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e-Applications dans une variété

par CLAUDE WEBER

1. Introduction

Soient X un espace métrique, Y un espace topologique, ¢ un nombre réel positif.
On dit qu’une application f:X — Y est une g-application si, pour tout yeY, le dia-
metre de £ ~1(y) est plus petit que &. On dit que f est un plongement si f est un homé-
omorphisme de X sur f(X). Dans le cas oul X est compact, un plongement est la méme
chose qu’une 0-application. Ce fait est important dans la démonstration du théoréme
de Menger-Nobeling telle qu’elle est exposée, par exemple, dans Hurewicz-Wallman
[5]. X étant toujours supposé compact et ¥ métrique on montre que:

1) Les ¢-applications de X dans Y forment un ouvert dans I’espace des applications
continues de X dans Y, muni de la topologie de la convergence uniforme.

2) Si X est de dimension », les ¢-applications de X dans R™ forment un sous-en-
semble dense pour m>2n+1. (Domaine stable).

Ainsi, les 0-applications de X dans R™, m>2n+1, sont I'intersection d’une famille
dénombrable d’ouverts denses et forment donc un sous-ensemble dense d’apres le
théoréme de Baire.

Cette démonstration classique montre que les relations entre e-applications et
plongements sont plutdt bonnes dans le domaine stable. Il en va trés différemment
des que I’on se trouve en dessous du domaine stable:

1) Les e-applications ne sont pas denses. Par exemple, I'application du segment
[0.1] dans R? qui a un point double ne peut étre approchée pour tout £>0 par des
e-applications.

2) Il y a des compacts de dimension 1 pour lesquels il existe des ¢-applications
dans R? pour tout e>0 et qui pourtant ne se plongent pas dans R%. Avant d’en donner
un exemple particulitrement simple, rappelons la définition classique: On dit que X
peut étre quasi-plongé dans Y s’il existe, pour tout ¢>0, une g-application de X dans
Y. Borsuk a donné dans [1] un exemple d’'un compactum de dimension deux qui peut
étre quasi-plongé dans R? et qui ne peut étre plongé dans R2.

Nous construisons tout d’abord un sous-ensemble Z du plan de la fagon suivante:

Pour n>0 entier, soit 4, le cercle de centre ’origine et de rayon 1/n, et soit A=
= {(0’ 0)} Y Un?l An‘

Soit B= {(x, y)}eR? I [x|<1,y=00ux=0, |y|<1}.

Posons Z = A u B. Identifions R? avec le sous-ensemble des (x, y, z)eR? tels que
z=0 et prenons pour X la réunion de Z et de C={(0, 0, z)eR* | 0<z<1}.
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Pour voir que X peut étre quasi-plongé dans R2, donnons nous un ¢>0. Soit n
suffisamment grand pour que 1/2n<e.

Désignons par X, le quotient de X obtenu en identifiant en un point tous les points
de Z qui sont a distance de I’origine plus petite ou égale a 1/2n. Soit ¢: X — X, la
projection sur le quotient. ¢ est une e-application. Mais il est évident qu’il existe un
plongement u:X, - R%. uo ¢:X — R? est donc une g-application.

Esquissons maintenant la démonstration que X ne peut se plonger dans R?. Rai-
sonnons par I’absurde et supposons que y: X — R? est un plongement.

On montre alors assez facilement, en utilisant le fait que i/ est continue a ’origine
et les coefficients d’enlacement que:

i) ¥(0, 0) ne peut &tre extérieur a y(4,) pour tout n.

ii) Si ¥/(0, 0) est intérieur & Y(A4,), il est aussi intérieur a (4,,) pour tout m=>n.

Les détails sont laissés au lecteur. Soit P =(0, 0, 1). D’aprés i) et ii) et le fait que
est continue a ’origine, il existe un k assez grand tel que:

a) ¥(0, 0) est intérieur a Y(A4,).

b) Y(P) est extérieur a Y (A4,).

Ceci entraine que /(C) doit rencontrer (4, ), ce qui contredit le fait que i est un
plongement.

I est trés probable que ces exemples puissent se généraliser:

CONIJECTURE. Pour tout entier n>1, il existe un compactum de dimension n qui
peut se quasi-plonger dans R*" et qui cependant ne peut se plonger dans R?".

Voici maintenant un bref apergu de ce travail. Dans la premiére partie, on montre
que certains liens subsistent entre quasi-plongements et plongements lorsque X est un
poly&dre compact, Y une variété et que 2 dim Y>3 (dim X +1). (Domaine métastable).
En voici un exemple:

THEOREME. Soit X un polyédre compact de dimension n et soit Y une variété
semi-linéaire de dimension m. Alors il existe un ¢ >0 tel que toute e-application f: X - Y
puisse étre approchée arbitrairement prés par un plongement (semi-linéaire), a condi-
tion que 2m>3(n+1).

Ce théoréme généralise un résultat de Ganéa [ 3], qui affirme I’existence, pour tout
polyédre compact, d’un £>0 tel que I’existence d’une e-application de X dans R?"
entraine P’existence d’un plongement de X dans R?". (n>3).

Dans ladeuxiéme partie de ce travail, nous utilisons la théorie de Flores, telle qu’elle
a été explicitée par R. Reid, pour démontrer certains théorémes de non-existence de
quasi-plongements. Par exemple, pour tout n>1, il existe des poly¢dres contractibles
de dimension » qui ne peuvent étre quasi-plongés dans R>" 1,

Dans la derniére partie, nous montrons que, lorsque X est une variét¢ mod2, I’an-
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nulation de certaines classes de Stiefel-Whitney normales est une condition nécessaire
a l’existence de quasi-plongements dans un espace euclidien.

Je tiens & remercier trés vivement R. Reid pour de trés utiles conversations sur la
théorie de Flores et les professeurs Mardesic et Horvatic de Zagreb de m’avoir initié
aux e-applications.

2. Théorémes d’existence

Soit X une space métrique. Soit X = X x X— AX le complémentaire de la diagonale.
X s’appelle le produit réduit de X. Désignons par u I'involution sans points fixes de X
qui échange les facteurs. Enfin, munissons R™, R™— {0}, ™! deI'involution antipode.
Supposons maintenant que f:X — R™ est un plongement. Alors I’application
f:X - S™ ! définie par:
f(x, y):: f(x)""f(J/')
LF(x)=F ()l

est équivariante (c’est-a-dire commute aux involutions). Réciproquement:

THEOREME [9]. Soit X un polyédre compact de dimension n. Supposons qu’il
existe une application équivariante F:X — S™~ 1. Alors il existe un plongement semi-
linéaire f: X - R™, si 2m=3(n+1).

Supposons maintenant que X est un complexe simplicial compact. Dans X x X
envisageons le sous-espace 7'(X) constitué par la réunion de toutes les cellules o x 7,
ol o et 7 sont des simplexes fermés, non vides de X tels que o n7=0. Il est évident
que 7'(X) est compact et invariant par I'involution p.

LEMME. T'(X) est un rétracte par déformation de X, de fagon équivariante.

Ce lemme est di a Shapiro [7]. Pour une démonstration mettant I’accent sur
I’équivariance, on peut consulter [10].

Le lemme et le théoréme impliquent que, pour avoir un plongement de X dans
R™, lorsque 2m>3(n+1), il suffit de construire une application équivariante T'(X) —
Y

Soit maintenant g: X — R™ une application continue et considérons I’application
g:X x X - R™ définie par: g(x, y)=g(x)— g(»). Comme T'(X) est compact, il est fa-
cile de voir qu’il existe un ¢> 0 assez petit tel que, si g est une g-application, g envoie
T(X) dans R™— {0}. Soit alors ¢:R™— {0} — S™~! la rétraction par déformation équi-
variante
z
lizll

En ce cas, gog | T(x) — S™"! est une application équivariante.

o(z)=
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Nous avons donc le théoréme suivant:

THEOREME. Soit X un polyédre compact de dimension n. Alors, il existe un >0
tel que I'existence d’une e-application X — R™ entraine [’existence d’un plongement
(semi-linéaire) de X dans R™, a condition que 2m>=3(n+1).

Remarque. Ce théoréme a été démontré par Ganéa [3] dans le cas ol m=2n,
n>=3.

En utilisant la technique de [9] plutdt que les résultats qui y sont explicitement
démontrés et en travaillant de fagon relative «carte par carte» on peut en fait, démon-
trer le théoréme d’approximation suivant:

THEOREME. Soient X un polyédre compact de dimension n, V une variété semi-
linéaire de dimension m, avec 2m>3(n+1). Alors, il existe un ¢>0 tel que toute e-ap-
Dplication f:X — V puisse étre approchée arbitrairement prés par un plongement (semi-
linéaire).

Remarques. 1) 1l est trés probable que le théoréme reste vrai si I’on suppose seule-
ment que V est une variété topologique, le plongement approchant f étant alors seule-
ment «topologique».

2) 11 est plausible que le théoréme reste vrai avec la restriction de dimensions
beaucoup plus faible m—n>3. Les résultats de Connelly, Edwards et Cernavskii sur
P’approximation des plongements topologiques par des plongements semi-linéaires
soutiennent cette conjecture.

3. La Théorie de Flores [2]

Nous démontrons maintenant les résultats de Flores, en les interprétant dans le
cadre de la théorie du paragraphe précédant.

Un schéma simplicial (fini) augmenté est la donnée d’un ensemble (fini) S, I'en-
semble des sommets, non-vide, et d’'un sous-ensemble A de I’ensemble des parties de
S tel que:

1) seS entraine {s}e4

2) o€ A et Tco entrainent e A.

Comme on ne demande pas que A soit constitué de parties non-vides, 1) et 2)
entrainent que Qe (d’ou I'adjectif «augmenté»). Les éléments de 4 sont les sim-
plexes du schéma.

Soient maintenant S’ et S” deux copies de S, disjointes. A toute partie ¢ de I’en-
semble S correspondent une partie ¢’ de S’ et une partie 6” de S”. Dans ’ensemble
des sommets S’ U S"” considérons les parties ¢’ U 7" telles que:

i) oed, ted

ii) ont=0.
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Comme la partie vide est un élément de A, il est immédiat de vérifier que 1’on
définit ainsi un schéma simplicial (fini) augmenté, que nous noterons J(4). {Pour
joint réduit de 4 avec lui-méme).

Ce schéma J(A4) posséde une involution simpliciale définie sur les sommets par:
s’ —s" et s” > s’ pour tout sommet seS.

Soit K le complexe simplicial qui est la réalisation géométrique de 4. En gros, la
réalisation géométrique de J(A) a pour simplexes tous les joints ordonnés o* 7 ol ¢
et T sont des simplexes de K tels que 6 n7=0. ¢ et T peuvent étre vides. Dans ce cas
g*(Q=o0. L’involution envoie o* T sur 7*g0.

LEMME. La réalisation géométrique de J(A) est homéomorphe de fagon équi-
variante a T (cK) oit cK désigne le cone sur K.

Preuve. Soit oxt un simplexe typique de la réalisation de J(4). Considérons
d’autre part le sous-espace:

(o xct)u(cox1) T(cK)
On a
(oxct)n(coxt)=0x%T1.

En conséquence, ce sous-espace est homéomorphe, de fagon naturelle & o*7 en
vertu de la formule classique pour le joint de deux ensembles:

AxB=(AxcB)uU(cAx B)[AXB.

Tout étant compact, il n’y a pas de probléme de topologies.

D’aprés la définition que nous avons donnée du sous-espace 7, il est immédiat de
vérifier que I’on définit ainsi un homéomorphisme de la réalisation géométrique de
J(A) sur T(cK), compatible avec les involutions qui, dans chaque cas, reviennent
essentiellement & «échanger les facteurs».

Si A et Bsont deux schémas simpliciaux (finis) augmentés, d’ensembles de sommets
S resp. U, on définit le joint A% B comme le schéma simplicial ayant pour sommets
I’ensemble ST1U et pour simplexes les parties de la forme o]yz o0l 0€4, 1€B.

Comme o et T peuvent étre vides, il est immédiat de vérifier que I’on définit ainsi
un schéma simplicial. Si K et L désignent la réalisation géométrique de A4 resp. B,
bien sir la réalisation géométrique de 4*B est homéomorphe naturellement au joint
K= L. Enfin si 4 et B sont munis d’une involution simpliciale u , resp. ug, on définit
une involution yu sur A =B par la formule u(s)= u,(s) pour seS et u(t)= pup(t) pour
tel.

LEMME. Soient K et L deux complexes simpliciaux compacts. Alors, T(c(K*L))
est homéomorphe de fagon équivariante a T (cK)*T'(cL).
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Preuve. D’aprés le lemme précédent, T(c(K*L)) a pour simplexes les joints
ordonnés o * 7 oll g et T sont des simplexes de K L, disjoints.

Mais, par définition, o est le joint o, * 0 ,, 6, étant un simplexe de K, o, un simplexe
de L. De méme, 1=1,*1,.

De plus, ox7=(0,%0,)* (1, *7,) est homéomorphe & (,%7,)*(6,*7,).

Enfin, 6 n7=0 si et seulement si 6; " t;=0 et 6, N7, =0.

On définit donc un homéomorphisme simplicial

@:T(cK)*T(cL) > T(c(K*L))
en envoyant
(01%71)*%(0,%7,) sur (oy%0,)*(T4%7,).
¢ commute aux involutions. En effet, avec quelques abus de notations on a:

ou((ay*1)*(02%72)) =@ (o *7,) * (0, %7,))
=@((t11%01)*(12%0,)) =(11%7,)*(0,%0,)
=p((0,%0,)*(1%7,)) = po((o,*7,)*(02%7,))

THEOREME (Flores). Soit F" le n-squelette du simplexe de dimension (2n+2). Alors,
T(cF") est homéomorphe de fagon équivariante a la sphére S*"*!, équipée de I involu-
tion antipode.

Avant de démontrer ce théoréme, nous rappelons quelques propriétés des sub-
divisions duales dans un complexe simplicial.

Comme auparavant, soit 4 un schéma simplicial (fini) augmenté, d’ensemble de
sommets S. La premiére subdivision barycentrique de 4, notée B(A4), a pour sommets
’ensemble 4 — {0}. Les éléments de 4 étant des parties de S, 4— {0} est ordonné par
inclusion. Par définition, une partie de 4 — {0} est un simplexe de B(4) si et seulement
si I’ordre induit sur cette partie est un ordre total.

Si K est la réalisation géométrique de A, on obtient un isomorphisme simplicial
de la réalisation géométrique de B(4) sur la premiére subdivision barycentrique de K
en envoyant o€ A — {0} sur le barycentre du simplexe o.

Soit maintenant r>0 un entier. Désignons par (4")? le plus grand sous-schéma de
B(A) dont les sommets sont les éléments de 4 qui, comme partie de S ont un cardinal
plus grand ou égal a r+2. (Géométriquement : dont les sommets sont les barycentres
des simplexes de K de dimension plus grande ou égale & r+1).

«Concrétement» on voit que les simplexes de (4")? sont soit la partie vide, soit les
parties totalement ordonnées par inclusion d’éléments de A— {0} dont I’élément
minimal est de cardinal plus grand ou égal & r+2.

Soit A" le r-squelette de 4. De fagcon analogue B(A4") a pour simplexes soit la
partie vide, soit les parties totalement ordonnées par inclusion de 4— {@} dont I’é1é-
ment maximal est de cardinal plus petit ou égal a r+1.
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Soit maintenant (¢, 6y,..., 6,) un p-simplexe de B(4). Par définition o,€ 4 — {0}
et 6;_,<o; pour i=1,..., p. En partageant I’ensemble des sommets du simplexe en
deux parties suivant que la dimension de o; est plus petite ou égale a r ou supérieure a
r, on voit que ce simplexe de B(A4) est le joint d’un simplexe bien défini de B(A4") et
d’un simplexe bien défini de (4")’, I'un ou l'autre pouvant d’ailleurs étre vide.

Plus précisément, on voit que B(4) est le sous-complexe B(4")-(4")* du joint
B(A") % (A")* constitué des joints d’un simplexe o de B(A4") et d’un simplexe 7 de (4")*
('un ou l'autre pouvant étre vide) satisfaisant la condition que 1’élément maximal de
o soit plus petit que I’élément minimal de 7. C’est en ce sens que ’on dit parfois que
B(A") et (4")* sont deux sous-complexes «duaux» de B(A).

Nous aurons besoin dans la démonstration du théoréme de Florés d’une descrip-
tion simpliciale de I'involution antipode sur la sphere.

Soit 471e schéma simplicial augmenté dont la réalisation géométrique est le simplexe
de dimension ¢. L’ensemble des sommets de 47 est constituéde g +1 points: { Py, ... P}
et toute partie de cet ensemble est un simplexe de 4%.

Le «bord» de 4% noté 4%, dont la réalisation géométrique sera notre modele pour
la sphére S?7 1, a méme ensemble de sommets que 4% et pour simplexes toutes les
parties de cardinal plus petit ou égal a q.

Les sommets de B(4?) sont donc toutes les parties de {P,,..., P,} qui sont non-
vides et non maximales. Soit a:B(4?) —» B(4?) I'application simpliciale qui envoie
chaque sommet sur le sommet constitué par la partie complémentaire. On vérifie facile-
ment que a est bien simpliciale et que la réalisation géométrique de a est I’application
antipode de la sphere.

Preuve du théoréme de Flores. Commengons par subdiviser le schéma simplicial
J(A) de la fagon suivante:

Soit B(A) la premiére subdivision barycentrique de 4. Soient 4’ et A” deux copies
disjointes de 1’ensemble A — {0} des sommets de B(4). Envisageons I'ensemble de
sommets 4’ U A" et décidons de prendre pour simplexes les parties o' U B ol « et f
sont des simplexes de B(A) tels que 1’élément maximal de « soit disjoint de I’élément
maximal de § (en tant que parties de S).

On vérifie facilement que ’on obtient ainsi un schéma simplicial L(4), muni d’une
involution analogue a celle de J(4).

Enfin, il y a un homéomorphisme équivariant évident de la réalisation géométrique
de L(A) sur celle de J(A4). Intuitivement la réalisation géométrique de L(A)est obtenue
a partir de celle de J(4) en subdivisant un simplexe type o *t en B(c)*B(7).

4%"*2 a pour sommets { Py, ..., P,,. ,} et pour simplexes toutes les parties distinc-
tes de la partie maximale. F" a méme ensemble de sommets et pour simplexes toutes
les parties de cardinal plus petit ou égal & n+1. Dans la suite, nous le considérerons
comme le n-squelette de 42"*2 et non de 42"*2,

Pour montrer que la réalisation géométrique de J(F") est homéomorphe de fagon
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équivariante 3 S?"*1, il suffit, d’aprés ce qui précéde, de montrer que L(F") est sim-
plicialement isomorphe & B(4*"*?) munie de I'involution a, ceci de fagon équivariante.

Or les sommets de B(F") sont les parties non-vides et de cardinal plus petit ou
égal 3 n+1 de I’ensemble { P, ..., P, ,}. Un simplexe type de L(F") a pour sommets:

{Bos ..., B, Co,..., C;}

ou By,..., By, Cy,..., C, sont des parties non-vides et de cardinal plus petit ou
égal a n+1 de ’ensemble {P,,..., P,,. ,} telles que:

BycByc---cB,, CocCic---cC,

toutes les inclusions étant strictes, et B,n C,=0. Les B ou les C peuvent €tre absents.
Dans ce cas on fait la convention que p ou g est égal & —1.
Envoyons ce simplexe sur le simplexe de B(4%"*?) de sommets:

{Bo, By,..., B,,aC,, aC,_,, ..., aCy}.

Ce dernier est bien un simplexe de B(4?"*?) car: B,nC,=0 entraine B,=aC, et
comme le cardinal de C, est plus petit ou égal & n+1, celui de aC, est plus grand ou
égal a n+2 et donc 'inclusion est stricte.

Ceci montre aussi que:

{By, ..., B,} est un simplexe de B(F");

{aC,, aC,_i, ..., aC,} est un simplexe de (F")*;

{Byg, ..., B, aC,..., aCo} est un simplexe de B(F")o (F")*=B(4*"*?).

Il est maintenant trés facile de vérifier que ’on définit ainsi une application sim-
pliciale: L(F") - B(F")o (F")*= B(4*"*?) et, en faisant «machine arriére», de vérifier
que c’est un isomorphisme.

Le fait que cet isomorphisme commute aux involutions est évident.

DEFINITION. Nous appelerons le complexe F? le complexe de Flores-van Kam-
pen de dimension p.

Plus généralement, soit G? un complexe de dimension p qui soit joint (itéré) de
complexes de Flores-van Kampen:

Gp=Fk1—1*Fk2—1*...*Fk’_1 avec Zk1=p+1'

D’aprés les lemmes et le théoréme précédents, T(cG?) est homéomorphe de fagon
équivariante a: S2¥! "1 4... » §2%~1 = §2P* L. mynje de I'involution antipode.

THEOREME. Soit X"=cG""! le céne sur G*~ . Alors X" ne peut étre quasi plongé
dans R*""1,

Preuve. Pour ¢ assez petit, une e-application de X dans R?**~! fournirait (voir §2)
une application équivariante de 7'(X)=S%""! dans S?"~2%, ce qui est impossible en
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vertu du théoréme de Borsuk-Ulam. (cf. Spanier: «Algebraic Topology»; chap. 5,
sec. 8, cor. 8.).

On voit donc qu’il y a des complexes contractibles (méme collapsibles) de dimen-
sion n qui ne peuvent étre quasiplongés dans R?"~1,

COROLLAIRE. G" ne peut étre quasi plongé dans R*".

Preuve. Le cone sur une e-application de G" dans R*" est une e-application de
cG" dans R?"*1,

Remarques. 1) Bien siir, G" peut étre plongé dans R*"*! et ¢cG" ! peut étre plongé
dans R?",

2) F° est le complexe de dimension zéro ayant trois sommets. Pour n=1, il y a
deux complexes tels que G': F! et FO» F°. Ce sont les célebres graphes de Kuratowski.

3) Le lecteur peut se distraire de I'ennui distillé par ce paragraphe en appliquant
les démonstrations & cF° et en faisant des dessins dans ce cas particulier.

4. Classes de Stiefel-Whitney

DEFINITION. On appellera variété mod2 de dimension z# un polyédre compact
X tel que, pour tout xe X:

H(X mod X— {x})~ H'(R" modR"— {0})

pour tout i, la cohomologie étant a coefficients Z/2Z.

Soit X une variété mod 2, compacte, connexe, de dimension ». On démontre classi-
quement qu’il existe un voisinage E, équivariant de 4y dans X x X, une projection
n:E —»Ay et une classe VeH"(EmodE—A4y) telle que ¢(x)=n*(x)u ¥V soit un
isomorphisme ¢: H(X) - H'*"(E mod E— 4 4) pour tout i.

On définit alors les classes W,e H(X) de Stiefel-Whitney de X par la formule de
Thom [8]:

W= 1Sqe(1) i=0,1,...,n.

Comme on a W,=1, on définit les classes de Stiefel-Whitney normales de X par la
formule de Whitney:

WuW=1 ot W=1+W,+--+W, W=1+Wi+--+W,

Bien sfir, X satisfait une dualité de Poincaré mod2; le cup-produit: H'(X)x
x H" {(X) — H"(X )~ Z/2Z est, pour tout i, une application bilinéaire non-dégénérée.
On définit la classe de Wu: U;e H'(X) par Iégalité:

x-U;=Sq'(x) VxeH" }(X) etl'onpose U=1+U +--.

On démontre alors [6] que les classes de Stiefel-Whitney satisfont la formulede Wu:
W=8qU.
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Soient maintenant X *, resp. R(X) les quotients de X resp. T'(X) par I'involution
p. R(X) est un rétracte par déformation de X*. Soit ze H'(R(X)) la classe caracté-
ristique du revétement a deux feuillets 7(X) - R(X).

Soit F:T(X)—S""! une application équivariante et soit F:R(X)—>RP™!
I’application induite sur les quotients. Si 'on désigne par we H'(RP™™!) la classe
caractéristique du revétement S™ ! — RP™~ !, on remarque que: dire que Fest obtenue
par passage aux quotients d’une applicaton équivariante signifie que F*(w)=z.

Comme w™=0, on voit qu’une condition nécessaire a I’existence d’une application
équivariante T(X) — S™ ! est z”=0. (En fait z™ est la réduction mod 2 de la premiére
obstruction a contruire une application équivariante 7'(X) —» S™"1.)

Le théoréme suivant est dG & Wu [11]. Pour une démonstration valable pour les
variétés mod 2, on peut consulter [4], qui n’utilise essentiellement que les formules de
Thom et Wu.

THEOREME. z™=0 si et seulement si W'=0 pour i>m—n.

COROLLAIRE. Soit X une variété mod2 compacte. Alors, il existe un ¢>0 tel
que I'existence d’une e-application de X dans R™ implique W'=0 pour i >m—n.

Comme conséquence de ce corollaire, on voit que ’on obtient des théorémes de
non-existence de quasiplongements pour les variétés mod2 dans R™ tout-a-fait analo-
gues aux théorémes de non-existence de plongements de variétés differentiables qui
utilisent les classes de Stiefel-Whitney. Par exemple:

PROPOSITION. Soit P une variété mod2, de dimension n=2% ayant le méme
anneau de cohomologie mod2 que RP". Alors P ne peut étre quasi-plongé dans R*" ™1,

Preuve. D’apres le lemme 1 de [12], dont la démonstration n’utilise que la formule
de Wu, on a: W"~1 0 si et seulement si 0"~ *(x)#0 pour au moins un xe H'(P).

Q' est défini par la formule bien connue Q-Sq=1. (voir [13] p. 32).

En vertu du lemme 1.6 p. 34 de [13], lorsque n=2% on a Q" !(x)=x". Notre hypo-
thése sur P implique que x"#0 lorsque x#0, ce qui achéve la démonstration.

Remarque. Voici un procédé simple pour obtenir des variétés satisfaisant les
hypothéses de la proposition:

Soit n=2? et soit p un nombre impair. Choisissons une des nombreuses actions
libres de Z/2p sur S"~! et désignons par M I’espace des orbites. M a méme anneau de
cohomologie mod2 que RP"~ . Désignons par M le quotient de S"~! par ’action du
sous-groupe Z/p. M — M est un revétement 3 deux feuilles et M est une sphére
d’homologie mod?2.

Il n’est pas difficile de voir que la Thomification du fibré en droites associé a ce
revétement a deux feuilles est une variété mod2 ayant méme anneau de cohomologie
mod2 que RP".
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Rappelons qu’un théoréme de Whitney affirme que toute variété différentiable de
dimension 7 se plonge dans R*". On peut montrer que ce résultat est aussi vrai pour
les variétés mod 2.

PROPOSITION. Soit X une surface sans bord, compacte, non-orientable. Alors X
ne peut étre quasi-plongée dans R3.

Preuve. Pour une telle surface W' #0.

Soit maintenant Y™ une variété mod2 compacte (connexe) de dimension m et soit
W' sa classe de Stiefel-Whitney «totale». On définit les classes de Stiefel-Whitney
W{ d’une application f: X — Y par la formule: W/=Wouf*(W'). En utilisant les
résultats de Haefliger [4] §5, on peut démontrer la.

PROPOSITION. Soient X" et Y™ deux variétés mod2. Soit f:X — Y. Alors il
existe un ¢ >0 tel que I'existence d’une e-application g: X — Y homotope a f entraine
w{ =0 pour i >m-n.
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