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t)ber die Isometriegruppe bei kompakten Mannigfaltigkeiten

négative Krummung

Hans-Christoph Im Hof (Basel)

1. Einleitung

Wir betrachten eine kompakte w-dimensionale Riemannsche Mannigfaltigkeit M,
deren Schnittkrûmmung durchwegs negativ ist. Fur solche Mannigfaltigkeiten ist die

Isometriegruppe I{M) endlich. Wir werden dies mit einer Méthode beweisen, die zu-
sâtzlich fur die Ordnung von I(M) eine Abschâtzung nach oben erlaubt.

Der hyperbolische Raum H= {(ul9..., un) eRn | un > 0} wird mit einer geeigneten
Metrik versehen, sodass er als universelle Riemannsche Ûberlagerungsmannigfaltig-
keit von M gewâhlt werden kann. r disjunkte Kugeln vom gleichen Radius werden im
cartesischen Produkt Hn+1 fur jede natûrliche Zahl r < ord/(M) konstruiert, die aile
in einer gewissen grôsseren Kugel liegen. Ein Vergleich der Kugelvolumen liefert eine

Abschâtzung fur r, also auch fur ord/(Af
Dièses Verfahren wurde zuerst von H. Huber durchgefuhrt und wird in [4] fur

kompakte Mannigfaltigkeiten der Krummung — 1 beschrieben.

In der Abschâtzung fur ord/(M treten folgende Grôssen auf :

- Die Dimension n. - Der Durchmesser <5. - Die Schranken der Krummung. Da M
kompakt ist, existieren Zahlen a, b mit 0 < a < b9 sodass die Krummung im Inter-
vall [— b2, —a2] variiert.

- Die Zahl A sup {L(p) | p eM}, wobei L(p) das Infimum der Lângen nicht-null-
homotoper Wege mit Anfangs- und Endpunkt p bedeutet.

Setzen wir noch sn(x) Jg Sin""11 dt9 so lautet das Résultat

ord/(M)

Elementare Abschâtzungen fuhren auf die Form

ord/(M) * 5(

Die vorliegende Arbeit ist eine gekûrzte Fassung meiner Dissertation. Herrn Professor

Heinz Huber danke ich herzlich fur die Anregung und dieHilfe,dieihrZustandekom-
men ermôglicht haben.

2. Mannigfaltigkeiten negativer Krummung

2.1. Es sei M eine kompakte Riemannsche Mannigfaltigkeit der Dimension n mit
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durchwegs negativer Schnittkrùmmung. Aus der Kompaktheit folgt die Vollstândig-
keit von M, sowie die Existenz von zwei Zahlen a, b mit 0 < a ^ b derart, dass die

Kriimmung zwischen den Schranken — b1 und — a2 liegt.
Wir werden universelle Riemannsche Oberlagerungen von M betrachten. Dabei

treten einfach zusammenhângende vollstândige Riemannsche Mannigfaltigkeiten auf,
deren Kriimmungen ebenfalls zwischen den Schranken —b2 und —a2 liegen. Zu
Vergleichszwecken werden wir auch den hyperbolischen Raum konstanter Kriimmung
heranziehen. Dieser ist eine weitere einfach zusammenhângende vollstândige
Riemannsche Mannigfaltigkeit negativer Kriimmung.

In den folgenden Abschnitten stellen wir fur die vorkommenden Mannigfaltigkeiten

einige Eigenschaften zusammen.

2.2. Es sei N eine einfach zusammenhângende vollstândige Riemannsche
Mannigfaltigkeit negativer Krùmmung. Unter einer Geodâtischen verstehen wir eine differen-
zierbare Kurve y:R-+N, deren Tangentialfeld y ein Parallelfeld lângs y ist. Es gilt
II y (OU const; falls ||y (f )|| # 0 heisst y eine eigentliche Geodâtische. Wir bezeichnen

mit Nq den Tangentialraum von N im Punkte q. Zu jedem veNq gibt es genau eine

Geodâtische yv:R-*N mit yv(0) q und 7^(0) v. Damit wird die Exponentialab-
bildung expq:Nq-^N definiert durch cxpqv yv(l). Fur die Distanz der Punkte q
und expqv gilt

d(q9aipqv)=\\v\\=L(yo\l0,l]),
wobei L die Lange eines Kurvensegmentes bedeutet.

Die Exponentialabbildung exp€:Nq-*Nist in unserem Fall stets diffeomorph, ins-
besondere sind die eigentlichen Geodâtischen injektiv.

2.3. Zwei Geodâtische y, n:R^N sollen aequivalent heissen (y ~ \i wenn es Zahlen

a^0,b gibt, sodass fur aile teR gilt pi (t) y (at + b). Ist eine von zwei aequivalenten
Geodâtischen eigentlich, so auch die andere.

Besteht zwischen einer Isometrie TeI(N) und einer eigentlichen Geodâtischen

y:R-+N die Beziehung T(y(t)) y(t + a)9 so heisst Teine Translation lângs y.

LEMMA
Vor.: TeI(N), yu y2:R-*N eigentliche Geodâtische,

Beh.: (1) Aus ata2 0 folgt ai=a2 0,

(2) Aus ata2 ^ 0 folgt yt~y2.
Der Beweis lâsst sich gleich wie im Fall konstanter Kriimmung fûhren. (vgl. [4]). Fûr
Isometrien ohne Fixpunkte vergleiche man [6].
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2.4. Wir verwenden den hyperbolischen Raum konstanter Kriimmung als Vergleichs-
mannigfaltigkeit, weil sich in ihm einige Rechnungen sehr explizit durchfûhren lassen.

Er wird realisiert durch den Halbraum H= {(ul9...9 un)eRn \ un > 0} mit den Koor-
dinatenfunktionen xt(ul9..., un) ui9 1 < /^ n9 und dem Masstensor g(d/dxi9 d/dxk)

a~2x~2ôik und erhâlt durch dièse Définition die konstante Kriimmung - a2.

Fur die Distanz d(p, q) der Punkte p9qeH gilt

Cos a d (p,q) 1 + ix;x (p) x;1 (q) t (*t (p) ~ *t (q))2 (1)

Daraus ergibt sich sofort

LEMMA 1 ([4])
Vor.: p9 q eH9 d(p, q)<;ô,ô>0.
Beh.: £ï:\(xt(p) - xt(q))2 < e2aô(l - e~aô)2 x2n (q).

Aus der Differentialgleichung fur Geodâtische ergibt sich

LEMMA 2

Vor.: po (09...,09\),y:R->H Geodâtische mit

—
Cxn/ po

Beh.: Fur i 1,..., /i - 1 gi/f JC|(y(0) °-

LEMMA 3

For.;/?0 (0,..., 0, 1), vî9...>vn-t eHpo9

Beh.: vl9...9vn_l9 (d/dxn)Po linear unabhângig.

Fur den Beweis von Lemma 3 verweisen wir auf [4].

2.5. Betrachten wir eine Oberlagerungsmannigfaltigkeit von M und daneben den

hyperbolischen Raum der konstanten Kriimmung — a29 so haben wir eine Situation

vor uns, in der wir den Vergleichssatz von Rauch anwenden kônnen. Da keine konju-
gierten Punkte auftreten und aile vorkommenden Exponentialabbildungen diffeo-

morph sind, zitieren wir den Satz von Rauch gleich in einer sehr speziellen Fassung.

(vgl. [3], p. 178ff., [5], p. 4f.).

SATZ
Vor.: H, N einfach zusammenhàngende vollstândige Riemannsche Mannigfaltigkeiten,
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dimif =dim7V, Krummung von H= —a2, Krummung von N^ —a1, peH9 qeN,
i:Hp-> Nq lineare Isometrie, q> exp€ o \ o exp

~ l:H-+N, I kompaktes Intervall,
y:I-+H stuckweise differenzierbarer Weg, v ç o y : /-» N.

3. Ùbertragung des Problems auf eine universelle Ûberlagerung

Es sei g:N-+M eine feste universelle Riemannsche Oberlagerung von M, In den

folgenden Abschnitten werden wir die in der angekiindigten Abschâtzung vorkom-
menden Grôssen von M in Beziehung setzen zu Grôssen, die sich mittels N und der

Deckgruppe 2 formulieren lassen.

3.1. Wir bezeichnen mit I* den Normalisator von I in I(N). Dann gilt der Satz

Z*IZ, also

3.2. Der Durchmesser von M ist definiert als die Zahl ô sup {d(p9 q) \p, qeM}.
Bezûglich der Ûberlagerung hat ô folgende Bedeutung.

SATZ. Fur ailep9 qeNgibt es ein Sel, sodass d(p, Sq) < ô.

3.3. Fur peM bezeichnet Q'(p) die Menge der nicht-nullhomotopen Wege mit An-
fangs- und Endpunkt p. Wir definieren

mf{L(y)\yeQ'(p)} und

k inf{LQ>) | peM}9 X sup{L(p) | peM}.

Nun definieren wir eine Funktion auf N, die sich als die Zusammensetzung L °<j er-
weisen wird. Es sei Z' £\{id}. Fur qeN setzen wir

f(q) inf {d(q,Sq)\SeZ'}.

In der Tat besteht zwischen/und L die Beziehung f=Loa. Dies erlaubt uns, die
Grôssen k und À auf N zu interpretieren. Es gilt

K inf{f(q) | qeN}9 X sup{f(q) \ qeN}. (1)

Damit wird eine weitere Untersuchung von k und X môglich

SATZ 1. Fur aile qeN gibt es ein So eZ', sodass d(q9 Soq) =f{q).
Beweis. Es existiert eine Folge {Sk} in Z' mit d(q9 Skq)^f(q). Weil Z stark dis-
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kontinuierlich ist, existiert eine Teilfolge {kj} und ein SoeZ' mit Skj S0, und es

gilt d(q9 Soq) d(q9 Skjq)-+f(q), also d(q9 Soq) =f(q).

SATZ 2. Es existieren Punkte q09 qx eN, sodass

Beweis. Gemâss 3.2. gibt es ein Kompaktum KcN mit <r(K) M. Die stetige
Funktion / nimmt in einem q0 eK ihr Minimum und in einem q[ eK ihr Maximum
beziiglich K an. Die so bestimmten Extrema sind auch bezuglich N extremal, denn es

gilt foS=f fur aile Sel. Mit (1) erhalten wir f(qo) K und/(^) l Nach 3.2.

kônnen wir durch ein 5 e I zu einem Punkt qx Sq[ iibergehen, fur welchen immer
X, aber auch d(q0, qi)^S gilt.

SATZ 3. Es gilt
Beweis. Zu q0 existiert nach Satz 1 ein Elément Soelf mit d(q0, Soqo)=f(qo)

— k. Weil I fixpunktfrei ist, und So # id, gilt q0 # Soqo, also d(q0, Soqo) > 0.

Zu qeN existiert ein Punkt q'eN mit d(q, q') if(q)- Fur aile SeZr gilt f(q)
^ d(q9 Sq) < d(q9 Sq') + d(Sq'9 Sq) if(q) + d(q9 Sq')9 also d(q, Sq') > if(q). Zu-
sammen mit d(q9 q') if(q) folgt daraus inf{d(q9 Sq') | Sel} i/(#). Aber
inf {rf(^r, Sq')\SeZ} d(cr(q)9a(q'))<;ô. Daraus folgt f(q)^2ô9 insbesondere

4. Eine spezielle t)berlagerung

4.1. Wir haben bisher eine beliebige universelle Ûberlagerung <r:N-+M studiert.
Nun wollen wir den hyperbolischen Raum H zur Oberlagerungsmannigfaltigkeit von
M machen, und zwar so, dass der Punkt p0 (0,...,0, l)ei/eine ausgezeichnete
Rolle spielt. Dazu konstruieren wir einen Diffeomorphismus <p:H->N9 der/?0 auf
einen ausgezeichneten Punkt von N abbildet, und versehen H mit derjenigen Metrik,
die <p lângentreu macht. So erhalten wir, indem wir n cro(p;H-+M setzen, die ge-
suchte Ûberlagerung.

4.2. Gemâss 3.3. gibt es einen Punkt #oe^ und eine Decktransformation Soe£',
sodass d(q09 Soqo) k. Ferner sei v die eindeutig bestimmte Geodâtische mit v (0) q0

und v(l) Soqo. Es gilt nach 2.2. || v(0)|| k.
Daneben betrachten wir den in 2.4. eingefiihrten hyperbolischen Raum H mit der

Metrik g9 die zur konstanten Kriimmung — a2 fuhrt. In H greifen wir den Punkt p0
(0,..., 0,1) und den Tangentialvektor (d/dxn)po heraus.

SATZ. Es existiert ein Diffeomorphismus cp:H^N mit



Ùber die Isometriegruppe 19

(1)

(2)

(3) Fur aile p,qeH gilt d(p, q) < d{q> (p), <p(q)).

(Mit (pp wird das Differential von cp in p bezeichnet).
Beweis. Die Exponentialabbildungen expPo:Hpo^>H und Qxpqo:Nqo-+N sind

diffeomorph. Zwischen Hpo und N€o wâhlen wir eine lineare Isometrie /, die aic(d/dxn)
in v(0) ûberfiihrt. Die Zusammensetzung cp expgo <>/ oexp^1 liefert den gewiinschten
Diffeomorphismus.

Es gilt q>(p0) (expgo o/)(0) exp€o0 qo.
Zum Beweis von (2) zeigen wir zuerst cpPo i. Mit v gHP0 bilden wir die Geodâtische

y(t) exppotv9 sodass v y(0). Dann gilt (<p o y)(/) (<p oexpPo)(ri;) (exp€0 of) (tv\
also /(«) (<?°?)(0). Somit erhalten wir (pPo(v) q>po(y(0))=:((p°y)(0) i(v) fur
aile veHpo. Daraus folgt sofort q>po(aK(d/dxn)Po) K^(ô/dxn)Po) v(0).

Die Ungleichung (3) ergibt sich sofort mit Hilfe der in 2.5. zitierten Fassung des

Vergleichssatzes von Rauch.

4.3. Vermôge des Diffeomorphismus <p:H^>N fûhren wir auf H eine neue Metrik g
ein. Wir setzen fur v,weHp gp (v, w) g^(p) (q>pv, <ppw). Damit wird cp : (H, g)->N ein

lângentreuer Diffeomorphismus.
Im folgenden Satz vergleichen wir die zu den Metriken g und g gehôrigen Distanzen

d und d.

SATZ
(1) Fur aile p, q g H gilt d(p9 q) < d(p9 q\
(2) Fur aile qeH gilt d(p0, q) J(p0, q).

Beweis. 1. Nach 4.2. (3) gilt d(p9 q) < d((p (p)9 cp (q))9 weil cp lângentreu ist (bezùg-
lich g)9 gilt weiter d(ç (p)9 cp(q)) d(p9 q).

2. Es sei exp die zur Metrik g gehôrige Exponentialabbildung. Wir zeigen zunâchst

exppo =êxppo. (3)

Es gilt 9oexppo exp€oo/ exp^0o^po <poexppo, da (p injektiv ist, folgt daraus

exppo ="^po.
Seien qeH und v das eindeutig bestimmte Elément aus Hpo mit q exppov

exppot;. Dann gilt

d (Po, «) (gP0 (v, v)f'2, d(p0, q) (gpo (v, v))112. (4)

Nun zeigen wir

gPa ip0- (5)
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Es gilt fur beliebige v9 weHpo

gPO
(V> W) gqo 0' M' * (W)) Zqo (<PPOV> <?POW) Spo ("> W) •

Aus (4) und (5) folgt die Behauptung (2).
Die Beziehung (3) erlaubt uns eine einfache Folgerung:

Fur eine Kurve y:R-*H mit y(0) p0 gilt
(6) y ist genau dann g-Geodâtische, wenn sie g-Geodâtische ist.

4.4. Wir setzen n a°(p und erhalten die Ûberlagerung n:H-+M. Die Projektion n
ist lângentreu bezuglich g und die Deckgruppe U ist eine Untergruppe von I(H), der

Isometriegruppe von H bezuglich g.
Gemâss 3.3. gibt es einen Punkt peH und ein Elément Tell mit d(p, Tp) k9

nach unserer Konstruktion liegen die Punkte/? und Tp in einer ausgezeichneten Lage.
Wir erinnern an den Punkt q0 eNund die Decktransformation So el mit d(q0, Soqo)

Ky ferner an die Geodâtische v mit v(0) #0 und v(l) Soqo. Fur die
Decktransformation Tq — v'1 oS0°<p und die Geodâtische y0 ç'1 o v gilt der

SATZ

(1)

(2) y0 (0) Po, 7o (0) flic (~) ||*o (OU * -

\OX/

(Norm bezuglich g sowie bezuglich g).
Beweis. Beachte <p(po) qo> dann folgt d(pO9Topo) d(qO9 Soqo) K. Ferner

gilt y0 (0) V-1 (v(0)) =/;0 und fo(O)
aK(d/ôxn)po. Die Kurve y0 ist nach Konstruktion zunâchst ^-Geodâtische. Weil

y0 (0) p09 ist y0 nach 4.3.(6) auch ^-Geodâtische. Bezuglich beider Metriken gilt also

||yo(Oll " const mit derselben Konstanten, denn in Hpo stimmen gemâss 4.3.(5) g und

g iiberein. Die Behauptung ||yo(0ll * folgt dann aus ||yo(0)ll aK\\(d/dXn)p0\\ K-

Corollar
(3) Fur aile teR gilt T0(y0(t)) yo(t + 1).

Beweis. Die Behauptung ergibt sich aus (1) und der Normierung ||yo(0llz=K-
(vgl. [4]).

5. Die Decktransformationen TQ9Tu...9Tn_l

In diesem Kapitel fûhren wir Decktransformationen Tl9..., Tn-1 ein, diezusammen
mit To eine wesentliche Stûtze unseres Beweises bilden werden.
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5.1. SATZ. Es existieren Tu...9Tn^eII wid eigentliche g-Geodâtische yl9...9yH-u
sodassfur k 1,...,«— 1 gilt

(2)

(3) yk nicht aequivalent zu y0,
(4) dip0, TkPo) < 46 + X + a'1 Iog4(n - 1

Beweis. Wir betrachten die Punkte

<lk (rôlki ...9 rôn.ltk, cr)eH, k l,...,n- 1,

r (1 + c2)"1/2, c"1 (« - 1)1/2 eûô(l - e~aô).

Nach 3.2. gibt es Sl9...9SH-ieII so, dass d(SkpO9qk)^ô. Dann ist nach 4.3.(1)
d{Skp0, qk) < d(Skp09 qk) < ^ und somit nach 2.4., Lemma 1

cV

"Ë

Daraus folgt wie in [4]

det^f^o^Ki.^.-i^O. (5)
Setzen wir Tk SkoT0 oSk~1 eTI und yk Skoy0 fur fc 1,..., n - 1, so folgt (1) aus

4.4.(3) und (2) aus (5) und yo(O) =p0- Wâre eine der Geodâtischen yk, k 1,..., n — 1,

aequivalent zu y0, so wâre wegen 4.4.(2) und 2.4., Lemma 2 Xi(yk(0)) 0 fur / 1,

...,«— 1. Das widerspricht der soeben bewiesenen Behauptung (2).
Weiter ergibt sich wie in [4] d(p0, Tkp0) < 26 + 2 + 2</(/?0, #fc). Wegen 4.3.(2)

folgt daraus

J(Po, TkPo) < 2(5 + A + 2</(/>o, ft). (6)
Aus der Définition der Punkte qk und der Abstandsformel 2.4.(1) ergibt sich

(1 + (a - 1) e2aô(l - e"^)2)1/2 < eaô(n - 1)1/2,

also 2d(p0, qk) < là + a"1 Iog4(rc - 1).

Somit folgt aus (6) die Behauptung (4).

5.2. Mit Hilfe der Decktransformationen TO9Tl9...9Tn.1 lâsst sich ein Identitâts-
kriterium formulieren.
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SATZ. Aus R eI{H)9 RTk TkRfur À: 0, 1,...,«- 1 folgt R id.
Beweis. Analog zum Fall konstanter Krûmmung (vgl. [4]) beweist man mit Hilfe von
2.3 und 5.1.(3)

*(*('))-?*(')• (i)

Fiir k 0 folgt daraus wegen 4.4.(2)

Fur A: 1,..., n — 1 sei vkeHP0 der eindeutig bestimmte Vektor mit

êxpt>k yfc(O). (3)

Da wegen Re I(H)

ëxpoj^^jRoëxp, (4)

so folgt mit (1) und (3)

&xpRPo(vk) R êxpvk R(yk{0)) yfc(0) ëxpi;k.

Da Qxp:Hpo -> // injektiv ist, ergibt sich daraus

**,(**) »*. * l,...,n-l. (5)

Wegen 4.3.(3) gilt exp vk cxpvki zusammen mit (3) und 5.1.(2) folgt daraus

det fa (exp vk))t<e>k^n_ t # 0.

Daher bilden die n Vektoren vl9...9vn-u (dlôxn)po nach 2.4., Lemma 3 eine Basis von
HPQ. Somit folgt aus (2) und (5), dass RPo id, und daraus nach (4) R id.

6. Konstruktion der disjunkten Kugeln

6.1. Die angekûndigte Abschâtzung fur die Ordnung von I(M) kommt durch einen

Vergleich von Kugelvolumen zustande. Wir fûhren nun den Raum ein, in dem die

wesentliche Ûberlegung durchgefûhrt wird. (vgl. [4]).
Wir betrachten das cartesische Produkt

§ /r+» {p (Pl Pn+l)\p(eH}

und machen § zu einem metrischen Raum, indem wir die Distanz der Punkte
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p =(/>!,...,pn+i), q (qi,..>, tfn+1)definierendurch

b (p, q) Max {J(pi9 qt) \ i 1,..., n + 1}. (1)

Wir setzen Bp(o) {qeH \d(pyq)<o] und ©p(^) {qe§ |b(p, q)<e}, dann

gilt offenbar

95p((?) Bl,1((?)x...B^+,((?). (2)

Es sei m das bezûglich 1{H) invariante Mass auf H, dièses induziert ein Mass m auf
dem cartesischen Produkt § Hn+1, und es gilt wegen (2)

m(f8p(g)) "Um(Bpl(Q)). (3)
i=l

Im letzten Kapitel werden wir vom Zentrum p unabhângige Abschâtzungen von
m(Bp{o)) herleiten.

6.2. Gemâss Abschnitt 3.1. gilt ord/(M)= [77*:77],wobei/7*denNormalisatorvon
JJ in 1(H) bezeichnet. Wir halten jetzt eine natùrliche Zahl r < ord/(Af fest. Dann
gibt es Elemente Uu..., UreTl* mit UtUf1 $n fur i^j. Nach 3.2. gibt es Sf6i7 so,
dass d(p0, SiUiPo) < ô. Die Elemente F( «S^ haben die Eigenschaften

VtïVj fur î#;, (l)

^(Po^iPoX*. (2)

Wir betrachten den Punkt

Po (Po>'->Po)e$) (3)

und fiir i= 1, r die Punkte

p, (ViPu VtTopu F,rw_lPl)eS. (4)

Dabei ist/?x der gemâss 3.3., Satz 2 existierende Punkt von H mit den Eigenschaften

TPl)\Teir} k9 (5)

<S. (6)

Nach 6.1.(1) ist

b(p0, p,) Max{J(p0, F^O, ^(Po, ^^Pi) | k 0,..., n - 1}. (7)
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Wegen (2) und (6) gilt

<?(Po, ViPi) < d(p09 ViPo) + d(ViPo, ViPl) < 20. (8)

Ferner gilt fur k 0,..., n - 1

o> VtTkPi) < d(p09 ViPo) + d(ViPo, VtTkPo) + d{V{rkPo, VtTkPl)

Daraus folgt nach 4.4.(1) und 5.1.(4)

2ô + k^2ô + à, (9)
d{p0, VtTkPl) < 60 + A + a"1 Iog4(« - 1), k 1,..., « - 1.

Aus (7), (8) und (9) ergibt sich

b(po> Pi) < 65 + x + a"1 Iog4(« - 1), i 1,..., r. (10)

Nun werden die gegenseitigen Abstânde der Punkte pi9 i= 1,..., r, nach unten abge-
schâtzt. Setzen wir

Rtj^Vf'Vj, l<ij<r9 (11)

so gilt i?l7ei7* c 7(^) und

T^^^T^ijEn, & 0,...,/2-1. (12)

Ferner gilt

J(P» T.-'Rij'T.R^) ^ d(VtTkPu VjTkPl) + d(ViPu VjPl).

Daraus folgt wegen (4) und 6.1.(1)

d(Pu Tk-lR^TkRijPx) < 2b(pf, pj)9 k 0,..., n - 1. (13)

Damit schliessen wir

b(Pi,p,)»A/2 fur ï#j, l<ij<r. (14)

Aus b(p,-, Pj) < A/2 folgt nâmlich wegen (13) und (5)

à{Pu T^R^TtRypà < inî{d(Pl9 TPi) | TeH'}.

Beachten wir (12), so folgt daraus RuTk TkRtj fur k 0,...,»- 1. Mit dem Iden-
titâtskriterium in 5.2. schliessen wir i?ii id, zusammen mit (11) und (1) folgt /=/
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Die Ungleichung (14) besagt, dass die Kugeln 93Pi(2/4), i 1,..., r, paarweise disjunkt
sind. Wegen (10) sind dièse Kugeln enthalten in der Kugel
23PO(6(5 + 5A/4 + a'1 Iog4(« - 1)). Daher gilt fur r ^ ord/(M)

t nt(33P£(A/4)) < m08po(6<5 + 5a/4 + a"1 Iog4(« - 1))). (15)

Nach (3) und 6.1.(3) folgt

Fur ^8Pi(Q) gil1: zunàchst nach (4) und 6.1.(2)

%>M BViPl(Q) X BViTopi(Q) X'~BVtTn-lPi(Q)'

Weil sowohl aile V{ als auch aile Tk lângentreu sind, gilt

m (BvtPl (q)) m {BViTkPi (q)) m (Bpi (q))

Somit folgt aus 6.1.(3)

îît (%Pi {q)) (m (Bpi (g)))n+ x. (17)

Setzen wir (16) und (17) in (15) ein, so erhalten wir

(Bpo(6ô + 5A/4 4- a"1 Iog4(« -

Da dièse Ungleichung fur jede natiirliche Zahl r < ord/(M) gilt, so schliessen wir,
dass ord/(M) endlich ist und derselben Ungleichung genûgt. Ferner wird aus (18),
sobald wir die Kugelvolumen abschâtzen kônnen, auch die angekiindigte Abschâtzung
fur ord/(M) folgen.

7. Auswertung

7.1. Die Untersuchung der Kugelvolumen fuhren wir in einer beliebigen einfach

zusammenhângenden vollstândigen «-dimensionalen Riemannschen Mannigfaltig-
keit N9 deren Schnittkrummung zwischen den Schranken -b1 und -a1 liegt.

(0<a<6). Wir greifen einen Punkt^eA^ heraus und bilden die Kugeln B(q) mit
festem Zentrum/> und Radius q. Das Volumen von B(q) bezeichnen wir mit m (g).

Zur Berechnung von m(o) betrachten wir die Exponentialabbildung expp:Np-+N
im Kugelzentrum p. Fuhren wir in Np Polarkoordinaten ein, das heisst, setzen wir
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v ru mit r > 0 und u Elément der Einheitssphâre S c Np9 so gilt

Q

m{o)= f f J(ru)r"-ldrdu, (1)J f J(ru)î'-1drdu,
S 0

wobei /(i?) den Betrag der Funktionaldeterminante von expp im Punkt veNp und du
das kanonische Mass auf S bedeuten. (vgl. [1], p. 54 ff.).

Fur J(ru) kann eine nur von r und den Krûmmungsschranken a, b abhângige
Abschâtzung angegeben werden.

SATZ. Fur aile ueSundr>0gilt

n-l
(2)

/Sin arV"1 /SinèrV"1

\ ar J \ br J

Wir verschieben den Beweis dièses Satzes auf den nâchsten Abschnit.
Aus (1) und (2) erhalten wir, wenn wir mit en die Konstante Js du und mit sn die

Funktion sn(ç) JS Sin"'1 rdr bezeichnen, die Abschâtzung

etta'\ (aQ) ^ m (q) ^ enb~nsn (bQ).

Setzen wir dies in 6.2.(18) ein und beachten, dass jene Ungleichung auch fur ord/(Af
gilt, so erhalten wir

1 ^

(X

ôVaA/4)

Eine explizitere Form der Abschâtzung ergibt sich, wenn man fur sn(g) die elementar

zu beweisettden Ungleichungen

verwendet. Gemâss 3.3., Satz 3 kônnen wir ferner, wo wir nach oben abschâtzen, X

durch 20 ersetzen. So gelangen wir zum Résultat

ord/(M) < (2n+2b-nX-ne*> 5(n-lybô(4(n - i))--1*»-!))»*!.

7.2. Zum Schluss holen wir den Beweis von 7.1.(2) nach. Wir verwenden eine leichte

Modifikation einer Méthode von Bishop und Crittenden (vgl. [2], p. 253 ff.). Zunâchst
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geben wir eine geeignete Darstellung von J{v) an. Zum Punkt veNp gehôren die

kanonische lsometrie jv:Np-> NPtV des Tangentialraumes Np auf dessen Tangential-
raum NPtV (vgl. [3], p. 9, p. 73) und die durch expp induzierte Abbildung expPtl?:

NPtV-+NexPpV. Mit diesen Bezeichnungen gilt

J (v) |det expp, v\ |det (expp> „ ojv)\.

/ ist eine stetige Funktion auf Np und nimmt in v 0 den Wert 1 an. Fur beliebiges v
wird eine Basis {vl9..., vn} von Np gewâhlt, es gilt dann unabhângig von der Basiswahl

Wir wâhlen ein festes ueS und betrachten /in den Punkten t> ru. Zur Abkurzung
schreiben wir J(r) anstelle von J(ru). Die gesuchte Abschâtzung fur J(r) wird durch

Intégration einer Abschâtzung fur /' (t)/J(t)9 (0 < t < r), gewonnen. Seien also vorder-
hand auch r und / mit 0<t^r fest. Durch u eS wird eine Geodâtische y mit y (0) =p9
y(O) u und ||y|| 1 ausgezeichnet. Wir wâhlen eine Basis {ul9...9 wB_i, u} von Np
mit #(*//, w) (t/|, m) 0 und definieren damit die Felder yf(5) exppsw °jsu(sUi) fur
/=1, ,/i — 1 und Yn(s) QxpPfSU°jsu(u). Die Felder Yi9 f=l,...,«— 1, sind die

eindeutig bestimmten Jacobifelder lângs y mit Ff(0) 0 und 7/(0) ut (vgl. [3], p.
132. Y[ bedeutetdie kovariante Ableitung von Yt lângs y), Yn fâllt mit dem Tangential-
feld y zusammen. Zudem gilt fur aile s und i ^n(Yi9 Yn) (s) 0.

Zur Berechnung von J(s) verwenden wir fur s > 0 die Basis {sul9..., sun-l9 u}. Es

gilt

J{sy. WM»~'Y(.)l
\\SUX A->SUn-X A M||

Fur spâtere Zwecke wâhlen wir ui9...9un-1 so, dass fur die festgehaltene Zahl t die

Vektoren Yt(t),..., Yn(t) ein Orthonormalsystem bilden. Wir berechnen J'(s)/J(s)
durch Ableiten von J2 (s) und erhalten

J(s) 2(r1A..-Fn,F1A...yn)(5) s

Fur s t vereinfacht sich dieser Ausdruck wegen der Orthonormalitât von Yt (t),...,
Yn(t) wesentlich. Es gilt
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Beachten wir Y'n 0, so erhalten wir

t

Die Skalarprodukte (Y(, Yi)(t) erfullen die Ungleichungen

Cos at x
Cos bt

0)

Wir fiihren damit den Beweis von 7.1.(2) zu Ende und werden nachher die Richtigkeit
von (2) nachweisen. Die Ungleichungen (2), eingesetzt in Formel (1), fiihren auf

/ Cosaf 1\ J'{i) / Cos 6* 1\
{n - 1) (a U —^ < (n - 1) 4 ——v J\ Sinat tj J(t) v J\ Sinbt tj

Intégration von r' nach r (0 < r' < r), Anwendung der Exponentialfunktion und Grenz-
ûbergang r' gegen 0 liefern

/SinarV"1
x

/SinèrV"1
<J(r)< ——\ ar \ br J

Damit ist 7.1.(2) - bis auf die Beziehung (2) - bewiesen.

Wir erbringen nun den Beweis von (2). Ff ist ein Jacobifeld mit F,(0) 0, es gilt
also

t

(Y{, Y,) (t) !,(¥,) J (||r/||2 - (Ry(Yh y) (y), Y,)) ds. (3)

Wegen ||y|| 1 und (Yh y) 0 kônnen wir (Ry(Yh y)(y), Yt) durch K(Yh y)\\Yt\\2
ersetzen. Verwenden wir die Abschàtzung — K^a2, so erhalten wir

(4)

Zur weitern Untersuchung dièses Intégrais betrachten wir auf den Feldern lângs y die

Bilinearform

/ {V, W)~j ((V', W) + a2 (F, W)) ds.
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Damit geht (4) ûber in

Unter den Feldern W mit festen Werten in 0 und t besitzt dasjenige den minimalen
Wcrt I(W, W\ das der Differentialgleichung W"-a2W=0 genùgt. Fur die Rand-

bedingungen W^O) Yt(0) 0,Wi(t)= Yt(t) fûhrt dies auf die Felder gEh wo Et
ParaJlelfeld mit Et(t) Yt(t) ist, und g die Funktion g(s) Sinas/Sinat bezeichnet.

Fur dièse Felder gilt I(Yh Yt) ^ I(gEi9 gEt) a Cosat/Sinat. Zusammen erhalten wir

(7/, Yi)(t)^ a Cosat/Sinat.

Fur die Abschâtzung nach oben gehen wir wieder aus von (3). Fur jedes Feld Wt
mit Wt(0) 7,(0) 0 und Wt{t) Yt(t) gilt

It(Yt)<It(Wt).

Wir wâhlen fur W% Felder der Gestalt gEi9 wo Et Parallelfeld mit Et(t) Yt(t) ist,
und g eine C°°-Funktion mit g(0) 0, g(t) 1, und erhalten

t

It(Wt) It{gEt) J ((g')2 -K(EU y) g2) ds.

0

Hier setzen wir die Abschâtzung — K^b2 ein, es gilt dann

Die beste Abschâtzung wird erhalten, wenn die Funktion g (s) Sinbs/S'mbt gewâhlt
wird. Fur dièses g gilt

t

„ „, Cos bt

o

und wir erhalten zusammenfassend

Damit ist die Behauptung 7.1.(2) vollstândig bewiesen.
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