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The 2-Spectrum for Brown-Peterson Cohomology. Part I

by W. STEPHEN WILSON

Introduction

BP denctes the spectrum for the Brown-Peterson cohomology, BP*(+), associated
with the prime p [1, 3, 11]. The spectrum can be given as an Q-spectrum BP = {BP,},
[2, 16], i.e. @BP,~BP, _, and BP, is k—1 connected for k>0. We have BP*(-)~[-,
BP,], the unstable homotopy classes of maps. The usual way of viewing BP*(-) is
BP*(-)~{-, BP}*, the stable homotopy classes of maps of the suspension spectrum
of a space into BP. We will study the Brown-Peterson cohomology theory from an
unstable point of view by studying the BP,.

Interest in the Brown-Peterson theory stems from the fact that it is a “‘small”
cohomology theory which determines the complex cobordism theory localized at the
prime p and that all of the nice properties of complex cobordism carry over to BP*(-),
such as knowledge of the operation ring. Historically, everything about the Brown-
Peterson theory has been as nice as could be hoped for. We will push on further in that
direction. Z ,, is the integers localized at p, i.e., rationals with denominator prime to p.

MAIN THEOREM (3.3). The Z,, (co)homology of the zero component of BP,
has no torsion and is a polynomial algebra for k even and an exterior algebra for k odd.
(k can be less than zero.) #

Using the main result of [12], the above theorem determines the Hopf algebra
structure of the (co)homology. (see section 3) We begin by reviewing Larry Smith’s
result on the Eilenberg-Moore spectral sequence for stable Postnikov systems. [14]
We combine this with Brown and Peterson’s original construction of BP([3]) to
calculate H*(BP,, ., Z,) assuming a technical lemma which we prove in section 2.
In section 3 we prove the main theorem and some miscellaneous items such as lifting
our result to MU.

In Part II we determine the homotopy type of the BP, using the main theorem here.

This paper is a part of work done for my Ph.D. thesis at M.I.T. under the super-
vision of Professor Frank Peterson. It is my pleasure to thank Prof. Peterson for his
advice, encouragement, and understanding through the last several years. I am very
grateful for the quite considerable influence which he has had on my attitudes and
tastes in mathematics. Thanks are also due to Larry Smith and Dave Johnson for
comments on a preliminary version of this paper, in particular for pointing out a
mistake in the original proof for the prime 2.
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Section 1

For the remainder of the paper all coefficient rings are assumed to be Z,=Z/pZ
unless stated otherwise. In this section we show H*(BP,,.,) is an exterior algebra
on odd dimensional generators. H*(BP,,.,) is a Hopf algebra, so for odd primes
having odd dimensional generators is equivalent to being an exterior algebra. The
general reference for Hopf algebras is [10]. We quote what we need from [14].

Let K be a product of Eilenberg-MacLane spaces. We will be concerned with the
situation

Y - PK
=l (A)

X->K
S

where all spaces are infinite loop spaces and all maps are infinite loop maps. 7 is the
fibration induced by f from the path space PK over K. All cohomologies are thus
cocommutative Hopf algebras and H*(K)\\f* and. H*(X)// f*, the kernel and
cokernel of f * in the category of Hopf algebras are defined.

There is a natural map PH— QH, where P and Q denote the primitives and
indecomposibles respectively of a Hopf algebra H. When this is onto, H is called
primitive.

LEMMA 1.1 ([14, p. 69)). H' < H a subHopf algebra over Z,, H primitive, then
H' is primitive. #

If V is a graded module, let s?V be the graded module (s?V),,,=V,. Let V'~
denote the elements of odd degree. From [14, p. 95] we have a filtration of H*(Y) of
diagram A such that

P[s™ ' ((@@H* (KN\*) )]
[s™ (@ H* (K\S*) )P

as Hopf algebras. E and P denote exterior and polynomial algebras generated by odd
and even dimensional elements respectively. E[...] is determined by H*(K)\\f *.

H*(K) is primitive because it is generated by cohomology operations on funda-
mental classes, therefore, H*(K)\\f * is primitive by 1.1. So for xe Q(H* (K)\\f *)
we have x' — x, x’eP(H* (K)\\f *) and thus x’' - x"e PH*(K). For x of odd degree,
x" and thus x", are determined uniquely by x. Let i: QK — Y be the inclusion of the
fibre.

EH*(Y)~H*(X)/[f*®E[..]® (1.2)

LEMMA 1.3 ([14, p. 86 and p. 110]). i*(s™!(x))=s*(x"), s* the cohomology
suspension, s*: H* (K)— H* (QK). #
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Note that if x is of odd degree then s* (x")#0 by the following lemma.

LEMMA 1.4. aePH™(K), if s*(a)=0, then a=P'x,, or a=pP*x,,,, where
P'eA is the i-th reduced p-th power, A is the Steenrod algebra and x; is of degree i.
(p=2,P'=Sq* and B=Sq").#

Proof. Tt is enough to consider K=K(Z,, n) and a=P'i, where P'eA is an
Adem basis element. The kernel of s*: QH*(K(Z,), n)) > PH*(K(Z ), n—1)) is of
the type BP*x,,.,. The proof is an argument on the excess of I and can be found in
[13]. The kernel of PH*(K)— QH*(K) is of the type P'x,,=(x,,)’. The degree of
P'x,,=2pt and the degree of BP*x,,.,=2pk+2 so the two terms cannot occur in the
same dimension. #

Brown and Peterson [3] construct BP by a series of fibrations which we now
describe. Let Z be the set of sequences of non-negative integers (7,, r,,...) which are
almost all zero. Define d(R)=Y2r,(p'—1), I(R)=) r; and let 4; be the R with
r;=1 and zeros everywhere else. Let V; be the graded abelian group, free over Z ),
generated by Re # with /(#£)=j and graded by d(R). Then we have the generalized
Eilenberg-MacLane spectrum K(V;)=V gy=; S*®K(Z ). BP=inverse limit X’
where we have the fibrations

K(V,) 3 x?
7 ()
X771 ko, SK (V)

induced by k;_,. We have an 4/4(Q,) resolution for 4/4(Qy, Qy,...)=H*(BP),
di:M;—M;_, with H*(K(V;))=M; and (i;)*- (k;)*=d;.,. The Q, are the Milnor
primitives [8]. (For p=2, Q;=P**! in the Milnor basis.) For an 4/4(Q,) generator
i H*(K(V)), d;(ir)=2: Qiir-4:

The spectrum K(¥;) can be given as an Q-spectrum, {K(V;, k)= <;g)=; KX
X (Z > d(R)+k)}. The entire diagram (*) can be turned into Q-spectra and maps of
Q-spectra. From this we get a sequence of fibrations with BP,=inverse limit X’.

K(V;, k) 34 X0
; (%)
XL KV, k4 1).

We suppress the k in the notation for X7, i ; and k ;. Note that k can be less than zero.
We have (i;)*- (k;)*-s*=s*-(i;)* (k;)* where the i; and k; on the right are for BP,
and on the left for BP,_,. This is because k; for BP, _, is the loop map of the k; for
BP,. Similarly for i;. The iterated cohomology suspension gives a map s*: M ;— H* x
x (K(V, k)) which has as its image the primitives, PH* (K (V, k)). In general we will
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denote the iterated suspension by s* and it should be clear when we mean only one.
We have the following commutative diagram.
M; B M.,
s* l s* l
H* (K (V;, K)) — H* (K (V1. k + 1)).
()% (k)

We will often use s*(d; ) for (i;)*- (k;)*. It is given by the same formula ) Q,ix_ ..
In the next section we prove the following lemma.

LEMMA 1.5(). For k odd, if acPH***(K(V;, k+1)) such that (k;_,)* (a)=0,
then there exists be PH* (K(V ., k+1)) such that (i;)*- (k;)* (b)=s*(a)#0.#
We use this to prove the next proposition.

PROPOSITION 1.6(j). For k odd, H*(X?)|/(k;)* has no even dimensional gener-
ators. (For p=2 it is an exterior algebra.) #

Proof. For j=0, X°=K(Z ), k) and all generators of H*(X°) are in the image of
s*:Mo=A[A(Qo) - H*(K(Z,), k)). So if x is an even dimensional generator of
H*(K(Z,, k)) and k is odd, then there is an odd dimensional x'e M, with s*(x")=x.
We have the exact sequence

M, ila»A/A (Qo) = My 5 AJA(Qo, Q,...) 0.

Thus there exists x"eM; with d;(x")=x" as ¢(x")=0 because &(x") is an odd dimen-
sional element in 4/4(Qq, Q1,...) Which only has even degree elements. So s*(x") x
x e H*(K(Vy, k+1)) and (ko)* (s*(x"))=s*(dy) s*(x")=s*(d,x")=s*(x)=x and
the even dimensional generator xe H* (X°) goes to zero in H*(X°)//(ko)*. (For p=2
and x an odd dimensional generator, then x2 = S¢?°%*x is killed by the same argument,
so we have an exterior algebra.)

By induction, assume proposition 1.6(j-1). By 1.2 we have:

EoH* (X’) = H* (X' )/j(k;-1)* ® E[..]
P[5~ (Q(H *(K (V3. k + D)\(k;-1)*) )]
[s " (QE* (K (V;, k+ DNk )

Now by our induction assumption, all even dimensional generators look like s™*(x)
where xe QH*(K(V;, k+1))\\(k;-;)*~. These elements map injectively to the
cohomology of the fibre, see 1.3 and the remark after it. As discussed above (before
1.3), x can be represented by an ae PH* (K(V;, k+1)) with (k;-,)* (a)=0. Now, as a
is of odd degree, from 1.5(j), there exists b such that (i;)*- (k;)* (b)=5*(a)#0. But
by 1.3, (i,)* (s"(x))=s*(a) and (i;)* is injective on these even degree indecomposibles
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giving that (k;)* (b)=s""(x)+decomposibles. Therefore, the gencrator s~*(x) goes
to a decomposible in H*(X”)//(k;)* and we are done. #

COROLLARY 1.7. For k odd, H* (BP,) is an exterior algebra on odd dimensional
generators. #

Proof. Because K(V;, k) is highly connected for high j we have H*(BP,)=direct
limit H*(X7)//(k;)*. Because we are working with Hopf algebras, odd dimensional
generators for odd primes means we have an exterior algebra. The direct limit is
achieved in a finite number of stages so we have the result using 1.6. #

Section 2

We will now prove lemma 1.5(j). We have already seen that that s*(a)#0. (1.4)

Let A be the mod p Steenrod algebra. We define afiltration: A=F°A> F1A>F?4>
... by giving a basis for F*4. Given an Adem basis element, fP" % ... P it is
basis element for F*4 if s<) ¢;. Also, we give a basis for B, by taking all Adem basis
elements with s=) ¢,. For p=2, P'=S4*'. We do not define B, for p=2 using the
Adem basis.

For our purposes it is usually more convenient to work in the Adem basis, how-
ever, the Milnor basis is a necessary excursion for p=2. For odd primes, a Milnor
basis element QPR (QT=QF0Q%...) is a basis element for F*4 if s<)_ ¢;. For p=2,
a Milnor basis element PX is a basis element for F*°A4 if R=(ry, r,,...) has s or more
oddr;. Again, a basis element for B, has s=)_ ¢; (p=2, s oddr,).

CLAIM 1. i) The two definitions of F°A and B are the same.

ii) If acF*A and beF'A, then abeF**'A.

iii) FFA=B,® F**'A4.

Sketch proof. Milnor’s Q;= P%f—BP4*. For odd primes P“ is in the algebra
of reduced p-th powers and so can be written in the Adem basis without any f’s,
similarly for all PR in the Milnor basis. The Adem relations for p odd preserve the
number of f’s exactly, so we see that Q,eB, = F'A4. If we were to rewrite a Milnor
basis element QY P® in the Adem basis we would still have ) ¢; fs.

The proof of the second part just uses the fact that the Adem relations never
decrease the number of Bocksteins.

The proof for p=2 is slightly more complicated and is left for the reader. iii) is
elementary. #

Given aePH* (K (V, k)), (any k), it can be written as =) ;)= ; dgiz Where i is
the fundamental class of K (Z,,, d(R) +k) and ageA. If it can be written like this
with each azeF"A, then we say a is with n Bocksteins (w.nf’s). If n=1, we just say
w.p’s. If a is with n Bocksteins but not withn+1 f’s we say a is with exactly n f’s. As
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discussed above, Q; is with exactly one Bockstein. Therefore by the definition of d
and the above claim, if @ is with nf’s, then s*(d;)(a) is with n+1 f’s. Recall that by
our notation s* (d;) = (i )*" (k;—1)*.

CLAIM 2. If a=s*(d;)(b) and a is with 2 Bocksteins, then there is ab’ with B’s
such that s*(d;)(b') =a. #

Proof. First for odd primes; write b=Y", gy~ ; agig With aged. A=B,® F'A4, so
write ag=>bg+cg With breB, and cgeF'A. bgQ;eB, and czQ;eF*4 so s*(d;)
(Y bgix) =0. Let b’ =Y cgis.

For prime 2 we have Q;_;=P4% and for a Milnor basis element P® we have
PRPA=Y PR-2"45%4i+5 thus beP*eB, and cpP%eF*4 and same proof
works. #

Fi+ j even

PROPOSITION 2.1(j). GivenacPH*(K(V ;, k)),awith B’s such that s*(d ;)(a) =0,
then there exists de M ; such that s*(d)=a and d;(d)=0. #

Proof of 1.5(j) For k and a odd, then a is with f’s in PH*(K(V;, k+1)) for
dimensional reasons, i.e., all of the Steenrod algebra elements used are odd dimen-
sional, and all odd dimensional elements have f’s. (k;_;)* (a)=0 implies s*(d;)(a)=0
and we can apply proposition 2.1(j) to get 4 such that s*(d)=a and d;(d)=0. By
exactness, there exists be M, such that d;,,(b)=d. Then b'=s*(b)ePH*(K x
X (Vj+1, k+2)) has s*(d;4y) (0")=5*(d;+1) (s*(B))=5%(d;+1(b))=5*(d)=a. So let
b=s*(b"), then s*(a)=s*(d,,)(b) which is what we want. #

PROPOSITION 2.2(j). Given an a as in 2.1(j), then there exists bePH* (K x
X (V;4+1, k+1)) such that s*(d;.,)(b)=a.#

Proof. See proof of 1.5(j). #

Remark. Proposition 2.2(j) is really the essential feature that makes everything
work. It means that exactness still holds in the unstable range for primitives with f’s.

We need proposition 2.2(j-1) in the induction argument for the proof of prop-
osition 2.1(j).

Proof of 2.1(j). This follows at once from the next proposition, just lift a up one
step at a time until it is in the stable range. #

PROPOSITION 2.3(j). Given a with B’s in PH*(K(V, k)) (any k) such that
s*(d;)(a@)=0, then there exists a with B’s in PH* (K(V;, k+1)) such that s*(d)=a and
s*(d;)(@)=0. (For j=0, s*(dy)(a)=0 is a vacuous condition). #

Proof. j=0, trivial. For j=1 the arguments is the same as for j> 1 except easier, so
assume j> 1. Now, trivially, there exists @’ with f’s such that s*(a')=a. (Leta’ =1 (a).)
Now s*(d;)(a’)ekers* by commutativity of the following diagram.
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PH*(K(V;_1, k)) 92 PH*(K (Vi k+1)) o
Stl stl
PH* Y (K(V;-y, k — 1)) &92 PH*"Y (K (V}, k))

0« a

By 1.4, s*(d;) (a')=0, P"x,,, or BP'x,,., in PH*(K(V;_,, k)).

Case 1. If s*(d;) (a')=0 we are done.

Case 2. If s*(d;) (a')=P"x,, then s*(d;_,)(P"x,,)=0 because d;_,-d;=0.
0=s*(d;-1) (P"X20)=5*(dj-1) (x24)" =[s*(d;-1) (x20)]°. H¥(K(V;-2,k—1)) is a
free commutative algebra so this implies s*(d;_;) (x,,)=0. Now a’ is with B’s so
s*(d;) (a') is with 2 B’s. This gives us that P"x,, is with 2 ’s. If x,,=) z(3; A;b,)ix
with 4;%#0eZ, and b; Adem basis elements, then P"x,,=) z(}.; A,P"b,)ir and for
dimensional reasons P"b; is in Adem basis form. Since each P"b; is with 2 f’s, each
b, is with 2 B’s and so0 x,, is with 2 B’s. x,, is also in the kernel of s*(d;_,) so we can
apply 2.2(j-1) to produce a y,,ePH*"(K(V;, k+1)) with s*(d;) (»,,)= X2, By claim
2 we can choose y,, to be with f’s. a’ —P"y,, is with f’s and has s*(d;) (¢’ —P"y,,)=0
and s*(a’—P"y,,)=s*(a’)=a, so we are done.

Case 3. If s*(d;) (a')=BP'x,,+, the proof is similar to case 2. We sketch the
differences. P’ is injective on PH*'**(K(V;_,, k—1)) because it is for any product
of Eilenberg-MacLane spaces [13]. So we get x,,.,, is in the kernel of s*(d;—,). If
Yr(Q i Aibiig))=x;,+1 b; Adem basis elements, then each BP'b; is also in Adem basis
form and since fP'x,,,, must be with 2 f’s, each b, is with one and so x,,,, must be
with f’s. Use 2.2(j-1) again to produce y,,.; with s*(d;) (¥2:41)=%2,+1. Now
a' —BP'x,,,, has the desired property. #

Section 3

Our first objective is to compute the (co)homology of BP,,. The bar construction
([4]) gives a spectral sequence of Hopf algebras: (k odd)

Tor™®™) (7~ Z,) => EyH, (zero component of BP,,,).

Now H,(BP,) is an exterior algebra on odd dimensional generators QH,(BP,).
(Cor. 1.7) A standard computation (see [14]) gives: Tor?*®") (Z  Z V=T (s'(QH, x
X (BP,))) where I" denotes the Hopf algebra dual to the polynomial algebra. Now all
elements in I'(s' (Q H,(BP,))) are of even degree and the differentials change degree by
one, so our spectral sequence collapses and we have: H*(zero component of BP, ;)=
[EoH ,(zero component of BP, . )]* = [Tor™®*+ 9 (Z , Z Y]* =TI (s'(QH.(BP})))]*
=polynomial algebra.

We will now show H,(BP,_,) is a polynomial algebra for k odd. Using the



52 W. STEPHEN WILSON

Eilenberg-Moore spectral sequence ([6, 14]) we have Toryy gy, (Z,, Z,)=>EH*
(BP,_,) if BP, is simply connected. Assume it is, then the same argument just given
shows H,(BP,_,) is a polynomial algebra. The only modification is:

Torgeme, (Z,, Z,) = I'(s~' (QH™* (BP,))).

If BP,, k£ odd, is not simply connected, then it is easy to see that one can get a
splitting BP, ~(x S'),, x X where X is simply connected. This is because BP, is an
H-space with Z ,, free homotopy. Its k-invariants are therefore torsion and primitive,
but (x S'),, has no torsion in Z,,, cohomology. Thus we have a spectral sequence of
Hopf algebras:

Torywxy (Z,, Z,) = EoH* (zero component of BP,_,)

and our argument goes through. We have proved the following proposition.

PROPOSITION 3.1. The modp (co)homology of the zero component of BP, is a
polynomial algebra on even dimensional generators for k even, and an exterior algebra
on odd dimensional generators for k odd. (Note that for k odd, BP, is connected.) #

PROPOSITION 3.2. The Z,, (co)homology of BP, has no torsion. #

Proof. For k even this is trivial because H*(BP,) has no elements in odd degrees.
For k odd we view the Bockstein spectral sequence as a spectral sequence of Hopf
algebras. The differentials are the higher order Bocksteins. Let B, be the first non-
trivial differential and let x be the minimum degree generator that §; acts non-trivially
on. B(x)is an even dimensional primitive, contradiction, so all differentials are zero. #

We can now prove the main theorem.

THEOREM 3.3. The Z, (co)homology of BP,, ., is an exterior algebra and the
Z ) (co)homology of the zero component of BP,, is a polynomial algebra. #

Proof. We will do the case for polynomial algebras, the exterior case being similar.
From 3.2 we know the (co)homology is free over Z,, and so we can lift the modp
generators (3.1) up to it. These lifted elements generate the Z,, (co)homology ring
because there is no torsion and their modp reductions generate the Z, (co)homology.
By considering the rank we can see there can be no relations and we have a poly-
nomial algebra. #

We can now lift our result to MU. Normally the spectrum MU is given by {MU
(n)}, the Thom complexes, and maps S*MU(n)—>MU(n+1). [9, 15] However, if
M,=lim(k - 0 )Q**""MU(k), then QM,~ M, _; and for finite complexes MU"(X)
=lim(k - 00) [S%*~"X, MU (k)] =lim(k - o0 )[X, Q** "MU (k)]=[X, M,]. Thus,
{M,}=MU as an Q-spectrum.
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COROLLARY 3.4. The integer (co)homology of the zero component of M, has no
torsion and is a polynomial algebra over Z for n even and an exterior algebra for n odd. #
Proof. From [3] we have MUy~ \/; §*"BP and so (M,),,~][:; BP,+ 2,- By 3.3 for
n even Hy(M,, Z)RZ,,~Hy(M,, Z,))~H.((M,) ) Z)=~polynomial algebra
over Z,. Thus the integer homology has no torsion, and localized at every prime it is
a polynomial algebra, so it is a polynomial algebra over Z. Similarly for » odd. Since
there is no torsion, the same thing works for cohomology. #

Remark 1. A completely analogous theorem is true for MSO if the ring Z(1/2) is
used.

Remark 2. There are several ways to determine the number of generators for 3.1,
3.3, and 3.4. The spaces BP, and M, are just products of rational Eilenberg-MacLane
spaces when localized at Q. (This is because their k-invariants are torsion.) Because
there is no torsion, the number of generators is the same as for the rationals. As
examples we have n3(BP)=2Z,)[X,(p-1y+--s X2(pi-1ys---] SO for 2n>0, H*(BP,,,
Z )= Z,y[s*"23(BP)] and ny(MU)=Z[x,,..., X3;,...] so for 2n>0, H*(M,,, Z)
~Z[s2"n%(MU)].

We have shown that both the cohomology and homology of the zero component
of BP,, are polynomial algebras. This is a very strong statement, in fact, it determines
the Hopf algebra structure of the (co)homology.

DEFINITION. A connected bicommutative Hopf algebra is called bipolynomial if
both it and its dual are polynomial algebras. #

There is a bipolynomial Hopf algebra B, [x, 2n] over Z ,, (or Z,) which has
generators a,(x) of degree 2p*n [7]. It is isomorphic as Hopf algebras to its own dual.

In [12] we prove the following proposition.

PROPOSITION 3.5. If H is a bipolynomial Hopf algebra over Z ,, (or Z,), then
H~® ; B.,[x;,2d;]. (For p=2 and Z,, replace 2d; by d;). #

Using this and the counting argument of remark 2 we can just write down the
Hopf algebra structure for BP,,. As an example, we will do this for n>0. Let %, be
the set of sequences of non-negative integers R=(ry, r,,...) with almost all r;=0.
Let d(R)=2n+Y 2(p'—1) r, for our fixed prime p. We say R is prime if it cannot be
written R=pS+(n, 0, 0,...), SeZ,.

PROPOSITION 3.6. For n>0, H*(BP,,, Z(;))~ ®xe a, Bin[*r d(R)]. #

R prime

If we work over the integers and let B[ x, 2d] be the bipolynomial Hopf algebra on
generators c,(x) of degree 2dn with coproduct c¢,(x)— ) ¢,- j(x)@c;(x) ([7]) then
we have an analogous proposition. [12]
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PROPOSITION 3.7. If H is a bipolynomial Hopf algebra over Z, then H~ ® ;
B[x;,2d;].#

We can now apply this to MU= {M,}. Let I, be the set of sequences of non-
negative integers /= (i, i,,...) with i;>n and almost all i;=0, (n>0). Let d(I)=
=Y ;2ji;, We say I is prime if it cannot be written I=kJ, where k>1 and Jel,.

PROPOSITION 3.8. If {M,} is the Q-spectrum for MU, then for n>0, H*
(M3, Z)~ @1 prime € 1,, B[ X1, d(I)] as Hopf algebras. #

Proof. Just use 3.7 and the counting done in remark 2. #

Let S be the sphere spectrum and let i: S — BP represent 1en3(BP). S={QS"} as
an Q-spectrum where QX=1imQ"S"X. i induces maps i,:Q0S"—BP,. H,(QS") is
given in terms of homology operations on the » dimensional generator [5].

PROPOSITION 3.9. Let n>0, the kernel of (i,)s:H«(QS")— H,(BP,) is
generated by homology operations on the n-dimensional class which have Bocksteins in
them. #

PROPOSITION 3.10. Let n>0, if j,:BP,— K(Z,, n) represents the generator
of H'(BP,, Z,,), then the kernel of (j,)*:H*(K(Z, n))— H*(BP,) is generated
by cohomology operations on the n-dimensional class which have Bocksteins in them. #

Proof of 3.9. By 3.2, any homology operation which has Bocksteins in it goes to
zero. Let u be a homology operation with no f’s such that ux,#0 in H,(QS"). As u
has no B’s, u(sy)*x, is a p-th power for some k. So u(s,)*x,=ux, ;= 'x,+,)". Now
by induction on the degree of u, i, (4'x,4+,)#0in H,(BP,,,) and n+k is even since we
have a p-th power. H,(BP, . ) is a polynomial algebra and so [i,(u'x,+,)]?#0 and is
=i [t Xy 4 1 P = Eatt (55 ) ¥ = T (54 ) ux,, = (54 )¥ix (ux,) and so i, (ux,)#0.#

The proof of 3.10 is similar.
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