cardinalities of coverings in a
partition can be, we have the following immediate consequence of the theorem.

COROLLARY. For any k<i(G), there exists a partition of the edges of G into
coverings Cy, C,,..., C, with cardinalities cy, c,,..., ¢; satisfying: |c;—c;|<1 i, j=
=], uns K

Remark. The proof of Theorem 1 may be adapted to the case of p-bounded
colorations [4] for which a similar result holds.

§2. Transversals in Hypergraphs

A hypergraph H = (X, U) consists of a finite set X of vertices and a family U of
nonempty edges E; (j=1,..., m) satisfying | J7-; U;=X.

A transversal is a subset T of vertices such that Tn E;#90 for j=1,..., m.

H(p) will denote any hypergraph in which any vertex belongs to at most p edges.
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Let Ty, Ts,..., T; be a partition of the vertices of a hypergraph H(p) into trans-
versals and let ¢4, ¢,, ..., t, be their cardinalities. If p=1, all edges are disjoint; in this
case it is easy to obtain from T, T,,..., T, a partition T, T,,..., T, with |f;—7;|<1
i, j=1,..., k.

Hence we will assume that p>2 in the remainder of the note.

LEMMA. Any two transversals T;, T; of H(p) with t;>(p—1)t;+1 may be re-
placed by two transversals T;, T; with {;<f;<(p—1) f;+1.

Proof. Consider the subhypergraph H;;={T,uT;) spanned by T;UT; (its edges
are (T;UT;)NE, forr=1,...,m).

We will associate to H;; a graph G;; whose vertices are those of T; U T}; its edges
which will be called heavy edges are obtained as follows:

initially there are no heavy edges. We examine consecutively all edges E of H;
(note that for each E, T, E#0Q and T;n E#0)

a) if in edge E no pair of vertices x, y with xeT;n E and yeT;n E is joined by a
heavy edge, then we pick up one such pair (x, y) and it becomes a heavy edge.

b) if in edge E there is already a pair x, y with xeT;n E and yeT;n E which is a
heavy edge, we simply examine the next edge of H;;.

By construction, G,; is bipartite; besides no vertex in G;; has a degree greater than
p (since no vertex belongs to more than p edges of H;;).

Assume now that ¢t;=t,+M>(p—1)t;+1. G;; has at most ¢;-p edges and 2¢;+
+ M >1t;-p+2 vertices, hence it cannot be connected.

So there must exist a connected component G;; of G;; with t; <t;=t{ +L<(p—1) X
x t; +1 where ¢/ and ¢; are the cardinalities of the subsets T'; and T’ of vertices of G;;
belonging to T; and T, respectively.

We now interchange the vertices of T'; and T, thus T; and T are replaced by
subsets T;, T;. We have to show that T, and T, are transversals of H,; and consequently
of H(p).

Notice that each edge of H contains exactly one heavy edge of G,;; and possibly
isolated vertices of G, (it may occur that a heavy edge belongs to several edges of H).

So changing the colour of an isolated vertex of G;; will still give two transversals
T;, T;. Furthermore by interchanging the colours of the vertices in a connected com-
ponent of G;; we also obtain transversals: all edges containing a heavy edge of Gj; will
still be met by T; and T; and the edges containing only nonadjacent vertices of Gi;
must contain a heavy edge of another component of G,;; hence they will also be met
by T; and T;.

Finally observe that

O<LL(p-2)t{+1<(p-2)t;+1<M

So the cardinalities #; and #; satisfy
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ti<t.i=f,+L<ti+M=tj

which implies

max (7, {;)<t;
min (7, f;)>1¢;

Let us choose the indices so that #;>7;; if we still have /;,> (p—1) f;+1, we may
repeat the interchange procedure ; we will ultimately obtain transversals T;, T, satisfying

We denote by g, the greatest number & of transversals T, T, ..., T in a partition of H.

THEOREM 2. For any k<qy, there exists a partition of the vertices of H(p) into
transversals Ty, T,, ..., T, with cardinalities t,, t,,..., t, satisfying: max,;(t,)<(p—1)
min, (¢;)+1.

Proof. The theorem follows directly from the previous lemma: as long as we have
in the partition two transversals T, T; satisfying ¢;>(p—1)¢;+1 we perform the
interchange procedure described in the lemma. Finally we will obtain a partition with
cardinalities ¢, >¢,>--- > ¢, satisfying (p—1) t, +1>1,.

Remark. The partitioning problem of §1 is in fact a problem of transversals in the
dual hypergraph H of G: each edge of G is a vertex of H; to each vertex x of G we
associate an edge E,; it contains all vertices corresponding to edges of G which are
adjacent to x. Clearly no vertex of H belongs to more than 2 edges. Coverings in G
correspond to transversals in H.

Since p=2, interchanges may be performed whenever |¢;—¢;| > 1, this means that
Theorem 1 holds.
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