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Trees of Homotopy Types of Two-Dimensional CW-Complexes

MIcCHEAL N. DYER and ALLAN J. SIERADSKI!

1. Introduction

This paper is concerned with the homotopy theory and simple homotopy theory
of connected finite 2 dimensional CW complexes with finite cyclic fundamental group.
The main theorem presents a complete classification of such complexes up to homotopy
type, and this theorem has the corollary that homotopy type and simple homotopy
type coincide for these complexes.

This work is motivated by the general problem of describing the sets HT (n) and
SHT (n) of homotopy types and simple homotopy types of m-complexes, that is,
connected finite 2 dimensional CW-complexes with a given fundamental group .
A visually satisfying description of HT (%) or SHT (=) is that of either set as a graph
whose edges connect the type of each n-complex X to the type of its sum X v S2 with
the 2-sphere S2. These graphs are actually trees; they clearly contain no circuits, and
they are connected because any two mn-complexes have the same type once each is
summed with an appropriate number of copies of the 2-sphere S2. To re establish this
latter observation of J. H. C. Whitehead ([20, Theorem 12]), note that each n-complex
has the simple homotopy type of one modeled in an obvious fashion on some finite
presentation of the fundamental group = (see Proposition 1). But two finite presenta-
tions of the same group = differ by a finite sequence of Tietze operations, two of which
leave the simple homotopy type of the associated topological model unchanged, while
two alter the simple homotopy type by an S? summand.

Of special interest in each of these trees are the roots and the junctions. The roots
are the (simple) homotopy types that do not admit a factorization involving an
S? summand; they generate the rest of the types in the tree under the operation of
forming sum with S?2. The junctions are the (simple) homotopy types that admit two
or more inequivalent factorizations involving an S2? summand; they determine the
shape of the tree. Each junction is a 2-dimensional instance of non-cancellation of the
2-sphere S? with respect to the sum operation.

When the group = is a free group F of finite rank or is the finite cyclic group Z, of
prime order ¢, complete descriptions of the trees HT (7) and SHT () can be derived
from the literature, as follows.

A result of C. T. C. Wall ([17, Proposition 3.3]) can be specialized to read that for
a free group F of finite rank r every F-complex has the homotopy type of a sum of r

1) Both authors partially supported by NSF Grant GP 34087.



32 MICHEAL N.DYER AND ALLAN J.SIERADSKI

copies of the 1-sphere S and finitely many copies of the 2-sphere S2. Moreover,
since the Whitehead group Wh(F) of a free group F is trivial ([6], [15]), homotopy
type and simple homotopy type coincide for F-complexes. Thus the trees HT (F) and
SHT (F) are identical; both are bamboo stalks with no junctions, and with a single
root determined by the type of the sum v S! of r copies of the 1-sphere S*.

In the case where = is the cyclic group Z, of prime order g, a result of W. H.
Cockcroft and R. G. Swan ([4, Theorem 1]) is pertinent. It can be interpreted to say
that every Z -complex has the homotopy type of a sum of the pseudo-projective plane
P,=S8"u,e? and copies of the 2-sphere S2. Thus the tree HT (Z,) is a bamboo stalk
with no junctions and with the homotopy type of the pseudo-projective plane P, as
its single root. Furthermore, W. H. Cockcroft and R. M. F. Moss ([3]) have recently
observed that, even though the Whitehead group Wh(Z,) is not trivial, homotopy
type and simple homotopy type coincide for Z -complexes, g a prime. Thus, here also,
the two trees HT (Z,) and SHT (Z,) are identical.

The simplest unresolved case involves the cyclic group Z,, of order pg, where p and
g are distinct primes. The two descriptions n=Z2,, and n=2Z,®Z, suggest the two
presentations #=(c:c??) and 2=(a, b:a”, b% aba”'b~1'). An obvious question is
whether or not the associated topological models P=S'u ra e? (the pseudo-projective
plane of order pg) and Q=(S'xS')u,e* U e* (the torus with pseudo-projective
membranes of order p and order ¢ glued onto its generators) determine distinct roots
in either of the trees HT (Z,,) and SHT (Z,,,,) of homotopy and simple homotopy types.
Actually, manipulations with the given group presentations show that the Z,,-com-
plexes Pv S? and Q have the same simple homotopy type, hence the presentation 2
does not provide a new root for either tree. This is disappointing, and moreover, our
main theorem shows that is is hopeless to look further for new roots modeled on
devious presentations of the cyclic group Z,,.

This paper’s main result, which we formulate now, is proved in Section 3. Let Z,
be a finite cyclic group of arbitrary order n, and let P,=S" u,e? denote the pseudo-
projective plane of order n.

THEOREM A. Let X be a Z,-complex, that is, a connected finite 2-dimensional
CW-complex with finite cyclic fundamental group Z,. Then

(1) X has the homotopy type of the sum P,v S*v ---v S? of the pseudo-projective
plane P, and rank H,(X) copies of the 2-sphere S*.

(2) There is a homotopy equivalence f:X — P, v S*v --- v S? realizing any prescribed
Whitehead torsion ©( f )e Wh(Z,).

Thus homotopy type and simple homotopy type coincide for connected finite
2-dimensional CW-complexes with finite cyclic fundamental group, and the trees
HT (Z,) and SHT (Z,) of homotopy types and simple homotopy types of Z,-complexes
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are again bamboo stalks with no junctions and with their single root determined by
the pseudo-projective plane P,, as in the prime order-case.

For a finitely presented group =, the fact that the tree HT () or SHT () has a
single root can be reformulated in a number of equivalent ways. In stating this result
we abbreviate the relations of same homotopy type and same simple homotopy type
by =~ and =g.

THEOREM B. The following are equivalent statements for a finitely presented
group .

(1) The tree (S)HT (n) of (simple) homotopy types of n-complexes has a single root.

(2) For n-complexes, there is a cancellation law for S?-summands:

XvS?2YvSi=>XzxY.
(s) )

(3) For n-complexes, there is a cancellation law for suspensions:

XYY =X=xY.
(S)

(4) For n-complexes, rank H,(X)=rankH,(Y)=>X= Y.

A proof of Theorem B is easily based on the observation that the suspension X of
a m-complex X has the homotopy type of the sum of the Moore space M (n/[=, n], 2)
and rank H,(X) copies of the 3-sphere S>. The Moore space M (n/[n,n],2) is
characterized up to homotopy type by the facts that it is simply connected and has
trivial homology groups, save H, which is isomorphic to the abelianization /[ 7, ] of 7.

We would like to thank D. Harrison for many conversations concerning the
J[Z,]-module cancellation problem involved in the proof of Theorem A and R. Swan
for informing us of the work of H. Jacobinski.

2. Cellular Models, Nielsen Transformations, and Chain Complexes

Theorem A is proven in Section 3 modulo some results on homotopy equivalences
between n-complexes that are established in Section 4. In this preliminary section we
introduce the underlying vocabulary for this paper.

Cellular model of a presentation. Let #=(g,,..., &: 1, ..., I'y) be a finite presenta-
tion. The free group on the generators g, ..., g, is denoted by F=F[g,,..., &, and
the smallest normal subgroup of F containing the relators ry,..., r,, is denoted by R.

The cellular model P of the presentation 2 is a CW-complex with a single 0-cell €°,
one 1-cell e} for each generator g;, and one 2-cell e? for each relator r;. The 2-cell €7 is
attached to the 1-skeleton according to the instructions provided by the relator r;, once
the 1-cells are oriented and the relator is made a reduced word.
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If we are content to describe P merely up to simple homotopy type, we can proceed
in the following manner. We identify the free group F with the group [S*, V., S}
of based homotopy classes under the isomorphism mapping the i-th generator g; to
the homotopy class of the inclusion of the i-th summand of the sum V¥_; S!. Then
the m-tuple (ry,..., r,) of relators corresponds to a homotopy class [r] €
[V7-1 S}, Vi=1 Si']. The cells of P are provided with orientations and characteristic
maps when we describe P as the adjunction space

k m
P=<v s}) u,(\/ Bﬁ-),
i=1 j=1

determined by a representative r: V7. S} — V= S;. Since different representatives
r of the homotopy class [r] determine complexes that differ by elementary deforma-
tions of the third kind ([19, Lemma 1]), this gives P up to simple homotopy type.

"The presentation & is a presentation for the group n if there exists surjective homo-
morphism F—n whose kernel is the relator subgroup R. In this case, the cellular
model P is a m-complex, i.e., a connected finite 2-dimensional CW-complex with
fundamental group =. One easily verifies the following converse by the standard pro-
cess of collapsing a maximal tree.

PROPOSITION 1. Every connected finite 2-dimensional CW-complex with funda
mental group © has the simple homotopy type of the cellular model P of some finite
presentation 2 of m.

Nielsen transformations of presentations. The following transformations of a set
{Wiy,..., Wy} of freely reduced words in the free group F=F|g,,..., 8] are called
elementary Nielsen transformations: permuting the W; and taking inverses of some of
them; leaving fixed all W,, ¢#r, and replacing W, by the freely reduced form of any
one of the following W, W), W]W, W_ ", where 1 <r<s<m and n==+1.

Let Z=(gy,.-., 8: r1,---» 'm) b€ a presentation for a group =. If an elementary
Nielsen transformation is applied to the set {r;, ..., r,,} of relators, it produces a set of
relators {r;,..., 7} for a new presentation #*=(g,,..., g: r{,..., T) of the same
group 7. If an elementary Nielsen transformation is applied to the set {g,,..., g} of
generators, it produces an alternative set of free generators {g},..., g} for the group
F=F|g,,..., g], hence the relators ry,..., r,,, when written as reduced words in the
new generators, determine relators ry,..., r,, for a new presentation %' =(gi,..., gi:
Iis-.., I'm) Of the same group =.

The two transformations & — #* and & — &' are elementary Nielsen transforma-
tion of presentations. Finite compositions of such are refered to as Nielsen trans-
formations. One important consequence of the work of Section 4 is this next result.
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PROPOSITION 2. A Nielsen transformation & — 2 reducing the presentation P
to the presentation 2 corresponds to a simple homotopy equivalence P— Q of the
associated cellular models.

The reason for considering Nielsen transformations is that each finite presentation
P=(g15...» &' I,.--» I'y) With non-negative deficiency m—k can be reduced by a
Nielsen transformation to a presentation of the form

. 4@ ,
Q = (al, ey ak. al‘Wl, seey akaVk, VVk+1’ vesy Wm)

in which each word W ; has zero exponent sum on each generator a;, and each non-
negative integer ; divides its successor w;,; ([8, p. 140]). We refer to 2 as a pre-
Abelian presentation since the integers wy, ..., @, determine the direct product decom-
position Z/(w,)x -+ x Z/(w,) of the abelianization of the group presented. Such a
decomposition in which w; divides w;,, is unique up to the trivial factors associated
with any w;=1. Thus every pre-Abelian presentation of the finite cyclic group Z, of
arbitrary order 7 is of the form

. n
o@ = (al, ey ak. a1W1, ceey ak__IWk_l, akVVk, M+1, veey Wm) .

We define the deficiency of a group m to be the minimum, taken over all finite
presentations & for =, of the number of relators in & minus the number of generators
of Z. For example, any finite group n has non-negative deficiency. The following
proposition is an immediate consequence of the previous propositions and the exis-
tence of Nielsen reductions of presentations with non-negative deficiency.

PROPOSITION 3. Ifnisagroup with non-negative deficiency, then every connected
finite 2-dimensional CW-complex with fundamental group © has the simple homotopy
type of the cellular model of some pre-Abelian presentation of =.

Cellular chain complexes. An application of the previous proposition will con-
stitute the first step in our analysis of Z,-complexes. The second step is best formulated
within the framework of their associated cellular chain complexes.

Let P be the cellular model of the finite presentation #=(g;,..., 8: F1s...» I'my) Of
the group 7. The universal covering P of P admits the fundamental group = of P as
the group of covering transformations, and there is a natural oriented cellular structure
on P with respect to which the covering projection is an orientation preserving cellular
map and the covering transformations x:P — P, xen, are orientation preserving cellu-
lar homeomorphisms. Thus, each group element xern determines a chain map x:
C«(P)— C,(P) of the cellular chain complex C, (P) and this action makes C, (P)
into a chain complex of modules over the integral group ring J[=].

Moreover, the chain modules C, (F), C, (P), and C,(P) are free J[n]-modules
of rank 1, k, and m, respectively, which we give preferred bases {¢°}, {é},..., &}, and
{éf, cees é,f,}, where these cells in the universal covering P are selected in the following
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manner. Let £° be any 0-cell over the 0-cell €° of P, and label by &/ the 1-cell over e} in
P whose boundary is 8,&] = x,6°—&°, where x; represents the image of the i-th genera-
tor g; in the group 7. Finally, label by &7 the lifting of the 2-cell 3 at &°. Notice that
with respect to these bases, the boundary operators in the chain complex C,(P):
C,(P)% C,(P) 2 Co(P)have matrix representations d; = (x;~— 1) and 8, = (dr,/dx,),
the latter matrix being the Jacobian matrix of the presentation described in the free
differential calculus of R. H. Fox ([5, p. 198]).

A chain complex C,:C,% C, %, C, of free Jr-modules with preferred bases is
realized by the presentation & of = if it can be obtained from & in the fashion just
described.

The following result is another conclusion of Section 4.

PROPOSITION 4. If presentations 2 and X realize the same chain complex C,
with differing preferred bases in the 2-dimensional module C,, then there is a homotopy
equivalence f: Q — R between their cellular models that induces the identity chain homo-
morphism Cy (Q) — Cy (R). Hence, the Whitehead torsion of this homotopy equivalence
is the class of the matrix that records the change of basis in the module C,.

3. A Proof of Theorem A

We now specialize the preparatory work of Section 2 to the case where = is the
finite cyclic group Z, of arbitrary order n. Given any connected finite 2-dimensional
CW-complex P with fundamental group Z,, Proposition 3 provides a simple homotopy
equivalence between P and the cellular model Q of some pre-Abelian presentation

. n
Q = (al, ceey ak. GIWI, ey ak_lm_l, akm, VVk+1’ cony Wm)

of the cyclic group Z,.

Since the words W ;€ F have zero exponent sum on each generator a;, these words
map to the unit element under the homomorphism F— Z,. Therefore it follows from
the form of the relators of 2 that the first k — 1 generators a,, ..., a@,_, map to the unit
element in Z,, while the last generator g, maps to a generator x of Z,. Thus, the univer-
sal covering projection 0 — Q has the 1-dimensional skeleton sketched in Figure 1.

Then the boundary operators of the chain complex C, (Q) of the universal covering
0 of Q are described in terms of the preferred bases {z} = {¢°} for C,(0), {vy,..., v} =
={el,..., &} for C;(Q), and {uy,..., u,}={é1,..., &3} for C,(Q) as follows:

61 (vl) = 0, ey 51 (vk—l) = 0, 61 (vk) = (x = 1) V4
az(u,-)=?vl +---4 ?Uk_.1+OUk (l?ek)
0z () = 0y +--+ Wy + Ny,
where the element x is the generator (determined by ) of the multiplicative group Z,,
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and the elements x—1 and N=1+x+---+x""! are in the integral group ring J[Z,].
Thus, the chain complex with preferred bases C, (Q) takes the form

C2(0) (’ v ?) Cy (0) Co(0)

?7 7217127 17 (0...0 x—1)

” 0.0 N 0..0 " ”

{Uyyeney Upy » (Vg5 o0y Uy —— (2D,

where {...) denotes the free J[Z,]-module with the enclosed elements as preferred
basis, and the matrices displayed are those of boundary operators d, and d, with
respect to the preferred bases in the chain modules.

The remainder of the proof involves the construction of a new basis for the
2-dimensional chain module C,(Q) with respect to which the boundary operator 9,
has a matrix of a more convenient and complete form. Since § is simply connected, the
chain complex C, (Q) is exact at C; (Q) and therefore the submodules image d, and
kernel 9, of C; =C, (Q) coincide. The latter submodule has the direct sum decomposi-
tion vy, ..., v,_1 )@ N{v,) since multiplication in the ring J[Z,] by the element x— 1
has as kernel the ideal generated by N. It follows that the boundary operator is a
surjection 8,: C,(Q) - (vy, ..., Up_ 1> D N{v;), and therefore there is an internal direct
sum decomposition {w,, ..., w,_; >@® K of the 2-dimensional chain module C,=C,(Q)
such that 4, (w;)=v;(1<i<k—1) and 9, (K)=N{v,). To construct one such decom-
position, let K be the kernel of the surjection obtained by composing the boundary
operator 0,:C, — C, with the projection of the chain module C; onto its direct sum-
mand {vy,..., %-,», and label by w,,..., w,_; the images of the basis elements
vy, ..., Vg~ under a selected splitting of the resulting exact sequence

0K—->Cy>vyy.cey 010 —0

of J[Z,]-modules. These elements w,,..., w,_; of C, serve as a basis for a free sub-
module {wy,...,w,_,> of C,, and the internal direct sum decomposition
{Wyseees Wi )@ K of the free J[Z,]-module C, shows that the J[Z,]-module X is
stably free. Furthermore, H. Jacobinski’s cancellation theorem for projective
J[Z,]-modules ([7], [14, Theorem 19.8], [16, p. 178]) shows that K is, in fact, free.

If {wy,..., w,} is a basis of this free J[Z,]-module K then the images d, (w;)=t;Nv,
(k<i<m) generate the ideal N{(v,) since 0,(K)=N{v,). Now the ring elements
ty, ..., I, may be assumed to be integers, since for an arbitrary element Za;x* of the
integral group ring J[Z,] we have the relation (Za,x’)N=(Z«;)N, where the integer
Ta, is called the augmentation of the element Za;x’. In fact, the ideal in J[Z,] generated
by N is isomorphic to the infinite cyclic group Z with the trivial module structure.
Therefore, the integers #,..., t,, that determine the generating subset {#,N,...,,N}
of this ideal must be relatively prime. It follows that there is a unimodular matrix over
Z that transforms the basis for X into one whose members wy, ..., w,, have the images
0, (W)= Novy, 0, (Wi 41)=0, ..., 0, (W,)=0.
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Thus the original chain complex with the basis {w;,..., wy_y, W, ..., w,} for C,
and the original bases for C, and C, takes the form

Cz 1°‘ 00 0 C1 Co
PoGray) T e
<W13 veey Wm> ¥ <vls cees Uk> — <Z> ¢

This chain complex with preferred bases is realized by the presentation
e% = (al, ey ak: al, ceey ak_l, a;:, 1, ceey 1)

with m — k trivial relators, and the associated cellular model R has the simple homotopy
type of the sum P,v S?v .- v S? of the pseudo-projective plane and m —k copies of
the 2-sphere S2. This proves part (1) of Theorem A, since Proposition 4 provides a
homotopy equivalence f: Q — R between the cellular models of the original pre-Abelian
presentation 2 and the new presentation #. The Whitehead torsion t(f) of this
homotopy equivalence is the class of the matrix that records the change of basis of
C, from {uy,..., uy} 10 {Wy,..., We—g, Wiy evny Wy}

The arguments of Cockcroft and Moss [3] show that part (2) of Theorem A can
be considered as an immediate consequence of part (1) and the work of P. Olum on
the self-equivalences of the pseudo-projective plane ([10], [11]).

To prove part (2) directly, we argue this way. An element in Wh(Z,) is represented
by a matrix in GL (J[Z,]) and taking determinants givesa unit in J[Z,]. If U, denotes
the group of units of J[Z,] of augmentation +1, and if T} denotes the subgroup of
the trivial units 1, x,..., x"~!, then the determinant function gives an isomorphism
det: Wh(Z,)~ U}|T,} ([1, Ch.XI (7.3)]). For aunit c=Z«;x’ of augmentation Za;; = + 1,
we have the relation ¢cN = N, hence the form of the matrix of the boundary operator
0, is unchanged when the basis {w;, ..., Wy_1, Wy, ..., Wy} Of C, is replaced by the basis
{Wiseeey We_1, €Wy, ..., w,}. It follows that the original chain complex with the new
basis {wy, ..., We_1, CWy, ..., W,} for C, is still realized by the presentation Z. Therefore,
Proposition 4 provides a homotopy equivalence f.: R — R whose Whitehead torsion
7(f.) is the determinant of the matrix that records the change of basis of C, from
{ugy .., up} to {Wy,..., we_q, eW,..., w,,}. The homotopy equivalences f, f.:Q0— R
therefore have Whitehead torsions which differ by an arbitrary element {c}eU,/T,
of the Whitehead group Wh(Z,). In this way we can construct a homotopy equivalence
realizing any prescribed Whitehead torsion element te Wh(Z,).

4. Homotopy Equivalences Between Cellular Models
In the course of the proof of Theorem A, we replaced an arbitrary Z,-complex P

by one Q modeled on a pre-Abelian presentation 2. Then we replaced the Z,-complex
Q by one modeled on a presentation Z that realized the chain complex C, (J) with a
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modified basis system. The claim that these replacements can be accomplished without
altering (simple) homotopy type is based on Propositions 2 and 4. In this section, we
prove these two propositions.

Proposition 2 states that a Nielsen transformation & — 2 corresponds to a simple
homotopy equivalence P — Q of the associated cellular models. Since a Nielsen trans-
formation is a finite composition of elementary Nielsen transformation, it suffices to
establish the following result.

PROPOSITION 5. Corresponding to elementary Nielsen transformations of pre-
sentations P — P* and P — P’ are simple homotopy equivalences P— P* and P— P’ of
the associated cellular models.

Proof. There are three more basic transformations of a presentation that leave
unaltered the simple homotopy type of the cellular model. The first process of append-
ing a new generator g and a new relator gW, where W is a word in the old generators,
corresponds to a 2-dimensional elementary expansion ([19, p. 345]) of the associated
cellular model. The second process of replacing a relator r; by a relator 7; satisfying
the condition that r; '7 ; is a consequence of the other relators corresponds to a
2-dimensional elementary deformation of the third kind ([19, Lemma 1]) of the
cellular model. The reason is that the condition on r; and 7; is equivalent to the con-
dition that the two attaching maps modeled on these relators are homotopic in the
presence of the other 2-cells. The third process of permuting or taking inverses of some
of the generators of relators merely amounts to a change in the indexing or orientation
of the corresponding cells in the topological model.

To complete the proof of the proposition it remains to observe that the elementary
Nielsen transformation can be factored into processes of these three types and their
inverses. For example the Nielsen transformation & — Z’ induced by a Nielsen re-
placement of the generator g, by g, =g;g; factors this way:

(81, coes 8k Ty eves "m) > (81’ cees 8o 8k P15 ves T 8k (gj—lgk—l))
o (81r e 8o BkE 1o oo T 8 (85 '8 1))
(81 s 8o» 8k3 1o o Tms B (8847 1))
(s evvs 8k Pl eees i)

These are processes of type 1, 2, 3, and 1 respectively.
In the proof of Theorem A we have occasion to change the preferred basis for the
2-dimensional chain module C, of a chain complex

c, C, Co
I I |

02 01
<u19 seey um) - <v19 sy vk> i <Z>
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realized by a presentation 2 of n. We get a new chain complex of free J[n]-modules
with preferred bases

C2 Cl CO
T B
<W1, seey Wm> - <vl’ seey vk> - <Z> .

Two questions arise: Is the new chain complex of free J[n]-modules with preferred
bases realized by some presentation Z of n? If so, what is the relationship between
the cellular models Q and R of the presentations 2 and #? The first question is
related to an unresolved conjecture of C. T. C. Wall ([18, p. 131]), but in the situation
encountered in Section 3 the presentation Z# obviously exists. We suppose then that
the presentation # realizes the chain complex with new preferred bases, and focus
our attention on the second question. Since the identity map between the two chain
complexes respects the preferred bases of the chain modules C, and C;, we may
identify the generators of the two presentations, the 1-skeltons Q! and R! of their
cellular models, and the fundamental groups of the complete models Q and R. It
follows that the identity map on the 1-skeletons extends to some map f:Q— R
between the cellular models. This map f: Q — R induces a chain homomorphism

C,(0)3 ¢, (0)3 ¢y (0)
f2 =1} fo=1]
C,(R) 3 ¢y (R) % Co(R)

which is the identity on the chain modules C, and C;. Thus the deviation 1—f,:
C,(0)— C,(R) between the identity homomorphism 1 and the homomorphism f,
takes values in the kernel of 9,:C, (R)— C; (R). We can identify this kernel with the
2-nd homotopy module 7,(R) of R by means of the Hurewicz isomorphism
n,(R)~ H, (R)=kernel 8, and the covering projection isomorphism x, (R)— n,(R),
and then the deviation 1— f, can be considered as a J [r]-module homomorphism
D:C,(Q) - n,(R). Since the module C,(Q) is free of rank m this homomorphism D
corresponds in a natural fashion to a homotopy class «: /-y S7 = R.
Now we can consider the cellular model

k m
Q=(\/ S,-‘)u,(v Bi-)
i=1 Jj=1

as the mapping cone of the map r: V7., S} = Vi-; S?Z, hence there is a cooperation
c:Q—>Qv (V7. S?) that collapses the midbelt of the cone C(V7-;S;j)=
= Vi BJ-Z. This cooperation can be utilized to form the composition

ff=Vof vacc:Q—-Qv (

J

V S’})—»RvR-—»R,
=1
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which is the result of the Puppe action ([12]) of a: /=, S7 — R on the original map
f:0— R. This new map f * agrees with the original map f on the fundamental group
n, and on the chain modules C, and C;, but on the 2-dimensional chain module C,
it induces the identity homomorphism because of the relations

fi=f+D=f,+(1—-/)=1:C;(0)- C,(R).

It follows that f; restricts to the kernel of the boundary homomorphism 8, to give
an isomorphism, which can be identified with the homomorphism f : n, (Q) - 7, (R).
This shows that f*: @ — R is a homotopy equivalence. Proposition 4 is established,
since one can verify the additional claim concerning the Whitehead torsion of the
homotopy equivalence by invoking the Whitehead torsion properties P1-P5 of [19].

5. Concluding Remarks

The problem of determining the tree HT () or SHT (=) is equivalent to that of
establishing the extent to which cancellation of S?-summands is possible in the simple
homotopy relation X v (Vi-; S?)=s Yv (V=1 S}) provided for two n-complexes
X and Y by J. H. C. Whitehead’s simple homotopy theory. It should not be surprising
than that an associated algebraic cancellation result is a key factor in each of the
homotopy tree determinations discussed in the introduction. The simple homotopy
relation above provides a J[n]-module isomorphism

¢:m, (X) @ J [1]® ~ (V)@ I [].

If the homology group H,(Y) of ¥ has minimal rank for = complexes, then ¢>s and
there is the question whether cancellation of the free factor J[7]‘ of the isomorphic
J[n]-modules above is valid and ¢ yields a module isomorphism 0:7,(X)=~
~n, (Y)DJ[r]¢ 9.

When = is a free group F of finite rank r, the appropriate choice for Y is the sum
v S of r copies of the 1-sphere S'. Then the homotopy module =, (Y) is trivial and
the J[F]-module isomorphism ¢ shows that for an arbitrary F-complex X, the
J[F]-module =, (X) is stably free. If the algebraic cancellation that was questioned
above is possible, then the stably free J[F]-module 7, (X) is free of rank ¢—s, and
then any map Y v (V)% S jz) — X that induces an isomorphism of the fundamental
groups and also sends the copies of the 2 sphere S? onto the free generators of n, (X)
is a homotopy equivalence. Thus, the key to establishing the fact that the tree
HT(F) has Y= v S* as its single root is the result of H. Bass ([2]) that projective
J[F]-modules are free, for this guarantees that the algebraic cancellation of the free
factor J[F]® is valid in this case.

When = is a finite cyclic group Z, of arbitrary order n, the pseudo-projective plane
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P, is a n-complex Y with homology H,(Y) of minimal rank. A trivial extension of
the work in [4] shows that for any other Z,-complex X the existence of a J[ Z,]-module
isomorphism 0:7,(X)~n,(P,)®J[Z,]“ ) implies that the algebraic 2-types of X
and the sum P,v (V% S}) are isomorphic, and hence, that these complexes have
the same homotopy type ([9, Theorem 1]). Thus, the key factor in the determination
by Cockceroft and Swan ([4, Theorem 1]) of the homotopy types of Z -complexes,
g a prime, is the classification by 1. Reiner ([13]) of finitely generated, torsion free
J[Z,]-modules, g a prime, for this classification establishes the validity of the cancel-
lation of free J[Z,]-factors that was questioned earlier and provides a module
isomorphism 6:n,(X)~n,(P,)®J[Z,]" .

For arbitrary order n, the theory of J[Z,]-lattices, i.e., finitely generated, torsion
free J[Z,]-modulus, is not as manageable, and the cancellation of free J[Z,]-factors
appears available only up to the point where a free factor remains ([14, Theorem
19.6]). There is, however, a full Cancellation Theorem for projective J[Z,]-lattices
due to H. Jacobinski ([7, Corollary 5.3], [14, Theorem 19.8], [16, p. 178]). In order to
employ this cancellation result, the classification of Z,-complexes in Section 3 deals
with the associated cellular chain complexes, and ignores the cancellation problem
involving the homotopy modules. In this way, the theory of algebraic 2-types developed
by S. MacLane and J. H. C. Whitehead ([9]) does not appear directly, but, in fact, a
complete exposition of the theory of algebraic 2-types of 2-dimensional complexes can
be based on the construction in Section 4 involving the Puppe action by a deviation.

Here are some open questions that we intend to consider.

The arguments given earlier in this section for the free group F apply to any
group n which admits a 2-dimensional Eilenberg-MacLane Space K(r, 1) and for
which stably free J[n]-modules are free. Thus a compact connected 2-dimensional
manifold M# S?%, P, determines a single root of the tree HT(n,(M)), provided
stably free J[n, (M)]-modules are free. When is this the case?

Any finite abelian group = has this desirable property employed in the proof of
Theorem A that stably free J[n]-modules are free ([14, Theorem 19.8]). Do such
non-cyclic groups nevertheless provide a tree HT (=) that has more than a single root?
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