Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 49 (1974)

Artikel: Abzahlbarkeit und Wohlordenbarkeit
Autor: Felgner, Ulrich

DOl: https://doi.org/10.5169/seals-37982

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-37982
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

114

Abzihlbarkeit und Wohlordenbarkeit

von ULRICH FELGNER

In dieser Arbeit wollen wir die Beziehungen zwischen den folgenden beiden
Axiomen untersuchen:

(UW) Die Union einer wohigeordneten Menge von wohlordenbaren Mengen ist
wohlordenbar.

(UA) Die Union einer abzihlbaren Menge von abzdhlbaren Mengen ist abzdhlbar.

Die beiden Axiome sind unmittelbare Konsequenzen des Auswahlaxiomes, und
es ist wohlbekannt, daB weder (UW) noch (UA) in der Zermelo-Fraenkelschen
Mengenlehre beweisbar sind. Die beiden Axiome haben den Charakter von Induktions-
Axiomen. P. E. Howard, H. und J. E. Rubin haben in [5] die interessante Frage
gestellt, ob (UA) eine Konsequenz von (UW) ist. Diese Frage soll hier beantwortet
werden:

Die Implikation (UW)=>(UA) ist im System ZF nicht beweisbar.

Wir bemerken, daB auch die Implikation (UA)=>(UW) in ZF nicht beweisbar ist.
Das Axiom (UA) folgt aus dem abzidhlbaren Auswahlaxiom (4C®). Die Umkehrung
gilt jedoch nicht. Wir werden zeigen:

(AC®) ist vom System ZF +(UA) +(UW) +(BPI) unabhiingig. Dabei ist (BPI) das
Boolesche Primideal Theorem. Die Beweise werden mittels der Erzwingungs-Methode
(forcing) von P. J. Cohen gefiihrt. Wir nehmen an, daB der Leser mit den Grund-
ziigen der Erzwingungs-Technik vertraut ist, wie sie etwa in [3] oder in [7] dargestellt
ist.

Frau Jean E. Rubin mdchte ich fiir eine Reihe hilfreicher Bemerkungen und
Hinweise bei der Abfassung dieser Arbeit danken.

1. Einfiihrung

ZF sei das System der Zermelo-Fraenkelschen Axiome der Mengenlehre (ein-
schlieBlich Ersetzungsaxiom und Fundierungsaxiom, aber ohne Auswahlaxiom). Mit
(AC) bezeichnen wir das iibliche Auswahlaxiom. Wenn « eine Kardinalzahl ist, dann
sei (AC”®) das folgende eingeschrinkte Auswahlaxiom:

(AC*): Zu jeder wohlgeordneten Menge s der Kardinalitdt o existiert eine Funktion
S derart, daB f (x) ex fiir alle x €s gilt.

Sei @ die Menge aller endlichen Ordinalzahlen. Wir bemerken:

(I) (UA) ist im System ZF+(AC®) beweisbar;

(I1) (UW) ist im System ZF+(AC™) beweisbar.

Dabei ist (4C"°) das Auswahlaxiom fiir wohlgeordnete Familien nicht-leerer Mengen,
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also (AC*°)<>(Va:AC®). Unter der Voraussetzung der Konsistenz von ZF gilt das
folgende

LEMMA 1. (a) Es gibt ein ZF-Model I, so dafs
M, E(UW) A (UA) A (AC).

(b) Es gibt ein ZF-Modell IR, so daf

M, E—1 (UW) A1 (UA) A1 (AC?).

Beweis. Zu (a): Sei I ein abzdhlbares Standard-Modell von ZF+ V=L und
seien ag, 4y, ..., dy,...(n€w) Cohen-generische Teilmengen von w. Sei M, =
=M[ao, a4, ... y, ...]ne , Feferman’s Modell (sieche [2] S.343-344, oder [3] S.160-166).
R. Solovay hatte gezeigt, daB (4C"°) in M, gilt. Daher ist M, ein Modell von (UW)
und von (UA). Andererseits ist das Ordnungstheorem und daher auch (AC) in IN,
verletzt.

Zu (b): Sei I, das Modell von A. Levy, in dem die Menge R aller reellen Zahlen
eine abzdhlbare Union abzdhlbarer Mengen ist. Es gilt also M,k —1 (UA). Aus
(AC?)=(UA) ergibt sich damit ferner M, F 1 (AC®). Levy zeigt, daB in M, jede
wohlordenbare Menge reeller Zahlen hochstens abzihlbar ist. Daher gilt 0t, F = (UW).
Das Modell M, wird in Levy [6] und in Cohen [1] S.143-147 beschrieben. Q.E.D.

In dem Modell M, ist &¥; mit &, konfinal. Dies zeigt, daB die Regularitit von ¥,
in ZF nicht beweisbar ist. Im Zusammenhang mit der Frage, ob (UA) aus (UW)
folgt, zeigen wir jetzt:

LEMMA 2. Die Implikation (UW)=>(UA) ist im System ZF+,N, ist reguldr*
beweisbar.

Beweis. Sei S={t,; new} eine Menge derart, daB alle ¢, abzihlbar sind. Setze
Uo=to, Uyt =ty —J{t;; 05i<n}, dann gilt {JS=J{u,; new} und alle u, sind
paarweise disjunkt. Aus (UW) folgt, daB | S wohlordenbar ist. Sei also = eine
Wohlordnung von | S. Fiir jedes n ew gibt es genau eine abzihlbare Ordinalzahl S,
und genau einen Ordnungs-Isomorphismus £, von {u,, = ) auf {B,, €). Eine Funktion
g sei wie folgt definiert: falls x eu,, dannseig (x)= B, +B; +--- +B,-1 +f, (x). Offenbar
ist g eine ein-eindeutige Abbildung von | J § in w,. Laut Annahme ist ; keine
abzdhlbare Union abzdhlbarer Ordinalzahlen. Also wird | S mittels g nicht auf w,
abgebildet. {g(x); xelJ S} ist also ein echter Anfangs-Abschnitt von w,. Also ist
U S abzdhlbar. Q.E.D.

Bemerkung 1. A. Tarski hat in [9] die folgenden beiden Fragen gestellt:

(A,) Ist ZF+,,Die Menge R aller reellen Zahlen ist abzihlbare Union abzdhlbarer
Mengen* konsistent?
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(A,) Ist ZF+,Jede unendliche Menge ist abzdihlbare Union von abzihlbaren
Unionen von abzdihlbaren Mengen*‘ konsistent?

Mit der Konstruktion des Modelles M, hat A. Levy die Frage (A,) positiv beant-
wortet. Aus der Konsistenz von ZF+,,8; ist singuldr® folgt, daB es keinen Term
t(x) von ZF gibt, so daB ,,Vr [r ist eine Wohlordnung auf einer abzihlbaren Menge s
=t (r) ist eine ein-eindeutige Abbildung von s auf w]* in ZF beweisbar ist.

Die Frage (A,) hat E. P. Specker [10] Seite 207 negativ beantwortet. Sei D,
= {x; x ist abzdhlbar} und durch Induktion: D,,, = {x; 3C(C< D, A C ist abzéhlbar
ax=J C)}. Es gilt w;¢D, und wie Specker zeigt: w,,; ¢D,. Der Beweis
unseres Lemmas 2 ist im Wesentlichen nichts anderes als ein Beweis fiir w, ¢ D;.

Bemerkung 2. Herr H. Rubin hat kiirzlich den folgenden Satz bewiesen: Die
Implikation (UW)=>(UA) ist im System ZF +,,Die Menge R aller reellen Zahlen ist
wohlordenbar‘‘ beweisbar. In jedem Permutations-Modell im Sinne von Fraenkel-
Mostowski ist R wohlordenbar. Daher ergibt sich das folgende Korollar (H. Rubin):
In jedem Permutations-Modell gilt (UW)=>(UA).

2. Das erste Unabhiingigkeits-Resultat

Wir werden jetzt zeigen, daBl (UA) im System ZF vom Axiom (UW) unabhingig
ist. Dazu werden wir zu einem gegebenen abzihlbaren Standard-Modell 9t von ZF
fiir jede natiirliche Zahl # unendlich viele generische Bijektionen ¢:¥,— N} (col-
lapsing functions) adjungieren, so daB in der Erweiterung Jt all diese Funktionen eine
unendliche, aber Dedekind-endliche Menge bilden. Daraus folgt dann Rk (UW).
Andererseits sind die Kardinalzahlen X (fiir #n ew) in R abzihlbar, und X2 ist in N
die erste iiberabzihlbare Kardinalzahl: 8% =XY. Also ist &, in  singuldr und es
folgt M|E —1 (UA).

SATZ 1. Jedes abzihlbare Standard-Modell I von ZF+ V=L kann zu einem
abzihlbaren Standard-Modell W von ZF erweitert werden, so daff X2 =8T und

(i) in N besitzt jede Menge eine lineare Ordnung,

(ii) ME(UW)A 1 (UA).

Beweis. Definiere in It eine verzweigte Sprache .Z, welche neben den iiblichen
ZF-Symbolen (Variable, ¢, logische Zeichen v, —, \/ (oder, nicht, es gibt) und
Klammern) noch limitierte Existenz-Quantoren /% limitierte Komprehensions-
Operatoren E° (fiir jede Ordinalzahl ae 9t), Namen x fiir jede Menge x € I, zwei-
stellige Priadikate &,, , (fir new und 1<mew) und ein zweistelliges Pradikat B
enthilt. Die Formeln und Terme von £ werden wie iiblich definiert (siche etwa [3]
S.78-80). Operationen und Begriffe, die im Sinne von 9t gemeint sind, schreiben wir
im Folgenden mit einem hochgestellten 9. So ist z.B. X diejenige Ordinalzahl von
IR, die in M die Rolle von N,, spielt.
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Eine endliche Teilmenge p von (w— {0}) xw x @ x N} wird Bedingung genannt,
falls fiir alle new and alle 1<mew, p, ,={<a B); {m,n,a, p)ep} eine ein-ein-
deutige Abbildung von pry(p,, ,)={a; IBeNRy: e, B) €p,n. .} So in N} ist.

In &% werden die logischen Zeichen A (und), — (impliziert), <> (ist 4quivalent mit),
A (fiir alle) und der limitierte universelle Quantor A* per definitionem eingefiihrt.
A% ¥ (x) steht beispielsweise als Abkiirzung fiir —1 V¥ (x). Demgegeniiber
gehdren die Zeichen=-, <, &, V, 3 (Implikation, Aquivalenz, Konjunktion, fiir alle,
es gibt) der Meta-Sprache an.

Zwischen Z-Aussagen ¥ und Bedingungen p wird eine Erzwingungsbeziehung
(strong forcing) plk ¥ wie lblich erkldrt (siehe etwa [3] S. 81-82). Sie enthidlt die
folgenden beiden wesentlichen Zeilen — dabei sind ¢,, ¢, konstante Terme von £ und
t, =1, steht fiir die limitierte #-Aussage A% (xet,<>xet,), wobei o =Max(Rang(t,),

Rang(1,)):

plk &, ,(t, t,) < Jeew IBeN) [, fY€P, , und pl-t; ~a und pl-1, ~B],
pl B(t;,t,) < InewImew[t <m und plkt;~m und
VOC Vﬁp”_ (<a’ B>€t2dem,n(ua ﬂ))]

Sei £ eine vollstindige Folge von Bedingungen und val die kanonische Bewertung
(valuation) der konstanten Terme von £: val(t)={val(¢'); Rang(t')<Rang(t),
Pt et}. Sei N={val(t); t ist ein konstanter Term von £}. N ist die gesuchte Er-
weiterung von It. Setze

Pm,n = Val(Ewmx[\/w vﬂ)mx = <(X, ﬂ> A ém,n(“’ ﬂ):]):
a B
B =val(E®x[V® V1 < mew A x ={m, y> A B(m, y)]),
m y
B, ={p;{m,9>eB} und B°={p;Imew:{m, p>eB}.

Aus der Definition der Erzwingungs-Relation I folgt sofort, daB jedes ¢, , in 9N eine
ein-eindeutige Abbildung von ¥, auf X ist. Meta-sprachlich gilt ferner

B={m, @, y;1<mew &new},
B, ={@y . new} fir 1<meow,
B°={@pn; 1 <mew & new}.

Automorphismen. Sei G in I die Gruppe aller ein-eindeutigen Abbildungen von
o auf w. Sei H={0;; 0€G & 1 <iew}. Falls p eine Bedingung ist und ¥ eine Z-
Formel, o; € H, dann sei

o:(p) = {i, o (n), a, B; i, n, a, f>ep} U {{m, n,a, B> p; m # i},
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o;(?)=diejenige Formel, die aus ¥ entsteht, indem man alle vorkommenden
Symbole &, , durch &; ,, ersetzt. Die Symbole &, ,, wobei m#i, werden dabei
nicht durch andere ersetzt.

Mit p ist auch g;(p) eine Bedingung und durch Induktion nach dem Formelaufbau
folgt:

SYMMETRIE-LEMMA. Fiiralle o;€ H, alle Bedingungen p und alle £-Aussagen
Y. plk¥<>o0,(p)lao;(P).

RESTRIKTIONS-LEMMA. Sei ¥ eine #-Aussage, p eine Bedingung und
p={(m,n,a, Byep; &, , kommt in ¥ vor}. Falls p\+'¥, dann gilt auch pIF'¥. Dabei
ist [ die schwache Erzwingungs-Beziehung, die durch g ¥ <>g/F (1 1) definiert ist.
Der Beweis ist standard (vergl. [3] S. 132).

LEMMA A. Sei t ein limitierter Komprehensionsterm von £, so daf t in N eire
Abbildung von N auf RF® ist. Falls k=Max{meow; Inew[d,, , kommt in t vor]},
dann ist entweder B<k oder f<a.

Beweis. Fir (x,y)et schreiben wir ¥(x,y). Nach Voraussetzung kommen
Symbole der Form &,, , héchstens fiir m<k in ¥ vor. Weil ¢ in R eine Abbildung von
NY auf NI ist, gilt:

Vy<RZPIS<RT:NE ¥(y,8) A é\"—l Y (y, ), (*)

d.h. zu yeR existiert ein kleinstes 5 N} so daB (y, ) ef und fiir alle £<§ gilt
1<y, > et. Zu jedem y <N existiert also ein & <N%" und eine Bedingung p=p(y, ),
die von y und é abhingt, p e, so daB

pF¥(y,3) A /c\é"l (v, &). (%%)

Nach dem Restriktions-Lemma kénnen wir annehmen, daBl p=p(y, d)=(k+1) x
X @ xw XN (wir schreiben k+1=1{0, 1,.., k}).
Definiere jetzt in I:

Cro=1{0;3gs (k+1) x 0 x ® x R Iy < R [q ist eine
Bedingung & q\F ¥ (v,8) A A° =1 ¥ (v, )]}
4 .

In 9 gibt es hochstens R} viele Bedingungen g fiir die g= (k+1) x© x 0 x R gilt.
Nach (*) und (x+) gibt es zu jeder Bedingung ¢ und jedem y<®¥ héchstens ein
S<NF so daB ql-¥(y,8) A A2¥(, &) gilt. Daher hat C; , in I hochstens eine
Michtigkeit N3*- N>, Andererseits ist ¢ in 9t surjektiv. Also gilt wf*<C;, ,. Daher
gilt NP <RP- R Daraus folgt, daB entweder f<k oder f<« gilt, denn ME (4C).
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KOROLLAR. XT=N7Y, also ¢f*(XT)=N,.

Beweis. In M sind KT, X7, ..., X2 . (m ew) abzihlbare Ordinalzahlen, denn fiir
jedes mew, 1 <m, und fiir jedes n ew ist ¢,,, , in N eine ein-eindeutige Abbildung von
No auf X2 Nach Lemma A gibt es aber keine Funktion in i, die N, ein-eindeutig auf
K™ abbildet. Also ist die Ordinalzahl X)) in i die erste liberabzihlbare Kardinalzahl:
N7 =T, Weil X% in I mit N, konfinal ist, ist es auch XT.

KOROLLAR. k=1 (UA4A)A 1 (AC?).

Dies folgt sofort, weil N, in It eine abzdhlbare Union abzéhlbarer Ordinalzahlen
ist.

Bezeichnung. Sei t=E*x¥(x) ein limitierter Komprehensions-Term von % und
occ(t)=occ(¥) = {<m, ny; &, , kommtin ¥ vor}. Wir schreiben t=¢(c), fiir c=occ(z),
um anzudeuten, daBl Symbole d')m,,, dann und nur dann in ¢ vorkommen, wenn
{m,nyec.

SUPPORT-LEMMA. Seien t,(c,) und t,(c,) limitierte Komprehensions-Terme von
& so daB NEt,(c;)=t,(c;). Dann existiert ein limitierter Komprehensions-Term ty=
t3(c3) so dap ¢, ncy=c3=o0cc(t3) und NEt(cy)=1;3(c3).

Der Beweis verlduft dhnlich wie der Beweis des entsprechenden Support-Lemmas
in Mathias[8] (siche auch [3] S. 118-120). Statt auf 4 bezieht man sich hier jedoch auf
B(m, x) und das Support-Lemma folgt durch Induktion nach m.

LEMMA B. In N besitzt jede Menge eine lineare Ordnung.

Beweis. Definiere in N eine verzweigte Sprache .#*, welche neben den iiblichen
ZF-Symbolen Namen x* fiir jede Menge x € I, Namen ¢* fiir jede Funktion ¢eB°,
Namen B}, (fiir 1 <mew), einen Namen B*, limitierte Existenz-Quantoren \/* und
limitierte Komprehensions-Operatoren E* fiir jede Ordinalzahl aet enthilt. Aus
ME V=L folgt,daB M in der Erweiterung N definierbar ist. {{x, x*>; xe P} ist also
eine N-definierbare Klasse, und es folgt, daB auch £* in N definierbar ist. Im Gegen-
satz zu & hat £* eine N-definierbare Interpretation Q*: setze

Q*(x*)=x fir xeIR,

Q*(p*)=¢ fir ¢@eB°

Q*(B*)=B und
Q*(B;)={y;{(m,yyeB} fir 1<meow,

und setze Q* induktiv fort, so daB Q* eine N-definierbare Interpretation aller limi-
tierten Komprehensions-Terme ¢ von £* ist. Fiir einen Term ¢ von #* sei occ*(¢) die
Menge aller e B° derart, daBB ¢* in ¢ vorkommt. Fiir jede Menge zeNt sei supp*(z)
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=[N {occ*(z); Q*(t)=z, t ein Term von £*}. Da I und N Standard-Modelle sind,
sind die Mengen occ*(¢) nicht nur im Sinne von R endlich, sondern auch endlich im
absoluten Sinne. Da I und N dieselben Ordinalzahlen haben, kann £* in .# iiber-
setzt werden und umgekehrt. Ausgehend von ze)t und einem beliebigen #*-Term ¢
mit z=Q*(¢) kénnen wir also durch Anwendung des Support-Lemmas in endlich
vielen Schritten einen limitierten Komprehensions-Term ¢’ von #* finden mit der
Eigenschaft Q*(¢')=z und occ*(¢’)=supp*(z). Fiir eine endliche Teilmenge d von B°
sei V,={zeN; supp*(z)=d}. Da jede Menge ze ¥, durch einen Term ¢, von £* mit
occ*(t,)=d und Q*(¢,)=z beschrieben werden kann und da ferner die Menge T, aller
Terme ¢ von £* mit occ*(¢)=d eine N-definierbare Wohlordnung hat, folgt, daB Q*
die Wohlordnung von T, auf ¥V, iibertrigt. Sei W, diese Wohlordnung auf V,. Jede
Menge B, (1 <mew) hat eine lineare Ordnung. Sei R die iibliche lexikographische
lineare Ordnung auf der Menge aller endlichen Teilmengen von B°=|_J{B,,; | <mew}.
Sei jetzt u eine beliebige Menge von N. Setze:

D(u) = {{x, y>; xeu A yeu A [{supp*(x), supp* (»)DeR v
v (supp® (x) = d = supp™ (¥) A {x, > e W))]}.

Wir nehmen an, daB R irreflexiv ist, d.h. fiir kein d ist {d, d)eR. Es folgt, dal D(u)
eine lineare Ordnung auf u ist.

LEMMA C. Eine Menge zeN ist in N wohlordenbar genau dann wenn es eine
endliche Teilmenge d von B° gibt, so daB supp*(z)<=d und supp*(x)<d fiir alle xez.

Beweis. Angenommen z besitzt in 9t eine Wohlordnung =. Sei d=supp*(Z).
z kann als das Feld von = beschrieben werden; daraus folgt supp*(z)=d. Zu jedem
xez existiert eine Ordinalzahl v so daB x eindeutig als das v-te Element von z in der
Wohlordnung = beschrieben werden kann. Daher gilt supp*(x)<d fiir alle xez.
- Die Umkehrung folgt sofort, weil jede Klasse ¥V, fiir endliches d eine JR-definierbare
Wohlordnung hat.

KOROLLAR. Eine Menge ueR ist in W genau dann wohlordenbar wenn D(u) eine
Wohlordnung von u ist.

Dies folgt sofort aus den Lemmata B und C. Daraus folgt auBerdem sofort, daf3
(UW) in R gilt. Sei nidmlich z eine wohlgeordnete Menge wohlordenbarer Mengen,
z={u,; v<A}eR, dann ist {{x, y); x, ye|JzAdv; <Adv, <A[xeu, Ayeu,, A
A (v <vy Vv (vi=v, Ax, y>eD(u,,)))]} eine Wohlordnung von | z. Also 9tk (UW),

Damit ist Satz 1 bewiesen.

Bemerkung. Neben dem schon vorher diskutierten Axiom (4C"°) betrachten wir
noch das folgende Axiom:
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(AC,,): Zu jeder Menge z, derart daf alle yez nicht-leere wohlordenbare Mengen
sind, existiert eine Funktion f so daf f(y)ey fir alle yez.

Aus dem oben stehenden Korollar folgt, dal Nk (4C,,,). In der Tat, wenn zeN
gegeben ist so, daB alle Elemente y von z wohlordenbar sind, dann ist D eine Funktion,
die jedem yez eine Wohlordnung D(y) zuordnet. Dann ist f(y) =Min(D(»)) eine auf z
definierte Auswahlfunktion.

Es gilt ZF +(AC**)=(UW) und nach J. E. Rubin auch ZF}(4C,,,)=(UW).In
Satz 1 haben wir gezeigt, daB N E(UW)A 1(AC®), also NE—1(AC™). Daraus folgt,
daB (AC™°) von (UW) unabhingig ist.

In Fefermans Modell I, (sieche Lemma 1) ist das Auswahlaxiom fiir Mengen von
ungeordneten Paaren (AC,) nicht giiltig (siche [2] S. 344). Es gilt (4C,,,)=(4C,),
also M, E—1(4C,,,) und M, E(UW) A (AC™). Es folgt, daB auch (4C,,) von (UW)
unabhingig ist.

3. Weitere Unabhiingigkeits-Resultate

Wir wollen jetzt zeigen, daBl auch die Implikation (U4 )=>(UW) in ZF nicht be-
weisbar ist.

SATZ 2. Jedes abzdihlbare Standard-Modell M von ZF+V =L kann zu einem
Modell W von ZF+(UA)+—1(UW) erweitert werden.

Beweis-Skizze. Sei w* die Menge aller Funktionen von « in . Definiere in It:
B={f; da<w,:few*}. (B, =) ist ein Baum mit der Eigenschaft, da} jeder Punkt
feB genau X, viele unmittelbare Nachfolger hat. Fine Teilmenge C< B heiBit Teil-
baum, wenn VxVy[(y=xeC AyeB)=yeC]. Ein Teilbaum C von BheiBt klein, wenn
eine Ordinalzahl f<w, existiert derart, daB pr,(f)={a; Inew;{a, n)ef} < fiir alle
feC.

Definiere in IN eine verzweigte Sprache .Z, die neben den iiblichen ZF-Symbolen
Konstante x fiir jede Menge x € M, Konstante d, fiir jedes fe B, zweistellige Pridikate
T, fiir jeden kleinen Teilbaum C von B, ein zweistelliges Pridikat < und limitierte
Existenz-Quantoren \* und limitierte Komprehensions-Operatoren E* fiir jede
Ordinalzahl «et enthilt. Endliche partielle Abbildungen p von w x B in 2= {0, 1}
werden Bedingungen genannt. Fine Erzwingungs-Beziehung I wird wie iiblich de-
finiert — sie enthilt die folgenden Zeilen:

pltted,<dnew[pktt~n&p(n f)=1],
plkt, <t,<3IfeBIgeB[ptt, ~d, &plt,~d, & f<g],
plFTo(ty, 1)« 3feCplkty ~d, & plrt, ~f].

Wihle eine vollstindige Folge von Bedingungen, &, und definiere wie iiblich eine
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Bewertung val(t) der konstanten Terme ¢ von £. Das resultirende Modell sei 9. Sei

a,=val(d;),
Te=val(E®*3x(V°y" Vot x=(y, 2> AT, 2))),
D=val(E°"3x(V°}' Vit x>y, z) Ay<2)),

und sei 4 das Feld von =:4=pr,(2)upr,(Z). Es gilt A={a,; feB}und = ist
eine partielle Ordnung auf 4 derart, daB {4, =) ein Baum ist. Tc={<a,, f);fe C}
ist in Y eine ein-eindeutige Abbildung mit Bildbereich C. Da C< Bin It eine Wohlord-
nung hat, wird diese auf pr,(T¢)={a,;f e C} iibertragen.

Fiir jedes xeA ist £={yeAd;y<ax} wohlgeordnet. Der Ordnungstyp von £ wird
Ordnung von x genannt und mit o(x) bezeichnet. Sei 4,={xe€A; o(x)=a}. Fiir jedes
a<m} gibt es einen kleinen Teilbaum C,= B, so daB A4,cpr,(T¢,). Jede Menge 4,
(<7 ist daher in A wohlordenbar. Ein Symmetrie-Argument zeigt, daB 4 im
Modell U nicht wohlordenbar ist. Es gilt A=J{4,; a<w}}, und daher folgt
UE—(UW).

Sei G in M die Gruppe aller Automorphismen von {B,=). Fiir 6eG und eine
Bedingung p sei

G(p) = {(n’ o'(f)a e>; <n’ f’ e)ep},

und fiir eine Z-Formel ¥ sei o(¥) diejenige Formel, die aus ¥ entsteht indem man an
allen Stellen d, durch d,,, und T, durch T, ersetzt. Es gilt das folgende

SYMMETRIE-LEMMA. Fiir alle 6eG:pl-¥W<>0o(p)I-o(¥).

Im nichsten Schritt beweist man wie liblich das folgende Kombinatorische Lemma:
Sei K in IR eine Menge von Bedingungen. Dann gibt es in I eine Teilmenge K* von
K so daB K* in YR abzdhlbar ist und so daf zu jedem peK ein q € K* existiert derart, daf
puq eine Bedingung ist. (siehe etwa [3] S. 157). Es folgt, daB 9t und A dieselben
Alephs haben. Insbesondere folgt cfy(NY)=cfm(8T) =N =K.

Fiir einen kleinen Teilbaum C von B sei .£(C) diejenige Teilsprache von &, die
Konstante d, nur fiir feC und Prédikate T, nur fiir D<C enthilt. Es gibt eine U-
definierbare Interpretation Q. von Z£(C) in U so daB val(t)= Q.(¢) fiir konstante
Terme ¢t der Sprache £(C). Dies ist der Fall, weil 7. eine Menge von U ist. Sei
V(C)={Q(t); t ist ein konstanter Term von L(C)}. £(C) hat eine M-definierbare
Wohlordnung; Q. induziert daher eine UA-definierbare Wohlordnung auf V(C). Fiir
jede einzelne gegebene unlimitierte £-Aussage ¥ ist bekanntlich die Erzwingungs-
Relation pIF¥ in IR. Daher gilt:

LEMMA. (in M) Zu jedem konstanten Term t von £ existiert ein kleiner Teilbaum
C von B so dap fiir jede Bedingung p, p II:(t:}.'Q)—» tnV(C)+0) gilt.
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Beweis. Betrachte K= {gq; gF v, xet}eIM. Nach dem Kombinatorischen Lemma
existiert eine in I abzdhlbare Teilmenge K*< K so daB zu jedem peK eine mit p
vertragliche Bedingung ge K* existiert. Sei K*={qo, ¢;, ¢2, ...} und wihle in M zu
jedem g,cK* einen limitierten Komprehensionsterm ¢, so daB g, IF¢,e¢. Fiir jeden
Term ¢, sei D, der kleinste kleine Teilbaum von B so daB d, nur fiir fe D, und T; nur
fir E€D, in t, vorkommen. Sei C=|J{D,; new}, dann ist C der gesuchte Kleine
Teilbaum von B.

LEMMA. Ak (AC®).

Beweis. Sei z={y,; new} in U eine abzihlbare Menge nicht-leerer Mengen. Es
existiert ein Term ¢; von % derart daB F=val(t;) eine ein-eindeutige Abbildung von
w auf z ist, z={F(n); new}. Sei y,=F(n)=val(tg(n)). Aus dem vorangegangenen
Lemma folgt fiir jedes new die Existenz eins kleinen Teilbaums C, derart, daB fiir
alle Bedingungen p, pIf (t;(n) %0 — tp(n) N V(C,)40). Da auch die Relation {{p, n);
PIFY (n) & new} fiir jede einzelne £-Formel ¥(x) in M vorhanden ist, kénnen wir in
I fiir jedes new einen solchen Teilbaum C, wihlen und C=|J{C,; new} ist wieder
ein kleiner Teilbaum von B so daB fiir jede Bedingung p und jede natiirliche Zahl n:
pIF (tp(m) 20— tx(n) N V' (C)40) gilt. Daher folgt Ak (tx(n)#0— tp(n) "V (C)#0)
fiir alle new. Nach Voraussetzung gilt Ak y, #0 fiir alle new. Also hat jede Menge y,
einen nicht-leeren Durchschnitt mit ¥ (C) in . ¥ (C) hat jedoch eine Wohlordnung
in A und wir erhalten die gesuchte Auswahlfunktion, wenn wir aus jeder Menge
¥,0 V(C) das kleinste Element auswiéhlen.

KOROLLAR: AE(UA).

Damit ist Satz 2 bewiesen.

Wir diskutieren abschlieBend die Frage, in welcher Beziehung die Axiome (UA)
und (AC®) zueinander stehen. Es gilt in ZF:(4C®)=>(UA). Wir wollen zeigen, daB
(AC®) in ZF nicht einmal aus (UA) A (UW) A (BPI) A (KW-AC) ableitbar ist. Dabei
ist (BPI) das Boolesche Prim-Ideal Theorem (,,Jede Boolesche Algebra besitzt ein
Prim-Ideal*‘) und (KW-AC) ist das Selektions-Prinzip von Kinna und Wagner (,,Zu
jeder Menge z, deren simtliche Elemente mindestens zwei Elemente enthalten, existiert
eine Funktion f so daf 0+ f(y)<y fiir alle yez.*“ Dabei steht acb fiir a#bAac<h).
Unter der Voraussetzung der Existenz eines ZF-Modelles gilt:

SATZ 3. Es gibt ein ZF-Modell B so daf

BE(UW)A(UA)A(BPI)A(KW-AC) A1(AC®).

Beweis. Sei M ein abzdhlbares Standard-Modell und B=M[ao, a;, ..., ..., 4]
diejenige Cohen-Erweiterung von 9%, die entsteht, indem man zu I Cohen-generische
Mengen a,c w(new) und eine Menge 4= {a,; new} adjungiert. J. D. Halpern und
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A. Levy [4] haben gezeigt, daB das Boolesche Prim-Ideal Theorem (BPI) und das
Kinna-Wagnersche Selektions-Prinzip (KW-AC) in B gelten (siche auch [3] S. 131-
144). A4 ist in B unendlich, aber Dedekind-endlich. Daher gilt BF—1(AC?). Wie im
Beweis von Satz 1 zeigt man, daB BE(4C,,,) und folglich BF(UW) gilt. In B ist N,
reguldr. Nach Lemma 2 gilt daher BF(UA). Damit ist Satz 3 bewiesen.
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