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Algebraic L-Theory
IV. Polynomial Extension Rings

by A. A. Ranicki, Trinity Collège, Cambridge

Introduction

In Chapter XII of [1] Bass defines the notion of a contmetedfunctor, as a functor

F: (rings) -> (abelian groups)

such that the séquence

O^F (A)-^-+F (A [x])®F (A [x~ *])^^>F (A [x, x~ ^LF (A)-+0

is naturally split exact for any ring ^(associative with 1), where

s±:A^Alx±1] Ê±:A[x±1~]-+A[x,x-îl

are inclusions in polynomial extensions of A, and

is the natural projection. Theorem 7.4 of Chapter XII of [1], the "Fundamental
Theorem" of algebraic X-theory, states that

Kx : (rings) -* (abelian groups)

is a contracted functor such that

LKl(A) K0(A)

up to natural isomorphism. Hère, we obtain analogous results for the groups of
algebraic L-theory considered in the previous instalments of this séries ([5], [6], [7] -
we shall refer to thèse as Parts I, II, III respectively). In Part I we defined L-theoretic
functors

Un9 Vn:(rings with involution)-? (abelian groups)

for n (mod4), using quadratic forms on <
'g*

j?
J l ^4-modules for the l groups.
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(The définitions are reviewed in §3 below, allowing this part to be read independently
of the previous parts). It was shown in Part II that

if the involution ~:A-+A; af->^isextended to A\x, a:""1] by x=x~1. The main resuit
of this part of the paper (Theorem 4.1 is a split exact séquence

for each n (mod4), with the involution on A extended to^x*1], A [x, x"1] by x x.
The proof dépends on L-theoretic analogues (Lemmas 4.2, 4.3) of the Higman
linearization trick (quoted in Lemma 2.2) and of a resuit from [2] (quoted in
Lemma 2.3) on the automorphisms of A [*, x~ ^-modules which are linear in x.
A similar resuit has been obtained independently by Karoubi ([4]), using an L-
theoretic analogue of the localization séquence of Chapter IX of [1].

Adopting the terminology of [1], we can say that each

Vn:(rings with involution)-» (abelian groups)

is a contracted functor, with

LV.(A)=UM)
up to natural isomorphism. Corollary 4.4 generalizes this "Fundamental Theorem" of
algebraic L-theory to describe the intermediate L-groups Fj2 (A [x, x"1]), as defined in
Part III, for suitable subgroups Q^K1{A\x,x~1'\). Corollary 4.5 identifies the

"lower £-theories" of Part II with the functors

LmUn : (rings with involution) -> (abelian groups) (m > 0)

derived from Un. (There is an obvious analogy hère with the "lower Â-theories" of
Chapter XII of [1],

K-m=LmK0 : (rings) -* (abelian groups).)

Corollary 4.6 describes the L-groups of polynomial extensions in several variables.
The work presented hère was stimulated by a course of lectures on algebraic

Â-theory given by Hyman Bass at Cambridge University in the Lent Term of 1973.

§1. Contracted Functors

Let (rings) be the category of associative rings with 1, and 1-preserving ring
morphisms. Let x be an invertible indeterminate over such a ring A commuting with

every élément of A9 and define A [x> x~x], the ring of finite polynomials ^TJL _ ^ xjûj
in x, x"1 with coefficients a^A. Let A [_x±l~] be the subring of A [x, x^1"] of poly-
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nomials involving only non-negative powers of x±x. Let

be the inclusions, and define left inverses

e±:A[x±1~]-*A, b:A[x, jT1]-»^
for e±, ë by jc±1h-»1.

A functor

F: (rings) -? (abelian groups)

is contracted if the séquence

O^F(A)——+F(A [x])0F(A [x~*]) (E+E'\f(A [x, x" ^LF(A)-+0
is exact for each A, and there is given a natural right inverse

B:LF(A)-+F(A[x,x-1'])

for the natural projection

that is JB5=1:LF(^)->LJF(>4). (This is just Définition 7.1 of Chapter XII of [1]).

LEMMA 1.1. Let

F, G:(rings)-? (abelian groups)

be functors, and suppose given

i) a natural left inverse

E

M
E

such that the square

F (A)
i+

>F(A[x])

commutes,

ii) natural morphisms

L+F(A)=coker(£+ :F(A[x])->F{A[x, x~J]
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such that n+rj+ l, and such that the square

L+F(A)—^—>G(,4)

commutes, where

is the right inverse for the natural projection

induced by

1 -E+E+ :F{A[_x, x-^-^F(A[x, x"1]),

and Ô-,fj- are defined as ô+,rj+ but with x"1 replacing x.
Then F is a contracted functor, and

B=ri+ô+:F(A[x,x-1})-+

induces a natural isomorphism

LF(A) coker((E+£_

Proof. The diagrams

/\/\/\
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are commutative exact braids, where j£_, J_, rç_ are defined as 1?+, A+91]+ but with
x"1 replacing x. It follows that

is an exact séquence, with

a natural right inverse for

Thus F is a contracted functor, with

up to natural isomorphism.
(The conditions of Lemma 1.1 are necessary, as well as sufficient, for a functor to

be contracted. If

F: (rings) -? (abelian groups)

is a contracted functor, then

where

and the morphisms

rj+:L+F(A)->LF(A); £_ (s-)

satisfy the conditions of Lemma 1.1, with G=LF.)

§ 2. K-Theory of Polynomial Extensions

Let F (A) be the category of finitely generated (f.g.) projective left ^-modules.
Write \P(A)\ for the class of objects, and HomA(P, Q) for the additive group of
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morphisms g:P-+ QeF(A). A ring morphism

f:A-+A'

induces a functor

GivenPe\P(A)\,let

Defining complementary .4-submodules

P+=£ xJP, ?-= Y xJP

ofPx (where xjP=xj®P) we shall identify

in the obvious way.

Let N(^4) be the category with objects pairs

(P€\¥(A)\, veUomA(P,P) nilpotent)

and morphisms

f:(P9v)->(P'9v')eN(A)

isomorphisms/€Homx(P, P') such that

v'f=fveHomA(P,P').

As usual, there are defined functors

Kt : (rings) -> (abelian groups) ; A h-» Kt (P (A

for i=0,l. Theorem 7.4 of Chapter XII of [1], the "Fundamental Theorem" of
algebraic ^-theory, may be stated and proved as follows :

THEOREM 2.1 The functor Kx is contracted, with

L+Kt(A) K<F(A)9

up to natural isomorphism.
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Proof. Given an automorphism

f:Gx-+GxéP{A\_x,x-*lù (Ge\P(A)\)

let F=f(G)^Gx, and define

(P, v) (G-lx-NF-9x~i)e\N(A)\

for A?>0 so large that x~NF~~^G~. Then

is a well-defined morphism.

LEMMA 2.2 Every élément of Kx(A\x\) can be représentée!by an automorphism

Proof. Given an automorphism

we can apply the usual Higman linearization trick (first used in the proof of Theorem
15 of [3]), the identity

/i -x'->\ // o\ n o\
\0 l J\0 \)\xfr \)

//o+*/i+-+*r~7;-1
\ xfr

(r— 1) times, to obtain a représentative automorphism for x{f)eKx (A [pc]) which is

linear in * (with r= 1). D
Given an automorphism

let V=(/0+/,)-1/1eHom,(G, G). Then

/=(/o+/0(l + (^-l)
and (up to isomorphism)
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It follows that

(A M).

Thus the composite

Kl (A [x]ji^ (y4 [x, x-^K, (A [x])

is the identity. Similarly, it can be shown that the square

.-1
Kt(A)

commutes.
Higman's trick also shows that every élément of Kt (A [x, x"1]) may be expressed

as

for some P, ee|P(^)|,/0,/1eHomA(P, P), NeZ.

LEMMA 2.3. //yeHom^(P, P) is such that

\ + (x-l)yeHomAiXtX-1}(Px,Px)

is an isomorphism then there exist integers r,s^0 such that

and R keryr, 5=ker(l — y)s are complementary submodules ofP, such that

with y^eHom^^, R), l — yseHomA(S, S) nilpotent.
Proof. See Corollary 2.4 of [2] and pp. 232-34 of [8].

If/o>/ieHomA(P,P) are such that

^-ij (PX9PX)
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is an isomorphism, then

sf=f0+AeHomA(P,P)

is an isomorphism, and y (/0+/1)~1/ieHon\1(7>, P) satisfies the hypothesis of
Lemma 2.3. Hence

It is now easy to verify that

K1(A[x])*Kl(A[x,x-lJ)
E+ A

is a direct sum System, with

wherei7=/(G)çGJC (as before) and N^O is so large that xNF+^G+, (so that, in
particular,

Identifying

in this way, note that the morphisms

K0(A); [P, v]

are such that the conditions of Lemma 1.1 are satisfied. Hence

Kt : (rings) -> (abelian groups)

is a contracted functor, with

up to natural isomorphism. This complètes the proof of Theorem 2.1. •
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§3. Review of the Définitions of the L-Groups

Let (rings with involution) be the category of rings A (as in §1) with involution
~ : A -> A ; a\-*â such that

T=l, a+b=â+b, ~ab b*â, a=a for ail a, beA.

As in Part I it will be assumed that f.g. free ^-modules hâve a well-defined dimension.
Given a ring with involution A define a duality involution

*:V(A)-+V(A)

using the natural isomorphisms

Pe\P(A)\\->P* lïomA(P9A), left ^-action by
AxP*-+P*;(a,p*)\->(p\-+p*(p)-â)

to identify

An e-hermitian product (over A) is a morphism

9:Q-+Q*6F(A)

such that

0*=eOeHomA(Q,Q*%

where 8= ± 1. A ±form (over A) is a pair

and

is the associated ± hermitian product. An isomorphism of + forms

is an isomorphism feHomA (Q, Q') together with a morphism ^eHom^ô, 6*)
such that



Algebraic L-theory 147

Such an isomorphism préserves the associated ± hermitian products, in that

f*((p'±cpr*)f=(<P±(p*)eHomA(Q9 fi*).

A ± form (g, ç) is non-singular if the associated ± hermitian product (cp±<p*)e
Hom^(g, g*) is an isomorphism. The hamiltonian ± form on Pe\P(A)\,

is non-singular. A sublagrangian of a non-singular ± form (g, q>) is a direct summand

L of g such that

j*çj= X + X*eHomA(L, L*)

for some XeHomA(Li L*), denoting byyeHom^L, g) the inclusion. It was shown

in Theorem 1.1 of Part I that if L is a sublagrangian of (Q9 (p) there is defined a

non-singular ± form (LLjL9 0) on a direct complément LL\L to L in the annihilator of
L in (g, cp),

and that there is defined an isomorphism of ± forms

(f,x):(Q,<P)-+H±(L)®(L1IL90)

with/the identity on L1 L®L1/L. A lagrangian is a sublagrangian L such that

in which case there is defined an isomorphism of ± forms

A ± formation (over ^4), (g, (?>; F, G), is a triple consisting of
i) a non-singular ± form over A, (Q, (p),

ii) a lagrangian F of (fi, <p),

iii) a sublagrangian G of (fi, (p).

An isomorphism of ± formations

is an isomorphism of ± forms
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such that/(F) F',/(G) G/. A stable isomorphism of ± formations

is an isomorphism of ± formations

defined for some P, P'e\F(A)\.
Let TeK0(A) coker(Ko(Z)-»Ko(A))beasubgroupinvariant under the duality

involution

*:KO(A)^RO(A);[P-]^[P*] (that is, *(T) T).

For w(mod4) define the abelian monoid XÏ(A) of < t :
[stable isomorphism

classes of < 7 c
*

< _ over /4 such that the projective class
[ ± formations (g, cp:F,G) ^ J

rGl-TF*l
HeS in r-^o(^X under the direct sum 0, with ± =(-)f if n= < \

The monoid morphisms

'^^H^Q^Q'r^^ n-\2i

are such that (3r)2 0, where

Define an équivalence relation ~ on ker(ôT:X^(A)-^X^t(A)) by zx~z2 if there
exist bl9 b2eXl+i(A) such that z1®dTb1=z2®dTb2eXl(A). It was shown in Theo-

rem 2.1 of Part III that the quotient monoids

of équivalence classes are abelian groups, generalizing the définitions in Part I of

UH(A)=U^A\A), Vn{A)=V?\A).

Theorem 2.3 of Part III established an exact séquence

for *-invariant subgroups T^T'^K0(A)9 where

H»(G) {geG\g* (-Tg}l{h+(-r h* \heG}

are the Tate cohomology groups (abelian, of exponent 2).
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There are analogous définitions and results for L-groups associated with sub-

groups R^Ki(A) coker(K1(Z)-+Ki(A)) invariant under the duality involution

denoting by P a f.g. free ^-module P with a prescribed base, and by P* the dual based

yl-module.
A based ± form (g, (p) is a + form (g, (p) on a based v4-module g. The torsion of

a based ± form (g, cp) is ~

^) if (g, <p) is non-singular
"otherwise.

An R-isomorphism of based + forms

(/,z):(fi,v)-(ô',9')
is an isomorphism of the underlying forms

{f,x):{Q,<t>)-(Q'.<p')

such that

A 6a5^J ± formation (g, <p ; F, G) is a ± formation (g, cp; F, G) with bases for F, G

and G1/^. The torsion t(g, <p; F, G)eKx (A) of a based ± formation is the torsion of
the isomorphism

in the isomorphism of ± forms

(/, x)'-H±(F)^H±(G)®(G1IG, 0)

given by Theorem 1.1 of Part I. An R-isomorphism of based ± formations

(/J):(a?i£g)-(fi>'i^g')
is an isomorphism of the underlying ± formations such that the restrictions

F-, £'9 G -> G', G1/^ -> G'1/^'

of/have torsions in i?Ç^ (yl). A stable R-isomorphism of based ± formations
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is an jR-isomorphism

(/;0:(&p;£g)e(#±(/0;£^^
defined for some based >4-modules P, Pr. r

For w(mod4) define the abelian monoid Y* (A) of < ~1*°m°TP 1Sm
classes

r f [stable iÊ-isomorphism
of based < 7 over ^4 with torsion in i*c£ (^) under the direct sum ©,(± formations 1V J

with ±=(—)lifn < The monoid morphisms

e«-Y«(AUY« M)J<ê'^H^;ë'r^ nJ2i" K) -lC M(e,ç>;£gM£7S,*) l«
are such that (3K)2=0, and the quotient monoids

are abelian groups (by Theorem 3.1 of Part III) generalizing the définitions in Part I of

Theorem 3.3 in Part III established an exact séquence

for *-invariant subgroups R^Rf^Kt(A).
A morphism of rings with involution

f:A-+A'

such that f(T)ST (for some *-invariant subgroups T^K0(A), T'^R0(A'))
induces abelian group morphisms

2i

Similarly, iff(R)çR' (for *-invariant subgroups RçRt(A), R'^R^A')) there are
induced morphisms

f:Vm*(A)->V?(A') («(mod4)).

§4. L-Theory of Polynomial Extensions

Given a ring with involution A and an indeterminate x over A commuting with
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every élément of A extend the involution on A to the involution

-:A\x,x-1'\->A\x,x-v\; £ x\.h-> f xiâJ
j — oo j — oo

on ,4 [x, x~1]. This restricts to involutions on the subrings A [x], A [x~*] ofA [x, x~j].
F. g, free A [x]-modules hâve well-defined dimension, as do those over ^[x"1],
A [x, x'1]. Thus the rings with involution A [x*1], A [x, x"1] satisfy the conditions
imposed on A in §3.

Call a functor

F: (rings with involution) -> (abelian groups)

contracted if the séquence

(-è+)
0-+F (A)-—+F (A [x])0F (A [x~1])-^—F (>* [x, x~ 1])-^LF (A)-+O

is exact for every ring with involution A and there is given a natural right inverse

B:LF(A)-*F(A[x,x-1'])

for the natural projection

B:F(A[x,x~1])-+LF(A)
coker((E+£-):F(A[x~]®F(A[x-l~])->F(A[x,x-l~})).

The obvious analogue to Lemma 1.1 holds for functors

(rings with involution) -» (abelian groups)

as does the following analogue of Theorem 2.1 for the L-theoretic functors of §3:

THEOREM4.1. Each of the functors

Vn : (rings with involution) -> (abelian groups) (n (mod4))

is contracted, with

LVn{A)=Un{A), L±

up to natural isomorphism, where Ê0(A) ëTR0(A)Ç:^(^[x^1]). Q
The proof of Theorem 4.1 in the case n 2i will be similar to the proof of Theorem

2.1. The case n=2i+1 will follow by an application of the results of Part II on the

L-theory of Laurent extensions (that is, of the ring A[x, x"1] with involution by

x=x"1).
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Recall from Part II that a modular A-base of an A\x, x~^-module Q is an A-
submodule Qo of Q such that every élément q of Q has a unique expression as

4= f x^; (^eeo>{jk^0} nnite),

so that Q=A[x, x~1'\®AQ0 up to ^4[x, x~^-module isomorphism. For example the
yl-modules generated by the bases of free A[x, x~^-modules are modular v4-bases.

Define a morphism

by choosing a modular ,4-base Qo for Q (which is a f.g. free A[x,x~ ^-module) and an

integer JV>0 so large that

(xnqX)zx-nq*0+ (±=(-)'),
defining

with [ç)]7-6Hom^(P, P*) given by

if

and writingPCx"1] for ë_/>=^
The yl-module isomorphism

may be expressed as

)* o o/
-i 0 0 1

\ 0 ±10/
where L-(cp±<p*)~1 (x~NQ*~), L*=xNQo^Q, so that (P, |>]_i) is a non-singular
+ form over A.

For any y,y'eP
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where yN-leQ0 is such that

Thus

and (^[x"1], W]-i-x~1[(p\_1) is a non-singular ±form over ^[x"1].
Suppose that Qo is a différent modular >4-base of Q. Let M>0 be so large that

Then Nf N+M is so large that

and

^ -1 (x'Ne;* + (définition)

Now

is a sublagrangian of (^'[.x"1], W\-1—-^"1^]-2) witn i-1/^=i>[^~1], so that

Thus the choice of N and Qo is immaterial to the définition of ô +

Finally, suppose that

for some (Qo, (Po)eV2l(A\_x~]). Then we can choose #=0, and

S+(Q,cp) OeUt
Hence the morphism

is well-defined, and such that the composite
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is zéro. Before going on to show that this séquence is in fact split exact, we need an
L-theoretic analogue of Lemma 2.2 (the Higman linearization trick):

LEMMA 4.2. Every élément of Ul?A) {A[pc])(resp. V2i{A[x,x-1~\)) can be

représentée by a linear ±form, (Q+, </>0+*<Pi) over A[x] (resp. {Qx, ç)0 + xç)j) over
A[x, jT1]) where <p0, (p^Hom^Q, Q*).

Proof. Given (Q+, <p)eU%(A) (*[*]), let

ç>= I xJçj HomAlxl(Q+, Q*+) (^eHorn^ (Q, Q*)),
j=o

and suppose N> 1. Now

// 1 0 0\ /0 -x*-V* 0\\
-x 10 0 0 0

Wlx^1^ 0 l/, \0 0 0//
/ /<p-xN<pN -x"-1^ x

:(e+,«p)eH±(e+)-» e+ee+eQ*+, o o 1

\ \ 0 0 0

is an isomorphism of ±forms over A[pc], so that

with Ô/==6©Ô©Ô* such that

Iterating this procédure (iV— 1) times we obtain a représentative for

with iV= 1.

The same method works for éléments (Qx9 (p)€V2i(A[x, jc"1]) provided we can
assume that

(<P±cp*)(Q+)sQ*+.

Choosing JV>0 so large that

note that

(x»,0y.(Qx,<p'=x2N<p)-+(Qx,<P)
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as an isomorphism of ± forms over A [x, x"1], so that

and that

(9'±9'*)(e+)se*+-
The morphism

A + : l/f?"> (^ [x- >]) - F2i (A [x, x" ']) ;

(GO"1], V)»-*(Q* x<p)®ès- {Q[x~l\ -<p)@H± (-Qx)
is clearly well-defined, with —Qe\P(A)\ such that Q® — Q is f.g. free.

The composite

is the identity: by Lemma 4.2 it is sufficient to consider ô+A + (Q\_x~12, <p) with

and

ô+ ((Qx,

where 7 (<Po±(l!)o)~1 (<P-i±9-i)sHom^(Ô, Q) is nilpotent. Now

£
j=o

so that

and

g*),

where x=<?>-i-?*<?>oeHonix(g, Q*). Thus
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and

It is therefore sufficient to prove that V2l(A[x, x"1]) is generated by the images of
E+:V2l(A[x-])^V2l(A{_x,x-1}), A + :UtA) (^O"1])- V2l{A\*> s"1]) for the
exactness of

We shall do this using the foliowing L-theoretic analogue of Lemma 2.3:

LEMMA 4.3. Let (Qx,(p) be a non-singular ±form over A[x9 -*"1] such that

Then (Qx, q>) is isomorphic to the sum

(Rx^R + (x-l)vR)®(Sx,iis + (x-l)vs)

ofnon-singular ±forms over A[x, x-1] such that

(*[*]» A**+ (*-0v*)
w ût non-singular ±form over A[x~\, and

is a non-singular +form over ^
Proof. The invertibility of

implies that

e, Q*)
XiX-n{Qx, Qx)

are isomorphisms, where

Hence, by Lemma 2.3,

7s/

with yR6Hom^(i?, i?), 1 — yseïîomA(S, S) nilpotent.
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Adding on some +hermitian products of type #+#*eHom4(g, Q*) to \i and v

if necessary, it may be assumed that /n(R) (S) 0, v(R) (S) 0. Let

so that

\ /yR o\ (vR
t) \0 ys) \±±Vrs M5 + MS/ \0 ys/ \ ±Vrs vs±v5(

Working as in the calculation of ô+A+ above,

ô+ (Qx9 <^) ((8~ n (<p±<P*)~x (Ô^

Thus e_<5+ (Qx, <p) (S, /zs) is a non-singular ± form over ^4, and hence so is (5", vs),
because

(vs±vl)={lis±nl)yssHomA(S, S*)

and yseHomx(S', S) is an isomorphism (being unipotent). Let

g= iCvs+vl)-1 4seUomA(R, S)

Now

is an isomorphism of + forms over A[x, x"1]. It follows that

f*W±9'*) f=(<P±«?>*)eHom^,,-,j (Qx, Q*x)

and as/is defined over A

ô, fi»)
/*(v'±v'*)/=(v±v*)eHomA(Ô, fi*).
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Defining

0 7s.

we hâve that

Hence

y'R=yReIlomA(R9 R)

is nilpotent, and (i^[x], Hr + (x—\) v'r) is a non-singular ±form over A\x~\. This
complètes the proof of Lemma 4.3.

Given (Qx9 (p)eV2i{A[x, x"1]) it may be assumed, by Lemma 4.2, that

(?=/*+(x-1) veHom^^-ij (Qx9 Q$) (/x, veHom^(g, Q*)). Applying the
décomposition of Lemma 4.3,

(Qxi <p) (Rx, pR + (x- 0 Vn)e(S», ^s+(^-0 vs

As pointed out above, this suffices to prove the exactness of

Define next a morphism

for N,Nt^0 so large that

2JVi + l

with ge|P(^4)| f.g. free. The vérification that E+ is well-defined is by analogy with
that for <$+. Moreover, if

-1) vs)
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(as in Lemma 4.3), then

E+ (Qx, <?) (#[>],

so that the composites

V2i(A [x])-^ V2i {A [x, x~1})-^ V2i (A [x])

are 0, 1 respectively. Thus

Vn{A[x])5 V2i(A[x, x-1])^ Uir^Atx-1})
E+ d +

defines a direct sum System, and we can identify

Similarly, replacing x with x'1, there is defined a direct sum System

ViMlx-1!)* V2i(A[x, x"1])^

allowing the identification

The proof of Lemma 4.2 shows that every élément (ôf*"1], <p)e V2i(A[x"1]) has

a représentative with

The composite

M^Cx"1])-^ V2i(A [x, x"1])-^ F2i(^ [x])

sends such a représentative to

icp*)-1 (x-'ô*)) [x], M-1-M-2)
'Q*) [x],

The y4-module isomorphism
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defines an isomorphism of ± forms over A

Therefore

<7>o0-</>u)

and the square

1])

commutes. Similarly, we can verify that the square

commutes, where

are the morphisms induced by

respectively (so that j/±^± 1). For

x<p)@(Qx, -

The conditions of Lemma 1.1 are now satisfied, and so

V2i\(rings with involution)-> (abelian groups)

is a contracted functor, with

i2), LV2i(A)=U2i(A)
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(up to natural isomorphisms), and the diagram

161

incorporâtes two commutative exact braids.
Let S0^R1(A[pc, x"1"]) be the infinité cyclic subgroup generated by JS([A])

t(x:Ax-+ Ax), and define

x-1]) («(mod4)).

Working as for V2l(A [x, x"1]), it is possible to define morphisms to fit into a diagram

Ô-E

XXX
(with E+Ë+ 1 etc.) incorporating two commutative exact braids. For example,
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for any ,4-base P of P=Vg~ n((p±q>*)~1 (x~NQ*+) (which is free for sufficiently
large N^O, as r(jgx> <P)e*So and [p]=Bt(Qx> <p)=0e£0(.4)) with

^*, foriVso large that

1 (£•)

thecorrespondingyl-baseof P1

*) (Q)s I xJQ*.
j=-2N

Also, let

Given an invertible indeterminate z over A commuting with every élément of A
define Az as A\z,z~l~\ but with involution by z=z~1. Similarly, define ^4[x±1]z,
A [x9 x""1]z, and identify

Let S'0^Kt (A2) be the infinité cyclic subgroup generated by r(z:Az^Az) and define

for «(mod4). By analogy with ffî2i(A \_x, -x"1])» W2i(A [x, x"1]z fits into a diagram
incorporating two commutative exact braids (where Az=A[z9z"1']9 with z=z-1).
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We can now apply the décompositions

163

W2i{A)®B(z) V2i

W2i(Atx])®B(z) V2i^

V2i(A)®B(z) Uv-

given by Theorem 1.1 of Part II (and extended to the intermediate L-groups in Part
III). The above diagram splits naturally (via s(z),B(z)) into two similar ones:
the diagram for W2i{A[x, x"1]) and the diagram

E-A

where

(A lx

'WM(A[x,:
B{z)

(and similarly for £_, 5_, J_). Thus the conditions of Lemma 1.1 are also satisfied

in the odd-dimensional case, and

F2i_1: (rings with involution)-> (abelian groups)
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is a contractée! functor, with identifications

This complètes the proof of Theorem 4.1

The groups

are such that

Kx(A[x, x~i']) ëK1 (A)®E+m+ (A)®E_Kù_ (A)®BK0(A),

fitting into direct sum Systems

Nil±(i4) #* Kotf(A)*Ko(A)
E±A± fj±

(by Theorem 2.1).
Given *-invariant subgroups S± çNil± (A), define

N±Vtts* (A)=kSr(s±:V^R^^(A[x±l})^Vn(A)) (»(mod4))

wnting \nma) for

COROLLARY 4.4. Given ^invariant subgroups

R^Kt (A), S± sNfl± 04), f£ J?o (^)

there are direct sum décompositions

V^ (A)

for w(mod4), where

_Nil_ (A)®BK0(A)

with fc Ko (A) the preimage of f under the natural projection Ko (A) -» Ko (A).
Proof The forgetful map
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lits into the exact séquence of Theorem 2.3 of Part III, which splits, via ê±, e± into
two exact séquences

0 N±Vm(A) - N±Vm(A) -> 0 -
îi n îi n

«± Î4 £± ë± îl e± ë± îi e±

- K.(A) - l/J(A) - Hn(T) ->.

Hence A^±Kn(^)ç ^(^[x11]) is mapped isomorphically to ker (e±:Uén±T(A[x±l'])
J and so (up to isomorphism)

In particular,

It now follows from Theorem 4.1 that

The expressions for vèn±R®s± (^[x*1]), V°(A[x9 x"1]) may be deduced from those

for Vn{A [jc± 1]), Vn{A [jc, x~ l~\), working as for Ué/T (A [x*x]) above. (In particular,
for R 0, S+=0, S_ =0, f=0 we hâve

and

(A).) Q

In §4 of Part II there were defined lower L-théories, functors

L^w): (rings with involution) -> (abelian groups)

for m<0, «(mod4) by

with L^0)(^)= £/n(^l). By convention, L(n1)(A)= Vn(A).

COROLLARY 4.5. The lower L-theories Z^m) coïncide (up to natural isomorphism)
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with thefunctors LVn, L2Vn9... derivedfrom Vn, with

L(?)(A) L1-mVn(A) (m<0, w(mod4)).

Proof. By Theorem4.1,

Assume inductively that

I±?{A)=l}-'Vn{A) (B(mod4))

for 0^p>m, for some m< — 1. Then

=ker (e:L-"Vn+1 (A.) - L~mVn+1 (A))
=L(kcr(e:L-"-1Vn+1(Az)-*L-"-lVn
=L (ker («rlSW» U.)- l5"++i

giving the induction step. D
Given a functor

F: (rings with involution) -? (abelian groups)

define

(By Corollary 4.4, the previous définitions of N± Vn(A), N± Wn(A) agrée with this, up
to natural isomorphism).

By analogy with the first part of Corollary 7.6 of Chapter XII of [1] we hâve

COROLLARY4.6. Let xux2,'..,xp be independent commuting indeterminates

over A, with Xj=Xj (1 <j<p). Then

9 xr1, x2, xj1,..., xp9 x;1])

up to natural isomorphism, for m < 1, n (mod4), p ^ 1.
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