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£-Applications dans une variété

par Claude Weber

1. Introduction

Soient X un espace métrique, F un espace topologique, e un nombre réel positif.
On dit qu'une application /: X -» F est une e-application si, pour tout yeY, le
diamètre def~1(y) est plus petit que e. On dit que/est un plongement si/est un homé-

omorphisme de X sur/(Z). Dans le cas où Zest compact, un plongement est la même
chose qu'une O-application. Ce fait est important dans la démonstration du théorème
de Menger-Nôbeling telle qu'elle est exposée, par exemple, dans Hurewicz-Wallman
[5]. Jetant toujours supposé compact et F métrique on montre que:

1 Les e-applications de X dans F forment un ouvert dans l'espace des applications
continues de X dans F, muni de la topologie de la convergence uniforme.

2) Si X est de dimension n, les e-applications de X dans RM forment un sous-ensemble

dense pour m^2n + l. (Domaine stable).
Ainsi, les O-applications de Zdans Rm, m^2n +1, sont l'intersection d'une famille

dénombrable d'ouverts denses et forment donc un sous-ensemble dense d'après le

théorème de Baire.
Cette démonstration classique montre que les relations entre e-applications et

plongements sont plutôt bonnes dans le domaine stable. Il en va très différemment
dès que l'on se trouve en dessous du domaine stable :

1) Les e-applications ne sont pas denses. Par exemple, l'application du segment

[0.1] dans R2 qui a un point double ne peut être approchée pour tout e>0 par des

e-applications.
2) II y a des compacts de dimension 1 pour lesquels il existe des e-applications

dans R2 pour tout e>0 et qui pourtant ne se plongent pas dans R2. Avant d'en donner

un exemple particulièrement simple, rappelons la définition classique: On dit que X
peut être quasi-plongé dans F s'il existe, pour tout e>0, une e-application de Zdans
F. Borsuk a donné dans [1] un exemple d'un compactum de dimension deux qui peut
être quasi-plongé dans R2 et qui ne peut être plongé dans R2.

Nous construisons tout d'abord un sous-ensemble Z du plan de la façon suivante:

Pour «>0 entier, soit An le cercle de centre l'origine et de rayon 1/w, et soit A

Soit £={(*,y)}eR2 | |*|<1, j=0oux=0, \y\<l}.
Posons Z=AuB. Identifions R2 avec le sous-ensemble des (x9y, z)eR3 tels que

z=0 et prenons pour Xla réunion de Z et de C {(0,0, z)eR31
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Pour voir que A" peut être quasi-plongé dans R2, donnons nous un e>0. Soit n
suffisamment grand pour que l/2n<e.

Désignons par Xn le quotient de X obtenu en identifiant en un point tous les points
de Z qui sont à distance de l'origine plus petite ou égale à l/2«. Soit cp:X -* Xn la
projection sur le quotient. q> est une e-application. Mais il est évident qu'il existe un
plongement u:Xn ->R2. u<>(p:X-+R2 est donc une e-application.

Esquissons maintenant la démonstration que X ne peut se plonger dans R2.

Raisonnons par l'absurde et supposons que \j/ : X -> R2 est un plongement.
On montre alors assez facilement, en utilisant le fait que \j/ est continue à l'origine

et les coefficients d'enlacement que :

i) i^(0, 0) ne peut être extérieur à il/(An) pour tout n.

ii) Si t/f(O, 0) est intérieur à \j/(An), il est aussi intérieur à il/(Am) pour tout m^n.
Les détails sont laissés au lecteur. Soit P (0, 0, 1). D'après i) et ii) et le fait que ij/

est continue à l'origine, il existe un k assez grand tel que :

a) ^(0, 0) est intérieur à \l/(Ak).

b) ij/(P) est extérieur à \l/(Ak).
Ceci entraîne que ${C) doit rencontrer il/(Ak), ce qui contredit le fait que \J/ est un

plongement.
Il est très probable que ces exemples puissent se généraliser:

CONJECTURE. Pour tout entier n^l, il existe un compactum de dimension n qui
peut se quasi-plonger dans R2n et qui cependant ne peut se plonger dans R2n.

Voici maintenant un bref aperçu de ce travail. Dans la première partie, on montre

que certains liens subsistent entre quasi-plongements et plongements lorsque Xest un
polyèdre compact, Yune variété et que 2 dim Y^ 3 (dimX+1 (Domaine métastable).
En voici un exemple:

THÉORÈME. Soit X un polyèdre compact de dimension n et soit Y une variété

semi-linéaire de dimension m. Alors il existe une>0 tel que toute e-applicationf:X-*Y
puisse être approchée arbitrairement près par un plongement (semi-linéaire), à condition

que 2m ^3(n + l).
Ce théorème généralise un résultat de Ganéa [3], qui affirme l'existence, pour tout

polyèdre compact, d'un e>0 tel que l'existence d'une e-application de X dans R2n

entraîne l'existence d'un plongement de Zdans R2n. (n^3).
Dans ladeuxième partie de ce travail, nous utilisons la théorie de Flores, telle qu'elle

a été explicitée par R. Reid, pour démontrer certains théorèmes de non-existence de

quasi-plongements. Par exemple, pour tout n^ 1, il existe des polyèdres contractibles
de dimension n qui ne peuvent être quasi-plongés dans R2""1.

Dans la dernière partie, nous montrons que, lorsque Zest une variété mod2, l'an-
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nulation de certaines classes de Stiefeî-Whitney normales est une condition nécessaire
à l'existence de quasi-plongements dans un espace euclidien.

Je tiens à remercier très vivement R. Reid pour de très utiles conversations sur la
théorie de Flores et les professeurs Mardesic et Horvatic de Zagreb de m'avoir initié
aux e-applications.

2. Théorèmes d'existence

Soit X une space métrique. Soit I=Ix X— ÂX\q complémentaire de la diagonale.
X s'appelle le produit réduit de X. Désignons par /i l'involution sans points fixes de X
qui échange les facteurs. Enfin, munissons Rm, Rm— {0}, Sm~l de l'involution antipode.

Supposons maintenant que f:X-+Rm est un plongement. Alors l'application
fiX^S™'1 définie par:

f(x y)- f(x)-fiy)

est équivariante (c'est-à-dire commute aux involutions). Réciproquement:

THÉORÈME [9]. Soit X un polyèdre compact de dimension n. Supposons qu'il
existe une application équivariante F:X -^S™'1. Alors il existe un plongement semi-

linéaire f: X -> Rm, si 2m ^ 3 (n +1
Supposons maintenant que X est un complexe simplicial compact. Dans XxX

envisageons le sous-espace T(X) constitué par la réunion de toutes les cellules a x t,
où g et t sont des simplexes fermés, non vides de X tels que ant=0. Il est évident

que T(X) est compact et invariant par l'involution fi.

LEMME. T(X) est un rétracte par déformation de X, de façon équivariante.
Ce lemme est dû à Shapiro [7]. Pour une démonstration mettant l'accent sur

l'équivariance, on peut consulter [10].
Le lemme et le théorème impliquent que, pour avoir un plongement de X dans

Rm, lorsque 2m^3(n + l), il suffit de construire une application équivariante T(X) ->

Soit maintenant g:X-?Rm une application continue et considérons l'application
g:XxX-+Rm définie par: g(x, y) g(x)- g(y). Comme T(X) est compact, il est
facile de voir qu'il existe un e>0 assez petit tel que, si g est une e-application, g envoie

T(X) dans Rm- {0}. Soit alors q : Rm- {0} -> Sm~x la rétraction par déformation
équivariante

En ce cas, Qog | T(x) -> Sm 1 est une application équivariante.
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Nous avons donc le théorème suivant:

THÉORÈME. Soit X un polyèdre compact de dimension n. Alors, il existe un e>0
tel que Vexistence d'une s-application X-+Rm entraîne l'existence d'unplongement
(semi-linéaire) de X dans Rm, à condition que 2m ^ 3(n +1

Remarque. Ce théorème a été démontré par Ganéa [3] dans le cas où m 2n,

En utilisant la technique de [9] plutôt que les résultats qui y sont explicitement
démontrés et en travaillant de façon relative «carte par carte» on peut en fait, démontrer

le théorème d'approximation suivant :

THÉORÈME. Soient X un polyèdre compact de dimension n, V une variété semi-
linéaire de dimension m, avec 2m^3(w + l). Alors, il existe un s>0 tel que toute e-ap-
plication f:X'-+ Vpuisse être approchée arbitrairement près par unplongement (semi-
linéaire).

Remarques. 1 II est très probable que le théorème reste vrai si l'on suppose seulement

que F est une variété topologique, le plongement approchant/étant alors seulement

«topologique».
2) II est plausible que le théorème reste vrai avec la restriction de dimensions

beaucoup plus faible m —n^3. Les résultats de Connelly, Edwards et Cernavskii sur
l'approximation des plongements topologiques par des plongements semi-linéaires
soutiennent cette conjecture.

3. La Théorie de Flores [2]

Nous démontrons maintenant les résultats de Flores, en les interprétant dans le
cadre de la théorie du paragraphe précédant.

Un schéma simplicial (fini) augmenté est la donnée d'un ensemble (fini) S,
l'ensemble des sommets, non-vide, et d'un sous-ensemble A de l'ensemble des parties de

S tel que:
1) seS entraîne {s}eA
2) aeA et tco- entraînent teA.
Comme on ne demande pas que A soit constitué de parties non-vides, 1) et 2)

entraînent que 0eA (d'où l'adjectif «augmenté»). Les éléments de A sont les sim-

plexes du schéma.

Soient maintenant Sf et S" deux copies de S, disjointes. A toute partie a de
l'ensemble S correspondent une partie a' de *S" et une partie a" de S". Dans l'ensemble
des sommets S'uS* considérons les parties a'ut" telles que:

i) aeA, xeA
ii)
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Comme la partie vide est un élément de A, il est immédiat de vérifier que Ton
définit ainsi un schéma simplicial (fini) augmenté, que nous noterons J(A). {Pour
joint réduit de A avec lui-même).

Ce schéma J(A) possède une involution simpliciale définie sur les sommets par:
s' ->s" et s" -+s' pour tout sommet seS.

Soit K le complexe simplicial qui est la réalisation géométrique de A. En gros, la
réalisation géométrique de J(A) a pour simplexes tous les joints ordonnés a*x où a
et t sont des simplexes de K tels que a n x 0. a et x peuvent être vides. Dans ce cas

(7*0 (7. L'involution envoie a*x sur x*g.

LEMME. La réalisation géométrique de J(A) est homéomorphe de façon équi-
variante à T(cK) où cK désigne le cône sur K.

Preuve. Soit ffuun simplexe typique de la réalisation de J(A). Considérons
d'autre part le sous-espace :

(a x ex) u (ca x t) c T(cK)

On a

(ax ex)n(caxx)

En conséquence, ce sous-espace est homéomorphe, de façon naturelle à a*x en

vertu de la formule classique pour le joint de deux ensembles:

A*B= (A x cB)u (cA x B)/A x B.

Tout étant compact, il n'y a pas de problème de topologies.
D'après la définition que nous avons donnée du sous-espace T, il est immédiat de

vérifier que l'on définit ainsi un homéomorphisme de la réalisation géométrique de

J(A) sur T(cK), compatible avec les involutions qui, dans chaque cas, reviennent
essentiellement à «échanger les facteurs».

Si A et B sont deux schémas simpliciaux (finis) augmentés, d'ensembles de sommets

S resp. U, on définit le joint A*B comme le schéma simplicial ayant pour sommets
l'ensemble SjjU et pour simplexes les parties de la forme ctijt où aeA, xeB.

Comme c et t peuvent être vides, il est immédiat de vérifier que l'on définit ainsi

un schéma simplicial. Si K et L désignent la réalisation géométrique de A resp. B,

bien sûr la réalisation géométrique de A*B est homéomorphe naturellement au joint
K*L. Enfin si A et B sont munis d'une involution simpliciale \iA resp. fiB, on définit

une involution \i sur A*B par la formule fi(s)= piA(s) pour se S et ^(0= /*b(0 Pour
teU.

LEMME. Soient K et L deux complexes simpliciaux compacts. Alors, T(c(K*L))
est homéomorphe de façon équivariante à T(cK)*T(cL).
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Preuve. D'après le lemme précédent, T(c(K*L)) a pour simplexes les joints
ordonnés g*t où a et t sont des simplexes de K*L, disjoints.

Mais, par définition, a est le joint ax *<r2, o± étant un simplexe de K, a2 un simplexe
de L. De même, t t1*t2.

De plus, (t*t ((t1*o"2)*(t1*t2) est homéomorphe à (<Xi*t1)*(ct2*t2).
Enfin, an t=0 si et seulement si at n xx =0 et <72n t2 =0.
On définit donc un homéomorphisme simplicial

cp : T(cK) * T(cL) -» T(c(K* L))

en envoyant

(o"1*t1)*((72*t2) sur (o'i*o'2)*(t1*t2).

ç commute aux involutions. En effet, avec quelques abus de notations on a :

=(t1*t2)*((71*ct2)
JU(((T1*<T2)*(T1*T2))

THÉORÈME (Flores). Soit Fn le n-squelette du simplexe de dimension (2n +2). Alors,
T(cFn) est homéomorphe de façon équivariante à la sphère S2n+l, équipée de linvolu-
tion antipode.

Avant de démontrer ce théorème, nous rappelons quelques propriétés des

subdivisions duales dans un complexe simplicial.
Comme auparavant, soit A un schéma simplicial (fini) augmenté, d'ensemble de

sommets S. La première subdivision barycentrique de A, notée B(A), sl pour sommets
l'ensemble A— {0}. Les éléments de A étant des parties de S, A — {0} est ordonné par
inclusion. Par définition, une partie de A — {0} est un simplexe de B(A) si et seulement
si l'ordre induit sur cette partie est un ordre total.

Si K est la réalisation géométrique de A, on obtient un isomorphisme simplicial
de la réalisation géométrique de B(A) sur la première subdivision barycentrique de K
en envoyant aeA — {0} sur le barycentre du simplexe a.

Soit maintenant r^Oun entier. Désignons par (Ar)d le plus grand sous-schéma de

B(A) dont les sommets sont les éléments de A qui, comme partie de S ont un cardinal
plus grand ou égal à r+2. (Géométriquement: dont les sommets sont les barycentres
des simplexes de AT de dimension plus grande ou égale à r + 1).

«Concrètement» on voit que les simplexes de (Ar)d sont soit la partie vide, soit les

parties totalement ordonnées par inclusion d'éléments de A — {0} dont l'élément
minimal est de cardinal plus grand ou égal à r+2.

Soit Al le r-squelette de A. De façon analogue B(Ar) a pour simplexes soit la

partie vide, soit les parties totalement ordonnées par inclusion de A — {0} dont
l'élément maximal est de cardinal plus petit ou égal à r + 1.
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Soit maintenant (<70, <rl9..., ap) un/?-simplexe de B(A). Par définition a^A-ty)
et ai_1Œai pour i \9...,p. En partageant l'ensemble des sommets du simplexe en
deux parties suivant que la dimension de ot est plus petite ou égale à r ou supérieure à

r, on voit que ce simplexe de B(A) est le joint d'un simplexe bien défini de B(Ar) et

d'un simplexe bien défini de (Ar)d, l'un ou l'autre pouvant d'ailleurs être vide.
Plus précisément, on voit que B(A) est le sous-complexe B(Ar)o(Ar)d du joint

B(Ar)* (Ar)d constitué des joints d'un simplexe a de B(Ar) et d'un simplexe t de (Ar)d

(l'un ou l'autre pouvant être vide) satisfaisant la condition que l'élément maximal de

c soit plus petit que l'élément minimal de t. C'est en ce sens que l'on dit parfois que
B(Ar) et (Ar)d sont deux sous-complexes «duaux» de B(A).

Nous aurons besoin dans la démonstration du théorème de Florès d'une description

simpliciale de l'involution antipode sur la sphère.
Soit Aq le schéma simplicial augmenté dont la réalisation géométrique est le simplexe

de dimension q. L'ensemble des sommets de Aq est constitué de q +1 points : {Po,... Pq]
et toute partie de cet ensemble est un simplexe de Aq.

Le «bord» de Aq, noté Àq, dont la réalisation géométrique sera notre modèle pour
la sphère S9'1, a même ensemble de sommets que Aq et pour simplexes toutes les

parties de cardinal plus petit ou égal à q.

Les sommets de B(Âq) sont donc toutes les parties de {Po,..., Pq} qui sont non-
vides et non maximales. Soit a:B(Àq) -+B(Àq) l'application simpliciale qui envoie

chaque sommet sur le sommet constitué par la partie complémentaire. On vérifie facilement

que a est bien simpliciale et que la réalisation géométrique de a est l'application
antipode de la sphère.

Preuve du théorème de Flores. Commençons par subdiviser le schéma simplicial
J(A) de la façon suivante:

Soit B{A) la première subdivision barycentrique de A. Soient A' et A" deux copies

disjointes de l'ensemble A— {0} des sommets de B(A). Envisageons l'ensemble de

sommets A'kjA" et décidons de prendre pour simplexes les parties a'u/T où a et /?

sont des simplexes de B(A) tels que l'élément maximal de a soit disjoint de l'élément
maximal de /? (en tant que parties de S).

On vérifie facilement que l'on obtient ainsi un schéma simplicial L(A), muni d'une

involution analogue à celle de J(À).
Enfin, il y a un homéomorphisme équivariant évident de la réalisation géométrique

de L(A) sur celle de J(A). Intuitivement la réalisation géométrique de L(A) est obtenue

à partir de celle de J(A) en subdivisant un simplexe type <t* t en B(a)*B(x).
À2n+2 a pour sommets {Po,..., P2n+i} et Pour simplexes toutes les parties distinctes

de la partie maximale. Fn a même ensemble de sommets et pour simplexes toutes
les parties de cardinal plus petit ou égal à n +1. Dans la suite, nous le considérerons

comme le «-squelette de À2n+2 et non de A2n+2.

Pour montrer que la réalisation géométrique de J{Fn) est homéomorphe de façon
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équivariante à S2n+i, il suffit, d'après ce qui précède, de montrer que L(Fn) est sim-

plicialement isomorphe à B(À2n+2) munie de l'involution a, ceci de façon équivariante.
Or les sommets de B(Fn) sont les parties non-vides et de cardinal plus petit ou

égal à n +1 de l'ensemble {Po,..., Pn+ 2}. Un simplexe type de L(Fn) sl pour sommets :

\B0,..., Bp9 Co,..., Cqj

où BO9...9 Bp9 Co,..., Cq sont des parties non-vides et de cardinal plus petit ou
égal à n + l de l'ensemble {P09...,P2n+2} telles que:

BoCzBi.cz...cBp9 CocQc.cC^
toutes les inclusions étant strictes, et BpnCq 0. Les B ou les C peuvent être absents.

Dans ce cas on fait la convention que p ou q est égal à — 1.

Envoyons ce simplexe sur le simplexe de B(Â2n+2) de sommets:

{&o> Bl9...9 Bp, aCq, aCq_l9...9 aC0}.

Ce dernier est bien un simplexe de B(Â2n*2) car: Bpr\Cq 0 entraîne BpczaCq et

comme le cardinal de Cq est plus petit ou égal à n + l, celui de aCq est plus grand ou
égal à n+2 et donc l'inclusion est stricte.

Ceci montre aussi que:
{B09..., Bp} est un simplexe de B(Fn);
{aCq9 aCq-l9...9 aC0} est un simplexe de (Fn)d;

{BO9...9 Bp9 aCq9...9 aC0} est un simplexe de B(Fn)°(Fn)d B(À2n+2).

Il est maintenant très facile de vérifier que l'on définit ainsi une application sim-

pliciale: L(Fn) ->B(Fn)o(Fn)d=B(Â2n+2) et, en faisant «machine arrière», de vérifier

que c'est un isomorphisme.
Le fait que cet isomorphisme commute aux involutions est évident.

DÉFINITION. Nous appelerons le complexe Fp le complexe de Flores-van Kam-
pen de dimension p.

Plus généralement, soit Gp un complexe de dimension p qui soit joint (itéré) de

complexes de Flores-van Kampen :

Gp=Ffcl-1*Ffc2"1*---*Fk*-1 avec £Jfc, p + l.

D'après les lemmes et le théorème précédents, T{cGp) est homéomorphe de façon
équivariante à: S2ki~1*'--*S2ka~1 S2p+1 munie de l'involution antipode.

THÉORÈME. SoitXn=cGtt~1 le cône sur (P"1. Alors Xn ne peut être quasiplongé
dansR2"-1.

Preuve. Pour s assez petit, une e-application de X dans R2""1 fournirait (voir §2)
une application équivariante de T(X)=*S2n~1 dans S2n~29 ce qui est impossible en
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vertu du théorème de Borsuk-Ulam. (cf. Spanier: «Algebraic Topology»; chap. 5,

sec. 8, cor. 8.).
On voit donc qu'il y a des complexes contractibles (même collapsibles) de dimension

n qui ne peuvent être quasiplongés dans R2""1.

COROLLAIRE. Gn ne peut être quasi plongé dans R2n.

Preuve, Le cône sur une e-application de Gn dans R2rt est une e-application de
cGndansR2n+1.

Remarques. 1) Bien sûr, Gn peut être plongé dans R2lt+1 et cG""1 peut être plongé
dans R2w.

2) F° est le complexe de dimension zéro ayant trois sommets. Pour /i=l, il y a

deux complexes tels que G1:F1 et F0*F0. Ce sont les célèbres graphes de Kuratowski.
3) Le lecteur peut se distraire de l'ennui distillé par ce paragraphe en appliquant

les démonstrations à cF° et en faisant des dessins dans ce cas particulier.

4. Classes de Stiefel-Whitney

DÉFINITION. On appellera variété mod2 de dimension n un polyèdre compact
X tel que, pour tout xeX:

HXXmoâX- {x})^Hl(Rn modR"- {0})

pour tout /, la cohomologie étant à coefficients Z/2Z.
Soit Zune variété mod 2, compacte, connexe, de dimension n. On démontre

classiquement qu'il existe un voisinage E, équivariant de Ax dans XxX, une projection
n:E-+Ax et une classe VeHn(EmodE~Ax) telle que (p(x) n*(x)v V soit un
isomorphisme (p:H\X) -+Hi+n(EmodE—Ax) pour tout i.

On définit alors les classes WieH1{X) de Stiefel-Whitney de Xpar la formule de

Thom [8] :

W^çf^SqfyO) 1=0,1,..., ».

Comme on a WQ 1, on définit les classes de Stiefel-Whitney normales de X par la
formule de Whitney:

WkjW \ où H^l + fFi+ ••• + »; 1^ 1 + ^+... + ^.
Bien sûr, X satisfait une dualité de Poincaré mod 2; le cup-produit: Hi(X)x

xHn~ \X) -* Hn{X)«Z/2Z est, pour tout i, une application bilinéairenon-dégénérée.
On définit la classe de Wu: l7,6Jï'(Z) par l'égalité:

x• Ut=Sqf(jc) VxeH"- \X) et l'on pose U 1 + U1 + • • •.

On démontre alors [6] que les classes de Stiefel-Whitney satisfont la formulede Wu :
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Soient maintenant X*, resp. R(X) les quotients de X resp. T(X) par Finvolution

fi. R(X) est un rétracte par déformation de X*. Soit zeH1(R(X)) la classe caractéristique

du revêtement à deux feuillets T(X) -> R(X).
Soit F: T(X)-^Sm~1 une application équivariante et soit F:R(X)-tRP"1'1

l'application induite sur les quotients. Si l'on désigne par œeH1(RPm~1) la classe

caractéristique du revêtement Sm ~1 -» RPm "*, on remarque que : dire que F est obtenue

par passage aux quotients d'une applicaton équivariante signifie que F*(œ) z.

Comme com 0, on voit qu'une condition nécessaire à l'existence d'une application
équivariante T(X) -*Sm~l est zm 0. (En fait zm est la réduction mod2 de la première
obstruction à contruire une application équivariante T(X) ->5'm~1.)

Le théorème suivant est dû à Wu [11]. Pour une démonstration valable pour les

variétés mod2, on peut consulter [4], qui n'utilise essentiellement que les formules de

Thom et Wu.

THÉORÈME. zm 0 si et seulement si Wl ^pour i^m-n.

COROLLAIRE. Soit X une variété mod2 compacte. Alors, il existe un e>0 tel
que Vexistence d'une ^-application de X dans Rm implique ffîl 0 pour i^m — n.

Comme conséquence de ce corollaire, on voit que l'on obtient des théorèmes de

non-existence de quasiplongements pour les variétés mod2 dans Rm tout-à-fait analogues

aux théorèmes de non-existence de plongements de variétés differentiables qui
utilisent les classes de Stiefel-Whitney. Par exemple:

PROPOSITION. Soit P une variété mod2, de dimension n 2d, ayant le même

anneau de cohomologie mod2 que RPn. Alors P ne peut être quasi-plongé dans R211"1.

Preuve. D'après le lemme 1 de [12], dont la démonstration n'utilise que la formule
de Wu, on a: ffî"'1 #0 si et seulement si Qn~ï(x)^0 pour au moins un xeH1(P).

Q1 est défini par la formule bien connue g-Sq= 1. (voir [13] p. 32).
En vertu du lemme 1.6 p. 34 de [13], lorsque n 2d on a Qn~1(x) xn. Notre hypothèse

sur P implique que x"^0 lorsque jc#O, ce qui achève la démonstration.

Remarque. Voici un procédé simple pour obtenir des variétés satisfaisant les

hypothèses de la proposition :

Soit n 2d et soit p un nombre impair. Choisissons une des nombreuses actions
libres de Z/2p sur «S"1"1 et désignons par M l'espace des orbites. M a même anneau de

cohomologie mod2 que RP"'1. Désignons par Û le quotient de S"'1 par l'action du

sous-groupe Z/p. Û -+M est un revêtement à deux feuilles et M est une sphère

d'homologie mod2.
Il n'est pas difficile de voir que la Thomification du fibre en droites associé à ce

revêtement à deux feuilles est une variété mod2 ayant même anneau de cohomologie
mod2 que RPn.



e-Applications dans une variété 135

Rappelons qu'un théorème de Whitney affirme que toute variété différentiable de

dimension n se plonge dans R2n. On peut montrer que ce résultat est aussi vrai pour
les variétés mod2.

PROPOSITION. Soit X une surface sans bord, compacte, non-orientable. Alors X
ne peut être quasi-plongée dans R3.

Preuve. Pour une telle surface W1 #0.
Soit maintenant Ym une variété mod2 compacte (connexe) de dimension m et soit

W sa classe de Stiefel-Whitney «totale». On définit les classes de Stiefel-Whitney
W{ d'une application /:X-» Y par la formule: Wf= ffîvf*(W). En utilisant les

résultats de Haefliger [4] § 5, on peut démontrer la.

PROPOSITION. Soient Xn et Ym deux variétés mod2. Soit f:X-+Y. Alors il
existe un e >0 tel que l'existence d'une s-application g:X-+Y homotope à f entraîne

W{ 0pour i>m — n.
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