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Uber die Isometriegruppe bei kompakten Mannigfaltigkeiten
negative Kriimmung

HANs-CHRrisToPH IM HoF (Basel)

1. Einleitung

Wir betrachten eine kompakte n-dimensionale Riemannsche Mannigfaltigkeit M,
deren Schnittkriimmung durchwegs negativ ist. Fiir solche Mannigfaltigkeiten ist die
Isometriegruppe (M) endlich. Wir werden dies mit einer Methode beweisen, die zu-
sdtzlich fiir die Ordnung von I(M) eine Abschidtzung nach oben erlaubt.

Der hyperbolische Raum H = {(u,, ..., u,) €R" | u, > 0} wird mit einer geeigneten
Metrik versehen, sodass er als universelle Riemannsche Uberlagerungsmannigfaltig-
keit von M gewihlt werden kann. r disjunkte Kugeln vom gleichen Radius werden im
cartesischen Produkt H"*! fiir jede natiirliche Zahl r < ord I(M ) konstruiert, die alle
in einer gewissen grosseren Kugel liegen. Ein Vergleich der Kugelvolumen liefert eine
Abschétzung fiir r, also auch fiir ord I(M).

Dieses Verfahren wurde zuerst von H. Huber durchgefiihrt und wird in [4] fiir
kompakte Mannigfaltigkeiten der Kriimmung — 1 beschrieben.

In der Abschétzung fiir ord /(M) treten folgende Grossen auf:

—~ Die Dimension n. — Der Durchmesser . — Die Schranken der Kriimmung. Da M
kompakt ist, existieren Zahlen a, b mit 0 < a < b, sodass die Kriimmung im Inter-
vall [ — b%, — a*] variiert.

~ Die Zahl A= sup {L(p) | peM}, wobei L(p) das Infimum der Langen nicht-null-
homotoper Wege mit Anfangs- und Endpunkt p bedeutet.

Setzen wir noch s, (x) = [§ Sin" !¢ dt, so lautet das Resultat

a"s,(b(65 + 54/4) + a 'blog4(n — 1))\"*!
b"s, (ai/4) ) '

ordI (M) < (
Elementare Abschidtzungen fiihren auf die Form

ordI (M) < (2”+2b""},""es’ 5(n—1)bs (4(n — 1))0‘1b(n-1) pt1

Die vorliegende Arbeit ist eine gekiirzte Fassung meiner Dissertation. Herrn Professor
Heinz Huber danke ich herzlich fiir die Anregung und die Hilfe, die ihr Zustandekom-
men ermdoglicht haben.

2. Mannigfaltigkeiten negativer Kriimmung

2.1. Es sei M eine kompakte Riemannsche Mannigfaltigkeit der Dimension » mit
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durchwegs negativer Schnittkriimmung. Aus der Kompaktheit folgt die Vollstindig-
keit von M, sowie die Existenz von zwei Zahlen a, b mit 0 < a < b derart, dass die
Kriimmung zwischen den Schranken — b? und — a? liegt.

Wir werden universelle Riemannsche Uberlagerungen von M betrachten. Dabei
treten einfach zusammenhéngende vollstindige Riemannsche Mannigfaltigkeiten auf,
deren Kriimmungen ebenfalls zwischen den Schranken — b? und — a? liegen. Zu
Vergleichszwecken werden wir auch den hyperbolischen Raum konstanter Kriimmung
heranziehen. Dieser ist eine weitere einfach zusammenhédngende vollstindige Rie-
mannsche Mannigfaltigkeit negativer Kriimmung.

In den folgenden Abschnitten stellen wir fiir die vorkommenden Mannigfaltig-
keiten einige Eigenschaften zusammen.

2.2. Es sei N eine einfach zusammenhéngende vollstindige Riemannsche Mannig-
faltigkeit negativer Kriimmung. Unter einer Geodétischen verstehen wir eine differen-
zierbare Kurve y: R— N, deren Tangentialfeld § ein Parallelfeld ldngs y ist. Es gilt
7 (¢)l = const; falls ||7(¢)]| # O heisst y eine eigentliche Geoditische. Wir bezeichnen
mit N, den Tangentialraum von N im Punkte ¢g. Zu jedem ve N, gibt es genau eine
Geoditische y,: R— N mit y,(0) = ¢ und 7,(0) = v. Damit wird die Exponentialab-
bildung exp,:N,— N definiert durch exp,v=1y,(1). Fiir die Distanz der Punkte ¢
und exp,v gilt

d (g, exp,v) = |lv] = L(, | [0, 1]),

wobei L die Liange eines Kurvensegmentes bedeutet.
Die Exponentialabbildung exp,: N, — N ist in unserem Fall stets diffeomorph, ins-
besondere sind die eigentlichen Geodétischen injektiv.

2.3. Zwei Geoditische y, u: R— N sollen aequivalent heissen (y ~ ), wenn es Zahlen
a # 0, b gibt, sodass fiir alle t € R gilt u(¢) = y(at + b). Ist eine von zwei aequivalenten
Geodaitischen eigentlich, so auch die andere.

Besteht zwischen einer Isometrie T€I(N) und einer eigentlichen Geodétischen
7:R— N die Beziehung T(y(¢)) = y(¢ + a), so heisst T eine Translation ldngs 7.

LEMMA
Vor.: TeI(N), y,, y2: R— N eigentliche Geoditische,

T(:@®)=v(t+a) fir i=1,2.
Beh.: (1) Aus a,a, =0 folgt a; =a, =0,
(2) Aus a;a, #0 folgt y, ~ y,.
Der Beweis lisst sich gleich wie im Fall konstanter Kriimmung fiihren. (vgl. [4]). Fiir
Isometrien ohne Fixpunkte vergleiche man [6].
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2.4. Wir verwenden den hyperbolischen Raum konstanter Kriimmung als Vergleichs-
mannigfaltigkeit, weil sich in ihm einige Rechnungen sehr explizit durchfiihren lassen.
Er wird realisiert durch den Halbraum H = {(u,, ..., u,) €eR" | u, > 0} mit den Koor-
dinatenfunktionen x;(u,..., 4,) =u;, | <i<n, und dem Masstensor g (6/0x;, 0/0x,)
= a~2x, 28, und erhilt durch diese Definition die konstante Kriimmung — a?.

Fiir die Distanz d(p, q) der Punkte p, ge H gilt

Cosad(p,a)=1+4," (1) %" (@) T (:(p) = x:(0)’. M
Daraus ergibt sich sofort

LEMMA 1 ([4))
Vor.: D, QEH, d(ps 9) <0,0>0.
Beh.: YiZi(xi(p) — x:(@))* < (1 —e™)* x;(q).

Aus der Differentialgleichung fiir Geodétische ergibt sich

LEMMA 2
Vor.: po=(0,...,0, 1), y: R— H Geoddtische mit

y(0)=po»  (0) = const (3—)

Xn

Beh.: Fiiri=1,...,n—1 gilt x;(y(t)) =0.

LEMMA 3
Vor.: po=(0,...,0,1), vy,..., 0,y €H,,,

det (x; (expvy))1 <i,k<n—1 # 0.

Beh.: vy, ..., Vy_q, (0/0x,),, linear unabhdngig.
Fiir den Beweis von Lemma 3 verweisen wir auf [4].

2.5. Betrachten wir eine Uberlagerungsmannigfaltigkeit von M und daneben den
hyperbolischen Raum der konstanten Kriimmung — a2, so haben wir eine Situation
vor uns, in der wir den Vergleichssatz von Rauch anwenden konnen. Da keine konju-
gierten Punkte auftreten und alle vorkommenden Exponentialabbildungen diffeo-
morph sind, zitieren wir den Satz von Rauch gleich in einer sehr speziellen Fassung.
(vgl. [3], p. 1781L,, [5], p. 4f.).

SATZ
Vor.: H, N einfach zusammenhdngende vollstindige Riemannsche Mannigfaltigkeiten,
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dimH =dimN, Kriimmung von H= — a*, Kriimmung von N< —a?, peH, geN,
i:H,— N, lineare Isometrie, @ =exp,ecioexp, ““H—- N, I kompaktes Intervall,
y:1— H stiickweise differenzierbarer Weg, v= @ oy:I1— N.

Beh.: L(y) < L(v).

3. Ubertragung des Problems auf eine universelle Uberlagerung

Es sei 6: N — M eine feste universelle Riemannsche Uberlagerung von M. In den
folgenden Abschnitten werden wir die in der angekiindigten Abschidtzung vorkom-
menden Grossen von M in Beziehung setzen zu Grossen, die sich mittels N und der
Deckgruppe 2 formulieren lassen.

3.1. Wir bezeichnen mit Z* den Normalisator von X in /(N). Dann gilt der Satz

I(M)= ¥z, also ordI(M)=[Z*:X].

3.2. Der Durchmesser von M ist definiert als die Zahl 6 =sup {d(p, q) | p, geM}.
Beziiglich der Uberlagerung hat 6 folgende Bedeutung.

SATZ. Fiir alle p, g€ N gibt es ein S€ZX, sodass d(p, Sq) < 6.

3.3. Fiir p e M bezeichnet Q' (p) die Menge der nicht-nullhomotopen Wege mit An-
fangs- und Endpunkt p. Wir definieren

L(p) =inf{L(y)|ye2 (p)} und
x =inf{L(p) | peM}, A=sup{L(p)|peM}.

Nun definieren wir eine Funktion auf N, die sich als die Zusammensetzung L oo er-
weisen wird. Es sei 2’ = Z\{id}. Fiir geN setzen wir

f(q)=inf{d(q, Sq) | SeZ'}.

In der Tat besteht zwischen f und L die Beziehung f= L -¢. Dies erlaubt uns, die
Grossen x und A auf N zu interpretieren. Es gilt

x=inf{f(q)|qeN}, 2A=sup{f(q)|qeN}. (1)

Damit wird eine weitere Untersuchung von x und 4 moglich .

SATZ 1. Fiir alle geN gibt es ein S, €X', sodass d(q, Soq) =f(q).
Beweis. Es existiert eine Folge {S,} in 2’ mit d(q, Siq)—f(q). Weil Z stark dis-
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kontinuierlich ist, existiert eine Teilfolge {k;} und ein S, €X' mit S, , =80, und es
gilt d(q, Soq) = d(g, Si,q) > f(q), also d(q, Soq) =1(q).

SATZ 2. Es existieren Punkte q,, q, €N, sodass

f(QO)=Ka f(ql):;L und d(quq1)<6.

Beweis. Gemiss 3.2. gibt es ein Kompaktum K = N mit ¢ (K) = M. Die stetige
Funktion f nimmt in einem g, € K ihr Minimum und in einem ¢; €K ihr Maximum
beziiglich K an. Die so bestimmten Extrema sind auch beziiglich N extremal, denn es
gilt foS =1 fiir alle SeZX. Mit (1) erhalten wir f(g,) =« und f(q;) = A. Nach 3.2.
koénnen wir durch ein Se€XZ zu einem Punkt g, = Sq; iibergehen, fiir welchen immer
noch f(g,) = 4, aber auch d(q,, q,) < 9 gilt.

SATZ 3. Es gilt 0 <k <1< 20.

Beweis. Zu q, existiert nach Satz 1 ein Element S, €Z’ mit d(go, Soq0) =/ (q0)
= k. Weil 2 fixpunktfrei ist, und S, # id, gilt g, # Soqo, also d(go, Sogo) > 0.

Zu g €N existiert ein Punkt ¢’ e N mit d(q, q') =4/f(g). Fiir alle SeX’ gilt f(q)
<d(q, Sq)<d(q, Sq') +d(Sq', Sq) = 1f(q) + d(q, Sq'), also d(q, Sq') > 1/(q). Zu-
sammen mit d(g,q')=1%f(g) folgt daraus inf{d(q, Sq’)|SeZ}=1f(q). Aber
inf {d(q, Sq’) | SeZ}=d(s(g), o(¢')) <6. Daraus folgt f(q)<26, insbesondere

A=f(q:) <26
4. Eine spezielle Uberlagerung

4.1. Wir haben bisher eine beliebige universelle Uberlagerung o: N — M studiert.
Nun wollen wir den hyperbolischen Raum H zur Uberlagerungsmannigfaltigkeit von
M machen, und zwar so, dass der Punkt p,=(0,...,0, 1) e H eine ausgezeichnete
Rolle spielt. Dazu konstruieren wir einen Diffeomorphismus ¢:H— N, der p, auf
einen ausgezeichneten Punkt von N abbildet, und versehen H mit derjenigen Metrik,
die ¢ lingentreu macht. So erhalten wir, indem wir n =06 o :H — M setzen, die ge-
suchte Uberlagerung.

4.2. Gemiss 3.3. gibt es einen Punkt g, €N und eine Decktransformation S,€eZX’,
sodass d(qo, Soqo) = k. Ferner sei v die eindeutig bestimmte Geodétische mit v(0) = g,
und v(1) = Soq,. Es gilt nach 2.2. ||v(0)| =«.

Daneben betrachten wir den in 2.4. eingefiihrten hyperbolischen Raum H mit der
Metrik g, die zur konstanten Kriimmung — a? fiihrt. In H greifen wir den Punkt p,
=(0,..., 0, 1) und den Tangentialvektor (9/0x,),, heraus.

SATZ. Es existiert ein Diffeomorphismus ¢ : H— N mit
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(1) @(po) = 4o,

) @y (arc 0/ axn)po) =v(0),

(3) Fiir alle p, g€ H gilt d(p, 9) < d(¢ (p), ¢(9)).
(Mit ¢, wird das Differential von ¢ in p bezeichnet).

Beweis. Die Exponentialabbildungen exp, :H, — H und exp,:N,— N sind
diffeomorph. Zwischen H, und N, wihlen wir eine lineare Isometrie i, die ax(d/0x,)
in v(0) iiberfiihrt. Die Zusammensetzung ¢ = €XPy, °1 °EXP ;01 liefert den gewiinschten
Diffeomorphismus.

Es gilt ¢ (po) = (exp,, °i)(0) = exp,,0 = go.

Zum Beweis von (2) zeigen wir zuerst ¢, = i. Mit v € H, bilden wir die Geodétische

y(t) = exp,, tv, sodass v = §(0). Dann gilt (¢ o y)(t) = (¢ cexp,,)(tv) = (expg, ©i) (1),

also i(v) = (@)(0) Somit erhalten wir ¢, (v) = ¢,,(7(0)) = (@)(O) = i(v) fiir
alle ve H, . Daraus folgt sofort ¢, (ax (0/0x,),,) = i(ax (8/0x,),,) = v(0).

Die Ungleichung (3) ergibt sich sofort mit Hilfe der in 2.5. zitierten Fassung des
Vergleichssatzes von Rauch.

4.3. Vermoge des Diffeomorphismus ¢: H— N fiihren wir auf H eine neue Metrik g
ein. Wir setzen fiir v, we H, g,(v, W) = 8o, (@,v, ¢,w). Damit wird ¢:(H, §)— N ein
ldngentreuer Diffeomorphismus.

Im folgenden Satz vergleichen wir die zu den Metriken g und g gehorigen Distanzen
dund d.

SATZ
(1) Fiir alle p, g€ H gilt d(p, q) < d(p, q),
(2) Fiir alle qeH gilt d(p, q) = d(po, 9)-
Beweis. 1. Nach 4.2. (3) gilt d(p, q) < d(¢ (p), ¢ (g)), weil ¢ lingentreu ist (beziig-
lich &), gilt weiter d(¢ (p), ¢(q)) = d(p, 9).
2. Es sei ?x_ﬁ die zur Metrik g gehorige Exponentialabbildung. Wir zeigen zunéchst

€XPpo = €XPpg- L A3)
Es gilt @ cexp,, = exp,, oi = €xXp,, °@,, = ¢ °€Xp,,, da ¢ injektiv ist, folgt daraus

exppo = eXpl’o'
Seien ge H und v das eindeutig bestimmte Element aus H,, mit g =exp,,v

= éx—pp0 v. Dann gilt
d(po’ q) = (gpo (U’ U))llz ’ d(pOs q) = (gpo (U, U))llz . (4)

Nun zeigen wir

8p0o = 8po - &)
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Es gilt fiir beliebige v, we H),

8o (v, w) = 840 (i (v), i(w)) = 840 ((ppov’ (ppow) = &po (v, w).

Aus (4) und (5) folgt die Behauptung (2).
Die Beziehung (3) erlaubt uns eine einfache Folgerung:
Fiir eine Kurve y: R— H mit y(0) = p,, gilt
(6) 7y ist genau dann g-Geoditische, wenn sie g-Geodétische ist.

4.4. Wir setzen 7 = ¢ o und erhalten die Uberlagerung n: H— M. Die Projektion =
ist langentreu beziiglich ¢ und die Deckgruppe IT ist eine Untergruppe von I(H), der
Isometriegruppe von H beziiglich g.

Gemass 3.3. gibt es einen Punkt peH und ein Element Tell mit d(p, Tp) =k,
nach unserer Konstruktion liegen die Punkte p und 7p in einer ausgezeichneten Lage.
Wir erinnern an den Punkt g, € N und die Decktransformation S, € Z mit d(go, Soqo)
= K, ferner an die Geoditische v mit v(0) =g, und v(1) = Syq,. Fiir die Deck-
transformation T, = ¢~ oS, o ¢ und die Geoditische y, = ¢ ~! o v gilt der

SATZ
1) J(Po, ToPo) =K,

: 0 :
@ nO=ro G©=ax() . ol =x.
x"/ Po
(Norm beziiglich g sowie beziiglich g).
Beweis. Beachte ¢ (po) = q,, dann folgt d(po, Topo) = d(qo, Soqo) = k. Ferner

—

gilt  7(0)=¢ ' (v(0))=po, und $(0)= (™" =v)(0) = ¢,,'(v(0)) =i~ *(v(0))
= ax (0/0x,),,. Die Kurve y, ist nach Konstruktion zundchst g-Geoditische. Weil
70(0) = py, ist yo nach 4.3.(6) auch g-Geodaitische. Beziiglich beider Metriken gilt also
170 (¢)|| = const mit derselben Konstanten, denn in H,, stimmen gemass 4.3.(5) g und
g uberein. Die Behauptung |, (¢)ll = x folgt dann aus |9, (0)|| = ax||(8/0x,),,!| = .

Corollar
(3) Fiir alle teR gilt To(y0(2)) = yo(t + 1).

Beweis. Die Behauptung ergibt sich aus (1) und der Normierung | 7,(2)| = k.
(vgl. [4D.

5. Die Decktransformationen 7,, 7,,..., T,_,

In diesem Kapitel fithren wir Decktransformationen 77, ..., T, _, €in, die zusammen
mit T, eine wesentliche Stiitze unseres Beweises bilden werden.
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5.1. SATZ. Es existieren Ty,..., T,_, €Il und eigentliche g-Geoditische y1,..., ¥5-1,
sodass fiur k=1,...,n—1 gilt

1) Tu(re () = et +1),

(2) det(x;(74(0))1 <1, k<n-1 %0,

(3) yi nicht aequivalent zu y,,

4) d(po, Tupo) <46+ A+a logd(n—1).
Beweis. Wir betrachten die Punkte
g = (POps..s P0p—q, wcr)eH, k=1,..,n—1,

r=0+c*)"1?, cl=((m-1)"e?(1—-e%).

Nach 3.2. gibt es Sy,..., S,_; €Il so, dass d(Sypo, qx) <J. Dann ist nach 4.3.(1)
d(SiPo> 9x) < d(SkPos 9i) < 6 und somit nach 2.4., Lemma 1

n—1 )
Z (xi (Skpo) — r5,k)2 < e2a6(1 - e—ad)z czrz _ r
i=1

’

n—1

n—1
) (x: (Skpo) — réu)* < r*.

i,k=1

Daraus folgt wie in [4]

det(xi(skpo))ISi,kSn—l # 0. (5)
Setzen wir T, = S, Ty oS, ' €Il und y, = S, 07, fiir k=1,...,n~— 1, so folgt (1) aus
4.4.(3) und (2) aus (5) und y, (0) = p,. Wire eine der Geoditischen y,, k=1,...,n—1,
aequivalent zu y,, so wire wegen 4.4.(2) und 2.4., Lemma 2 x;(y,(0)) =0 fiir i =1,
..., n— 1. Das widerspricht der soeben bewiesenen Behauptung (2).

Weiter ergibt sich wie in [4] d(po, Tipo) <20 + 4 + 2d(po, g;). Wegen 4.3.(2)
folgt daraus

d(po, Tepo) < 26 + 4+ 2d(po, 41)- (6)
Aus der Definition der Punkte g, und der Abstandsformel 2.4.(1) ergibt sich

r2(c*+1)—2cr+1
2cr
— (1 e (n _ 1) e2a6(1 _ e—aJ)Z)I/Z < eaé(n _ 1)1/2,

Cos ad (po, qx) =1 + =(1+c7?)"

also 2d(p,, q;) <26 +a~ ! logd(n—1).
Somit folgt aus (6) die Behauptung (4).

S.2. Mit Hilfe der Decktransformationen T,, T,..., T,_, ldsst sich ein Identitdts-
kriterium formulieren.
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SATZ. Aus Rel(H), RT,=T,R fiir k=0, 1,...,n— 1 folgt R =id.
Beweis. Analog zum Fall konstanter Kriimmung (vgl. [4]) beweist man mit Hilfe von
2.3 und 5.1.(3)

R(7(1) =7 (1). 1
Fiir k =0 folgt daraus wegen 4.4.(2)

R _ R (a (9
= (o) ) (50)., @

Firk=1,...,n— 1 sei v, € H,, der eindeutig bestimmte Vektor mit

exp v, = 7 (0). (3)
Da wegen Rel(H)

expoR,, = Ro&xp, 4)
so folgt mit (1) und (3)

€Xp R,, (v) = R &xp v, = R(7,(0)) = 7,(0) = expo,.
Da e_fc_}; : H, — H injektiv ist, ergibt sich daraus

R,,(v)=v, k=1,..,n-1. (5)
Wegen 4.3.(3) gilt exp v, = e_;i)—vk, zusammen mit (3) und 5.1.(2) folgt daraus

det (x; (exp v))1 <i, k<n—1 # 0.

Dabher bilden die n Vektoren vy, ..., v,_4, (6/0x,),, nach 2.4., Lemma 3 eine Basis von
H,,. Somit folgt aus (2) und (5), dass R, =id, und daraus nach (4) R=id.

6. Konstruktion der disjunkten Kugeln

6.1. Die angekiindigte Abschitzung fiir die Ordnung von /(M ) kommt durch einen
Vergleich von Kugelvolumen zustande. Wir fithren nun den Raum ein, in dem die
wesentliche Uberlegung durchgefiihrt wird. (vgl. [4]).

Wir betrachten das cartesische Produkt

H= H"'' = {P=(P1s-s Prs1) I pieH}

und machen §) zu einem metrischen Raum, indem wir die Distanz der Punkte
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P=(P1s-»Pn+1)> 9= (q15---» gn4+,) definieren durch
b(p,q)=Max{d(p, q)|i=1,...,n+1}. (1

Wir setzen B,(¢)={geH |d(p,q)<e} und B,(¢)={qeH |d(p, q) <e}, dann
gilt offenbar

%v (Q) = Bp1 (Q) Xoeee Bpn+l (Q) . (2)

Es sei m das beziiglich I(H) invariante Mass auf H, dieses induziert ein Mass m auf
dem cartesischen Produkt § = H"*!, und es gilt wegen (2)
n+1
m (B, (e)) = [1 m (B, (e)- (3)

i=1

Im letzten Kapitel werden wir vom Zentrum p unabhingige Abschitzungen von
m(B, (o)) herleiten.

6.2. Gemiss Abschnitt 3.1. gilt ord /(M) = [IT*:II'], wobei IT* den Normalisator von
IT in I(H) bezeichnet. Wir halten jetzt eine natiirliche Zahl r < ord /(M) fest. Dann
gibt es Elemente Uy, ..., U, eIl * mit U,U; ' ¢1I fiir i # j. Nach 3.2. gibt es S; €Il so,
dass d(po, S;U;p,) < 6. Die Elemente V; = S;U, haben die Eigenschaften

ViV, fir i#j, (D

d(po, ViPo) < 0. (2)
Wir betrachten den Punkt

Po = (Po;---» P0)ED (3)
und fiir i =1, ..., r die Punkte

pi= (Vipy, ViToP1s s ViT,-1P1) €9 (4)
Dabei ist p, der gemiss 3.3., Satz 2 existierende Punkt von H mit den Eigenschaften

inf{d(p,, Tp,)| Tell'} =1, (5)

d(po, p1) < 6. (6)
Nach 6.1.(1) ist

b(p09 p!) = Max {d(po, I/ipl)’ d(Po’ I/iT‘kpl) l k = 0’ ey = 1} 8 (7)
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Wegen (2) und (6) gilt

d(po, Vip1) < d(Po» ViPo) + d(Vipo, Vipy) < 26.
Ferner gilt fiir k =0,...,n— 1

d(Po: ViTkpl) d(Po, ViPo) + d(ViPo: ViTkPo) + d(ViTkpm ViTipy)

<
< 26 + d(po, Tipo)-
Daraus folgt nach 4.4.(1) und 5.1.(4)

d(po, ViTopy) <20+ K <26+ 4,
d(po, ViTyp,) <65+ A+a 'logd(n—-1), k=1,..,n—1.

Aus (7), (8) und (9) ergibt sich

D(Pos P)) <66 +i+a llogd(n—1), i=1,..,r.

®)

®

(10)

Nun werden die gegenseitigen Abstinde der Punkte p;, i =1,..., r, nach unten abge-

schitzt. Setzen wir

R;=V'V,

i 1sijsr,

so gilt R,;eIl* c I(H) und

T, 'R;'TiR;ell, k=0,..,n—1.
Ferner gilt

d(ps, T 1Ri—lekRijP1) <d(ViTipy, ViTipy) + d(Vip1, Vipy).
Daraus folgt wegen (4) und 6.1.(1)

d(py, T, 'R ' TR,;p) <20 (i, ;), k=0,..,n—1,
Damit schliessen wir

d(pp)= A2 fir i#j, 1<ij<r.
Aus d(p;, p;) < 4/2 folgt nédmlich wegen (13) und (5)

d(Pla T lRi;lT;cRijpl) < inf{d(Pz, Tp;) l Tell'}.

(1)

(12)

(13)

(14)

Beachten wir (12), so folgt daraus R;;T, = T\ R;; fiir k=0,..., n — 1. Mit dem Iden-
titdtskriterium in 5.2. schliessen wir R;; = id, zusammen mit (11) und (1) folgt i =.
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Die Ungleichung (14) besagt, dass die Kugeln B,,(4/4),i=1,..., r, paarweise disjunkt
sind. Wegen (10) sind diese Kugeln enthalten in der Kugel
B,,(60 + 54/4 + a ' log4(n — 1)). Daher gilt fiir » < ord (M)

zr: m(B,, (4/4)) < m(B,, (65 + 5i/4 + a~ ! logd(n — 1))). (15)
i=1

Nach (3) und 6.1.(3) folgt

m (B, (0)) = (m (B, (@) (16)
Fiir 8, (¢) gilt zunéchst nach (4) und 6.1.(2)

B,,(e) = By,p, (2) X Byrop, (@) X By,1,,_p, (0)-
Weil sowohl alle V; als auch alle 7, ldngentreu sind, gilt

m (By,p, (0)) = m (By 1,5, (0)) = m(B,, ().

Somit folgt aus 6.1.(3)

m(B,, () = (m(B,, (@) (17)
Setzen wir (16) und (17) in (15) ein, so erhalten wir

e <m (B,, (66 + 51/4 + a~ ' log4(n — 1))))"+1
m (B, (4/4)) '

Da diese Ungleichung fiir jede natiirliche Zahl r < ordI(M) gilt, so schliessen wir,
dass ord7(M) endlich ist und derselben Ungleichung geniigt. Ferner wird aus (18),
sobald wir die Kugelvolumen abschitzen kdnnen, auch die angekiindigte Abschitzung
fiir ord7(M ) folgen.

(18)

7. Auswertung

7.1. Die Untersuchung der Kugelvolumen fiihren wir in einer beliebigen einfach
zusammenhidngenden vollstindigen n-dimensionalen Riemannschen Mannigfaltig-
keit N, deren Schnittkriimmung zwischen den Schranken —5? und —a? liegt.
(0 <a < b). Wir greifen einen Punkt peN heraus und bilden die Kugeln B(g) mit
festem Zentrum p und Radius g¢. Das Volumen von B(g) bezeichnen wir mit m(e).

Zur Berechnung von m () betrachten wir die Exponentialabbildung exp,: N,—» N
im Kugelzentrum p. Fithren wir in N, Polarkoordinaten ein, das heisst, setzen wir
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v =ru mit r > 0 und u Element der Einheitssphire S = N,, so gilt

m(g)=ff](ru) " Ydrdu, (1)
s o

wobei J(v) den Betrag der Funktionaldeterminante von exp, im Punkt ve N, und du
das kanonische Mass auf S bedeuten. (vgl. [1], p. 54 ff.).

Fiir J(ru) kann eine nur von r und den Kriimmungsschranken a, b abhingige
Abschitzung angegeben werden.

SATZ. Fiir alle uesS und r > 0 gilt

Sinar\"~! Sin br\" 1
( ) <J(ru)<(b) : (2)

ar r

Wir verschieben den Beweis dieses Satzes auf den néchsten Abschnit.
Aus (1) und (2) erhalten wir, wenn wir mit e, die Konstante {s du und mit s, die
Funktion s,(¢) = [¢ Sin"~!r dr bezeichnen, die Abschitzung

e,a”"s,(ag) < m(e) < e,b™"s, (be).

Setzen wir dies in 6.2.(18) ein und beachten, dass jene Ungleichung auch fiir ord /(M)
gilt, so erhalten wir
a"s,(b (66 + 5A/4) + a~'blog4 (n — 1))\*"!
b"s, (all4) '

ord I (M) <(

Eine explizitere Form der Abschitzung ergibt sich, wenn man fiir s,(¢) die elementar
zu beweisenden Ungleichungen
e 1e

Qn
— £S5, A
n @ (n—1)2""1!

verwendet. Gemadss 3.3., Satz 3 konnen wir ferner, wo wir nach oben abschitzen, 4
durch 26 ersetzen. So gelangen wir zum Resultat

ordI(M) < (2n+2b—nl~n88, 5(n—1)bd (4(n _ 1))‘;-—15(”_1))"_,_1 .

7.2. Zum Schluss holen wir den Beweis von 7.1.(2) nach. Wir verwenden eine leichte
Modifikation einer Methode von Bishop und Crittenden (vgl. [2], p. 253 ff.). Zunichst
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geben wir eine geeignete Darstellung von J(v) an. Zum Punkt veN, gehoéren die
kanonische Isometrie j,: N,— N, , des Tangentialraumes N, auf dessen Tangential-
raum N, , (vgl. [3], p. 9, p. 73) und die durch exp, induzierte Abbildung exp, ,:

N,, = Nexp,o- Mit diesen Bezeichnungen gilt

J (v) = |det exp,, ,| = |det (exp,, ,°j,)|.

J ist eine stetige Funktion auf N, und nimmt in » = 0 den Wert 1 an. Fiir beliebiges v
wird eine Basis {v,, ..., v,} von N, gewihlt, es gilt dann unabhéingig von der Basiswahl

"expp, ¢ Jg (vl) A €XPp, «PJy (Un)”
lvg A== vl

J(v) =

Wir wihlen ein festes u €S und betrachten Jin den Punkten v = ru. Zur Abkiirzung
schreiben wir J(r) anstelle von J(ru). Die gesuchte Abschitzung fiir J(r) wird durch
Integration einer Abschétzung fiir J' (¢)/J(¢), (0 < ¢ < r), gewonnen. Seien also vorder-
hand auch 7 und ¢ mit 0 < ¢ < r fest. Durch u €S wird eine Geodétische y mit y(0) = p,
9(0) =u und ||p| = 1 ausgezeichnet. Wir wihlen eine Basis {u;,..., u,_, #} von N,
mit g (u;, u) = (u;, u) = 0 und definieren damit die Felder Y;(s) = exp,, s, °Js (su;) fiir
i=1,..,n—1 und Y,(s)=exp, s ju(#). Die Felder Y, i=1,...,n—1, sind die
eindeutig bestimmten Jacobifelder ldngs y mit ¥;(0) =0 und Y; (0) =u; (vgl. [3], p.
132. Y; bedeutet die kovariante Ableitung von Y;ldngs y), Y, fallt mit dem Tangential-
feld 7 zusammen. Zudem gilt fiir alle s und i #n(Y;, Y,) (s)=0.

Zur Berechnung von J(s) verwenden wir fiir s > 0 die Basis {su,, ..., su,_;, u}. Es
gilt

I AOESD AO)
7(5) = sy Ao sty Aull’

Fiir spitere Zwecke wihlen wir u,,..., u,_, so, dass fiir die festgehaltene Zahl ¢ die
Vektoren Y,(t),..., Y,(¢) ein Orthonormalsystem bilden. Wir berechnen J'(s)/J(s)
durch Ableiten von J2(s) und erhalten

J(s) 1(YyAY, Y AnY,)(s) n—1
}—‘(B_E(YIA---Y,,,YIA---Y,,)(s)- s

Fiir s = ¢ vereinfacht sich dieser Ausdruck wegen der Orthonormalitit von Y, (t),...,
Y, (t) wesentlich. Es gilt

J'(t n—1

) _ ¢
mﬁigl(yuyi)(t)— :
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Beachten wir Y, =0, so erhalten wir

J’ (t) o n—1
. 1
Die Skalarprodukte (Y;, Y;)(¢) erfiillen die Ungleichungen
Cos at Cos bt
Y/, Y; < .
Sln at ST ()< Sin bt 2)

Wir fithren damit den Beweis von 7.1.(2) zu Ende und werden nachher die Richtigkeit
von (2) nachweisen. Die Ungleichungen (2), eingesetzt in Formel (1), fithren auf

Cosat J’ (t) Cosbt 1
-1 — —1)(b ——].
(n )<a Sin at ) J (1) < )< Sin bt t)
Integration von r’' nachr (0 < r’ < r), Anwendung der Exponentialfunktion und Grenz-
iibergang r’ gegen O liefern

Sinar\""! <I(< Sin br\*~1
ar DA br )

Damit ist 7.1.(2) — bis auf die Beziehung (2) — bewiesen.
Wir erbringen nun den Beweis von (2). Y; ist ein Jacobifeld mit Y;(0) =0, es gilt
also

(¥, %) (1) = L,(Y,) = f (I¥1? = (R, (Y §) 3), Y) ds. 3)
0

Wegen |7 =1 und (Y}, 7) =0 kdnnen wir (R, (Y;, 7)(7), Y;) durch K(Y;, $)|Y;||?
ersetzen. Verwenden wir die Abschitzung — K >a?, so erhalten wir

1Y) > f (1% + @ | %,17) ds. @
0

Zur weitern Untersuchung dieses Integrals betrachten wir auf den Feldern lings y die
Bilinearform

1(V, W)=f((V', W)+ a*>(V, W))ds.
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Damit geht (4) iiber in

Unter den Feldern W mit festen Werten in 0 und ¢ besitzt dasjenige den minimalen
Wert I(W, W), das der Differentialgleichung W” — a*W =0 geniigt. Fiir die Rand-
bedingungen W,;(0) = Y;(0)=0, W;(¢) = Y;(¢) fiihrt dies auf die Felder gE;, wo E;
Parallelfeld mit E;(¢t) = Y;(¢) ist, und g die Funktion g(s) = Sinas/Sinat bezeichnet.
Fiir diese Felder gilt I(Y;, Y;) = I(gE;, gE;) = a Cosat/Sinat. Zusammen erhalten wir

(Y{, Y;)(t) = a Cosat/Sinat.

Fiir die Abschitzung nach oben gehen wir wieder aus von (3). Fiir jedes Feld W;

L(Y) <L (W).

Wir wihlen fiir W; Felder der Gestalt gE;, wo E; Parallelfeld mit E;(z) = Y;(¢) ist,
und g eine C*-Funktion mit g(0) =0, g(¢) =1, und erhalten

1,(W) = I,(gE;) = f () = K (E, 1) g) ds.

Hier setzen wir die Abschitzung — K < b? ein, es gilt dann

I,(gE) < f ((g')* + b’g*) ds.

Die beste Abschitzung wird erhalten, wenn die Funktion g (s) = Sinbs/Sinbt gewihlt
wird. Fiir dieses g gilt

Cos bt
2 b2 2 d _
J((g) Jds=b o,
und wir erhalten zusammenfassend

Cos bt
Sin bt

(Y, ¥) (1)< b

Damit ist die Behauptung 7.1.(2) volistindig bewiesen.
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