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Der Funktor EXTg(., R) in endlichen, graduierten Algebren

von ERHARD SENN, Basel

§1. Einleitung

1. Wir beschiftigen uns in der vorliegenden Arbeit mit graduierten Algebren der
Form R=@® ;>, R}, die iiber dem Grundkorper K endlich erzeugt seien, und fiir die
R, =K gelte. Uber K machen wir keine weiteren Voraussetzungen.

Als wichtigste Beispiele haben wir dabei Ringe von Modulformen im Auge, die
bekanntlich (vgl. etwa M. Eichler [4] S. 95) die obigen Voraussetzungen erfiillen.

2. Einen Polynomring R'=K[X}, ..., X;] bezeichnen wir als Modell von R, wenn
ein homogener K-Homomorphismus f : R'—R vom Grad Null existiert, sodass R
ganz ist iiber f (R’), dabei sei die Graduierung von R’ gegeben durch:

Grad X; = g = Grad des Modells.

Ist finjektiv, so heisse das Modell injektiv. Nach dem Normalisationslemma existieren
immer injektive Modelle.

3. Ein endlicher, graduierter R-Modul M kann vermdége f auch als endlicher, gra-
duierter R’-Modul aufgefasst werden und die Exty.(M, R’), mit denen wir uns vor
allem befassen werden, sind dann wohldefinierte, endliche, graduierte R’-Moduln.
Diese Ext-Moduln spielen bei Eichler [3] eine wesentliche Rolle (vgl. etwa [3] S. 40:
»» Theorem of Riemann-Roch* und S. 43: ,,Theorem of Duality*).

4. Im ersten Teil unserer Arbeit weisen wir nach, dass die Dualmoduln dieser
Extg.(M, R’) isomorph sind zu gewissen ,,Stér-Untermoduln*, die bei Reduktion nach
einer Nicht-Nullteilerfolge beziiglich M auftreten (§2 Satz 1).

5. Eine der wichtigsten Folgerungen dieses Ergebnisses war urspriinglich die Tat-
sache, dass die Dimension

L(j—g(R)d(R"), Extg®)7*(M, R"))

(wo g(R’) der Grad, d(R’) die Diemension des Modells und L(i, M) die Dimension
des K-Vektorraumes M; bedeuten) modellinvariant ist. Nun hat aber M. André
(Lausanne) bei der ersten Durchsicht der Arbeit einen einfachen, direkten Beweis
dieser Modellinvarianz-Aussage geben konnen, der mit seiner freundlichen Genehmi-
gung im Anhang 2 wiedergegeben werden soll. Fiir diesen Hinweis und auch fiir die
iibrigen wertvollen Anregungen mdchte ich Herrn Prof. André an dieser Stelle herz-
lich danken.

6. Ein graduierter R-Modul M heisst nach Eichler ([3]S. 35) quasinull, wenn



2 ERHARD SENN

M ;=0 nur fiir n<i<m gilt, mit gewissen Konstanten n, m. Ferner heisst M quasifrei,
wenn fiir ein Modell R’ und fiir alle k>1 Ext%.(M, R’) quasinull ist. Nach 5. ist die
Quasifreiheit ein modellinvarianter Begriff.

7. Der zweite Teil unserer Arbeit besteht nun im Nachweis, dass fiir einen R-
Modul M die Quasifreiheit im wesentlichen das globale Aequivalent ist zur lokalen
Macaulay-Eigenschaft (§3 Satz 3).

8. Bei den in der vorliegenden Arbeit verwendeten Methoden handelt es sich vor-
wiegend um die Methoden der kommutativen Algebra, wie sie etwa zu finden sind in
Serre [8], Matsumura [6], Atiyah-Macdonald [1], Nagata [7] oder Zariski-Samuel [10],
iibertragen auf den graduierten Fall. Wir setzen insbesondere voraus, dass der Leser
einigermassen vertraut ist mit der Noether’schen Primérzerlegung (auch in gradu-
ierten Moduln), der Dimensionstheorie, der Theorie der Parametersysteme und M-
Folgen in halblokalen Ringen und damit dem Begriff der Tiefe (depth in [6], codimen-
sion homologique in [8]) und schliesslich der homologischen Dimensionstheorie.

9. Die von uns betrachteten Algebren R bzw. ihre homogenen Lokalisierungen
R, (homogen soll bedeuten, dass man nur die homogenen, nicht in P liegenden
Elemente als Nenner aufnimmt) besitzen ndmlich ein unter den homogenen Idealen
maximales, das wir als homogen-maximales Ideal bezeichnen wollen, und die Theorie
der lokalen Ringe ldsst sich iibertragen, wenn man anstelle von Idealen homogene
Ideale, anstelle von Elementen homogene Elemente (z.B. homogene M-Folgen) be-
trachtet. (Die Idee stammt von Urs Schweizer, Basel)

10. Die einzige Schwierigkeit bei dieser Ubertragung ist die, dass die Aussage

(1) Wenn ein homogenes Ideal I in keinem der endlich vielen homogenen Primideale
P,,..., P, liegt, so existiert ein homogenes Element acl mit a¢ Py UP,0L...UP,.
nicht unbedingt richtig zu sein braucht (im inhomogenen Fall ist diese Aussage be-
kanntlich richtig). Es ldsst sich aber leicht zeigen, dass (1) gilt, wenn eine der beiden
folgenden Eigenschaften richtig ist:

(a) Alle homogenen Nicht-Einheiten besitzen positiven Grad.

(Diese Eigenschaft haben wir fiir unsere Algebren R in 1. vorausgesetzt.)

(b) Es existiert eine homogene Einheit positiven Grades.

(Diese Eigenschaft ist in den homogenen Lokalisierungen erfiillt.)

§2. Iterierte M-Folgen und deren Bezichungen mit den Ext-Moduln

1. R sei wieder wie in §1.1. vorausgesetzt und Z =@ ;> R; das homogen-maxi-
male Ideal, ferner M ein endlicher, graduierter R-Modul. Als Vorbereitung auf den
Hauptsatz dieses Paragraphen bendtigen wir folgende Definition:

2. Eine Folge aus homogenen Elementen x4, Xy,..., X;€Z (d=dim M) heisst
iterierte M- Folge, wenn man die x; und die dazu gehorigen Moduln P(M), QM)
und P(M) (i =0,..., d) durch folgende, induktiv definierte Konstruktion erhilt:
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Wir setzen x,=0 und Po(M)= M. Wenn dann die x; und die P,(M) fiir i =0, ..., k,
die QM) und die P,(M) fiir i =0,..., k—1 bereits definiert sind, so sei Q (M) defi-
niert als der umfassendste Quasinull-Untermodul von P,(M) und P,(M) als der Rest-
klassenmodul P, (M)/Q,(M).

Der umfassendste Quasinull-Untermodul ist wohldefiniert, denn der Nullmodul
ist immer quasinull und mit zwei Untermoduln ist auch deren Summe quasinull.

Ist P,(M)=0, so brechen wir unsere Konstruktion ab. Andernfalls iiberlegt man
sich, dass Q,(M) auch definiert werden konnte als der Durchschnitt aller nicht zum
homogen-maximalen Ideal Z gehorigen Primidrkomponenten einer reduzierten Pri-
madrzerlegung von Null in P,(M), woraus folgt, dass in Z homogene Nicht-Nullteiler
beziiglich P,(M) existieren. Wir wihlen fiir x, ., einen solchen und setzen noch

Pk+1(M) =Pk(M)/xk+1Pk(M),

womit der Induktionsschritt vollzogen ist.

3. Dass das Verfahren beim d-ten Schritt abbricht, folgt aus der Tatsache, dass
die Dimension beim Ubergang von P, (M) zu P,(M) unverindert bleibt, wihrend sie
beim Schritt von P, (M) zu P, . ;(M) um genau eins abnimmt.

4. Aus diesen Uberlegungen, zusammen mit der Tatsache, dass die abgespaltenen
,»tor-Moduln* QM) Quasinull-Moduln waren, folgt auch, dass jede iterierte M-
Folge homogenes Parametersystem beziiglich M ist.

SATZ 1. Seien R und M wie in 1., R’ ein Modell von R vom Grad g und der Dimen-
sion m, ferner x,..., x, eine iterierte M-Folge mit Grad x;=g; fiir i>1 und g,=0.
Dann existiert fiir k=0, ..., d ein homogener K-Homomorphismus von Grad —Z¥_,g,+
+g -m:

g®: Ext;'{f"(M, R) - Q. (MY

(...F bedeutet Dualmodul-Bildung mit Vorzeichenwechsel der Grade), dessen Beschrin-
kung auf den Grad j:

g§k) :Extg * (M, R); - (Qk (M)‘)j—lg;+gm
ist ein Isomorphismus fiir
j < Min{n/3i:Exty. (M, R), # 0} + Min{g,/i = 1, ..., k}.
Beweis. Wir setzen zur Abkiirzung P,, Q,, P, fiir P, (M), Q(M), P (M) und

definieren R;=K[X},..., X;] fir i=0,..., m (sodass also R'=R;,). Durch mehrmalige
Anwendung des Reduktionslemmas (siche Anhang 1) erhalten wir nun fiir einen



4 ERHARD SENN
Quasinullmodul Q,:
Extg (Qw, R') = Ext;'{"f_, (Qus Rp—1) == Homg.,, _,(Qi Ru-)-
Daraus folgt:
Extg (Q, R) =0 fiir i<m (1)
und es gibt einen homogenen K-Isomorphismus vom Grad gm:
ri: Extg (Qi R') = Q.

Da x, . ; Nicht-Nullteiler beziiglich P,, so ist die Multiplikation mit x,, , als Abbildung
P,—x, ., P, ein homogener Isomorphismus vom Gradg, . ,. Dieser induziert ebenfalls
einen homogenen Isomorphismus vom Gradg;.,,:

x{ 1 Exty (xk+1P R") > Extg: (P, R').
Aus der Definition der P,, 0, und P, folgen die kurzen exakten Sequenzen:

OﬁQk‘*Pk"‘)Fk‘—)O und 0—*xk+1pk-—>Pk-—>Pk+1—>0

mit Abbildungen vom Grade Null. Sie induzieren die langen exakten Sequenzen:

. - p(D . PO .

-+-— Extg. (Pk, R’) = Extg. (P, R") = Extg (Qs R’) —buas (2)
. . s ()

«v+— Extk. (P, R") = Exth, (%44 1Py, R') = Extir ' (Pyyq, R) - (3)

mit homogenen R’-Homomorphismen p{”, ¢, s’ vom Grade Null.
Wegen (1) ist p{” Isomorphismus fiir i <m. g™ ist ebenfalls Isomorphismus, denn

Extg' (Pk’ R’) = 0 . (4)

Wire das nidmlich nicht der Fall, so wiirden der Isomorphismus (x{"?;)"! und die
gradweise Exaktheit von (3) induzieren:

Extg."! (Prs1, R)#0,

was nicht geht, da die homologische Dimension jedes R’-Moduls <m ist.
Die Abbildungen

k

k ~i -i) y-1 -i\-1 gr _

g = r,gf™ [1 s (7320 (Bmi?) ™t fir k=1,...d
i=1
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und g@ =r, g™ sind also wohldefinierte, homogene K-Homomorphismen vom Grad
—Zi—o &itg m.

Es bleibt noch zu zeigen, dass fiir die betreffenden Grade auch die si™; ” isomorph
abbilden, wenn die letzte Ungleichung des Satzes 1 vorausgesetzt wird. Dazu iiberlegt
man sich, dass die graduierten Moduln Extk.(P,, R’) nicht verschwindende Elemente
hochtens von einem hoheren Grad als dem betrachteten besitzen kénnen und nutzt
dann die gradweise Exaktheit von (3) aus. Damit ist Satz 1 bewiesen.

Folgerungen aus Satz 1:

5. Wihlen wir eine iterierte M-Folge, deren Grade geniigend gross sind, so ergibt
sich aus Satz 1 unmittelbar die Modellinvarianz-Aussage von §1.5. und daraus auch
die Modellinvarianz der homologischen Dimension, inbesondere also der Freiheit
von M als R-Modul.

6. Auf analoge Weise folgt, dass die Grossen

L(5+ 3 g0 0u(0)

unabhingig von der Wahl der zugrundegelegten iterierten M-Folge sind, sofern die
Grade g, geniigend gross sind.
7. Wenn wiederum m=dim R’ und d =dim M bedeuten, ferner d >0 ist, so gilt:

Extg. (M, R’) ist immer quasinull
und
Extp. ¢(M,R’) ist nie quasinull.

Das erstere gilt wegen dem Isomorphismus g{™. Wire das zweite nicht der Fall und
n der grosste Grad mit Extr (M, R'),#0, so wiirde aus der Sequenz (3) und den
Isomorphismen p{” folgen: Extf, 4(Py(M), R'),#0 fiir k=1, 2, 3,... und das Reduk-

tionsverfahren wiirde nicht abbrechen.
§3. Die lokale Charakterisierung der Quasifreiheit

Sei wiederum R=@ ;>,R; mit Ry=K eine endliche, graduierte K-Algebra und
M ein endlicher, graduierter R-Modul. R’ =K{y,,..., »,] sei ein injektives Modell, von
dem wir voraussetzen konnen: R'SR.

SATZ 2. Wenn zusitzlich zu diesen Voraussetzungen dimR>2 (also n>1) und
dim M >1 ist, so gilt: Max{k/Extg.(M, R’) nicht quasinull}=n—Mintg (Mp). Dabei
bedeutet tg ,(Mp) die Tiefe von Mp als Rp-Modul und das Minimum wird erstreckt
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iiber alle homogenen, eindimensionalen Primideale P von R, deren homogene Lokali-
sierung Mp#0 ist.

Bemerkung 1. dim R<1 miissen wir ausschliessen, da sonst die rechts stehenden
Tiefen nicht mehr definiert wiren. Im iibrigen sind diese Ausnahmefille trivial.

Bemerkung 2. Wegen §2.7. ist der Ausdruck links wohldefiniert und <n. Wegen
den Aquivalenzen

(1) dimM =1 {=)> M nicht quasinull {=) Es gibt ein homogenes, eindimen-
sionales Primideal P mit annM < P,

(2) annM< P (=) Mp#0
ist auch der Ausdruck rechts wohldefiniert.

Zuerst stellen wir anhand einer Beweisskizze kurz die aus der theratur bekannten
Ergebnisse zusammen, die im folgenden benutzt werden.

Ausgehend von der Betrachtung eines Moduls M iiber dem Polynomring R’ gehen
wir zundchst {iber zu den Lokalisierungen M. (iiber Rp.) nach den homogenen
Primidealen P’ von R’. Dabei benutzen wir das Ergebnis ([8] Prop. 18 S. IV-31), dass
das Tensorieren mit einem flachen Modul (hier insbesondere die Nenneraufnahme)
mit der Ext-Bildung vertauscht.

Als nédchstes benutzen wir das Ergebnis, dass Polynomringe reguldr sind ([8] Corol-
laire du Prop. 25 S. IV-43) und dass jede Lokalisierung eines regulidren Ringes nach
einem Primideal reguldr-lokal ist ([8] Prop. 23 S. IV-41). Damit folgern wir, dass die
~Unterringe Nuliten Grades der Rp. reguldr-lokale Ringe sind und wenden nun das
bekannte Ergebnis an, dass sich die homologische Dimension und die Tiefe eines
Moduls iiber einem reguldr-lokalen Ring zur Dimension des Ringes erginzen ([8]
Prop. 21 S. IV-35). Zuletzt untersuchen wir den Zusammenhang zwischen der Tiefe
von Mp. iiber Rp. und der Tiefe von M, iiber Rp mit iiber P’ liegenden Primidealen
P von R. Dabei benutzen wir vor allem das etwa in [8] S. IV-14 unten und S. IV-15
beschriebene notwendige und hinreichende Konstruktionsprinzip fiir M-Folgen:
X4+ ergdnzt die M-Folge x,, ..., x, genau dann zu einer lingeren M-Folge, wenn x; .,
in keinem der zugehorigen Primideale von

k

Y xM in M

i=1
liegt und x,,..., x; ist genau dann maximale M-Folge, wenn unter diesen zugehorigen
Primidealen ein maximales (in unserm Fall: homogen-maximales) vorkommt.

Fiir den Beweis des folgenden Satzes 3 benétigen wir an bekannten Ergebnissen
noch das going-down-Theorem, das bei Serre ([8] Prop. 5 S. III-5) nicht in seiner
vollen Schirfe bewiesen wird. Der Satz gilt ndmlich schon, wenn der dariiberliegende
Ring als Modul iiber dem unterliegenden ganz abgeschlossenen Integritdtsbereich
torsionsfrei (und natiirlich ganz)ist. (vgl. etwa Zariski-Samuel [10.I] Theorem 6 S. 262.)

Wir bendtigen zundchst die drei Lemmata:
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LEMMA 1. Folgende beiden Aussagen sind dquivalent:

(a) Exth(M, R’) nicht quasinull.

(b) Es gibt ein homogenes, eindimensionales Primideal P’ von R’, sodass Exty, (M.,
Rp)#0.

Dies folgt unmittelbar aus den Aquivalenzen (1) und (2) angewandt auf den Modul
Exty.(M, R’) iiber dem Ring R’ und der Gleichung:

Extk (M, R')p. = Exty.,, (Mp, Rp)
(vgl. Serre [8] Prop. 18 S. IV-31).

LEMMA 2. Fiir ein homogenes Primideal P’ von R’ mit den Eigenschaften: dimP’ >
=1 und Mp.#0 gilt.

trp (Mp) + hdg.,, (Mp) = hdim Rp. = dimR’ — dim P,
wobei die homologische Dimension definiert sei durch:

hdR'p' (MP’) = Max {k/EXtII‘('p' (MP', R;”) # O} .
(hdim =homogene Dimension, sie unterscheidet sich von der iiblichen dadurch, dass
man nur Ketten aus homogenen Primidealen betrachtet.)

Beweis. Mindestens ein y; — ohne Beschrinkung der Allgemeinheit sei dies y, —

liegt nicht in P’. Deshalb lisst sich der Unterring (Rp), aller Elemente von Rp. vom
Grade Null als Lokalisierung des Polynomrings

K[&,...,&]
Yo Yo

nach einem (inhomogenen) Primideal auffassen und ist deshalb regulir-lokal (vgl.
Serre [8] Corollaire du Prop. 25 S. IV-43). Wenn wir

g—-1
M}?) = .6_90 (MP')i

setzen (g=Grad der y,), so gilt deshalb (vgl. Serre [8] Prop. 21 S. IV-35):
hd g pyo (ME) + (g pyo (ME) = dim (Rp.), .

Anderseits ldsst sich die Struktur von Rp. sehr einfach iiberblicken, wenn man die-
jenige von (Rjp ), kennt, denn die Multiplikation mit den Potenzen von y, ist ein
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Isomorphismus. Insbesondere verifiziert man leicht:

dim (Rp)o = hdim Rp, = dim R’ — dim P’
hdg .y, (Mp?) = hdg.,,, (M)
trpo (MP)) = tgen, (Mp)

damit ist Lemma 2 bewiesen.

LEMMA 3. Sei P’ ein homogenes Primideal in R’ mit dimP’'>1 und Mp.#0. Dann
ist fiir mindestens eines der iiber P' liegenden Primideale P(i =1, ..., k) von R die homo-
gene Lokalisierung Mp, #0.

#0 fir i=1,..,s

WennMp,{____O fir i=s+1,...,k

so gilt:

tR'P' (MP’) = _l_vlhn tRPi (MPl) .

Beweis. Fiir das homogene R-Ideal ann M gilt wegen Mp.#0: (annMNR')S P’.
Daraus folgt: Fiir mindestens ein 7 ist annM < P;, was gleichbedeutend ist mit
M3, #0. Den zweiten Teil zerlegen wir in die Teilschritte

trep (Mp) = tg,, (Mp). (2a)
trp. (Mp) < Min tg, (Mp,). (2b)

i=1,.s

Fiir mindestens ein ie{l, ..., s} ist

trp (Mp,) = trp, (Mp:). (2¢)

Der Ring Rp. sei dabei der Ring Rg mit der Nennermenge S aller nicht in P’ liegender
homogener Elemente von R’. Dieser graduierte Ring besitzt nur endlich viele homo-
gen-maximale Ideale, ndmlich die von den P; erzeugten und ist ganz iiber Rp..

Um (2a) zu beweisen setzen wir ¢ =tg..(Mp.) und wihlen eine homogene Mp.-
Folge x,,..., x, in Rp.. Trivialerweise ist die Folge auch M,.-Folge mit Rp. als Ring.
Die Maximalitdt geht aus der Tatsache hervor, dass, wie man sich leicht iiberlegt,
mindestens eines der homogen-maximalen Primideale von Rp. als zugehoriges Prim-
ideal von Xx;Mp. in Mp. vorkommt, wenn iiber Rp. das homogen-maximale Ideal
zugehorig ist.

Sei P eines der iiber P’ liegenden Primideale mit Mp#0 und s:Rp.— Rp die
kanonische Abbildung (Aufnahme aller homogenen, nicht im durch P erzeugten
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Primideal von Rp. liegenden Elemente als Nenner). Wenn nun die Elemente x;,..., x,
von Rp. eine homogene M ,.-Folge sind, so iiberlegt man sich mit Hilfe des Konstruk-
tionsprinzips fiir M-Folgen und dem Verhalten der zugehdrigen Primideale bei Nen-
neraufnahme (vgl. etwa Serre [8] Prop. 6 S. I-16), dass die Bilder s(x,),..., s(x,) eine
Mp-Folge in Rp bilden. Daraus folgt (2b). Um (2¢) zu beweisen, wahlt man eine
maximale M p.-Folge x,,..., X, in Rp. und zeigt mit denselben Mitteln, dass fiir min-
destens eines der iiber P’ liegenden Primideale P die Folge s(x,),..., s(x,) maximale
M p-Folge ist.

Damit ist Lemma 3 bewiesen.

Mit Hilfe der drei Lemmata erhdlt man nun Satz 2 (die vorkommenden Prim-
ideale P'< R’ bzw. P< R seien stillschweigend als homogen, von der Dimension 1
und als ann M umfassend vorausgesetzt):

Aus Lemma 1 folgt

Max {k/Extk. (M, R’) nicht quasinull} = Maxhdg._, (Mp).
Wegen Lemma 2 ist dieser Ausdruck

= n— Mintg,, (Mp).

Nach Lemma 3 gilt schliesslich

trp, (Mp) = Min g, (Mp)

Piber P’

und damit
Mintg. ., (M p) = Mintg,(Mp) g.ed.

Die Bedeutung des eben bewiesenen Satzes 2 besteht vor allem darin, dass er den
schwierigsten Teil des folgenden Satzes 3 vorwegnimmt. Satz 3 betrachten wir als den
Hauptsatz dieses zweiten Teils unserer Arbeit.

SATZ 3. Seien R, R’ und M wie zu Beginn von §3, und dim R>2. Dann sind fol-
gende Aussagen dquivalent:

(a) M ist quasifreier R'-Modul.

(b) Fiir jedes homogene, eindimensionale Primideal P von R gilt genau eine der
beiden Alternativen:
(b1) M,p=0
(b2) tg (Mp)=dimR—1.

(c) Es ist entweder
(cl) M quasinull oder
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(c2) M torsionsfreier R'-Modul und fiir alle eindimensionalen, homogenen Primideale
P von R mit Mp+#0 gilt:
M ist Macaulay-Rp-Modul.

(d) Wenn auch der Nullmodul als Macaulay’sch bezeichnet wird, so kann (c2) er-
setzt werden durch:

(c2’) M torsionsfreier R'-Modul und fiir alle homogenen Primideale P von R mit dimP >
> 1 ist die homogene Lokalisierung M, Macaulay’sch.

Bemerkung. Die Aussage ,,M torsionsfreier R’-Modul* ist, wie man sich leicht
iiberlegt, gleichbedeutend mit der modellinvariant formulierten Aussage ,,die zuge-
horigen R-Primideale von 0 in M sind alle von maximaler Dimension (=dim R)*.

Beweis von Satz 3. Die Aquivalenz von (a) mit (b) folgt unmittelbar aus Satz 2.
(a), (b)=>(c): Zuerst zeigen wir: Wenn (a) gilt, und M nicht quasinull ist, so ist M
torsionsfreier R’-Modul. Wir nehmen an, M sei nicht quasinull, d.h. dimM >1 und
nicht torsionsfreier R’-Modul. Dann existiert ein zugehoriges R'-Primideal Q' #0 von
0in M mit dimQ’'>1. Sei P’ ein Q' umfassendes homogenes Primideal der Dimension
1. Mp. ist dann nicht Null und als Rp~-Modul nicht torsionsfrei, also nicht frei. Daraus
folgt nach Lemma 1: M nicht quasifrei im Widerspruch zu (a).

Die Macaulay-Eigenschaft der betreffenden homogenen Lokalisierungen ist eine
unmittelbare Folgerung aus (b2), denn (b2) induziert wegen

tre (Mp) < hdimg, (Mp) < hdimRp < dimR — 1
die Gleichung
tRp (MP) = hdimRP (MP), (3)

und dies ist eine Charakterisierung der Macaulay-Moduln, bzw. die sinngemaésse
Verallgemeinerung auf den homogenen Fall (Vgl. Serre [8] Def. 1 S. IV-18).

(c)=>(b): Wenn (cl) zutrifft, so gilt fiir alle homogenen, eindimensionalen Prim-
ideale P: M =0 also (bl).

Es sei nun M ein torsionsfreier R’-Modul und P ein eindimensionales, homogenes
Primideal mit ann M < P. Wegen der Torsionsfreiheit ldsst sich jedes Modell R’ auch
als Modell von R/annM auffassen und R/ann M ist als R’-Modul torsionsfrei. Aus
dem going-down-Theorem folgt nun: Es gibt eine homogene Primidealkette der Lénge
dim R—1, die ann M mit P verbindet. Dies induziert

hdimRP (MP) = hdimRP = dimR - 1 .

Zusammen mit der Macaulay-Eigenschaft (3) folgt daraus (b2).

Die Aquivalenz von (c2) und (c2’) folgt unmittelbar aus der Tatsache, dass mit
einem Modul M iiber einem lokalen Ring R auch alle Lokalisierungen M, iiber Rp
Macaulay’sch sind (vgl. Serre [8] Théoréme 6 S. IV-23).
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Anhang 1. Das Reduktionslemma

SATZ. Sei R ein graduierter Ring, S =R[X]. Man schreibt auch dem Element X
einen Gradg zu (geZ ). Damit ist auch S graduiert. f€ S sei ein normiertes, homogenes
Polynom, d.h.

f=X"+¢,X""'+-4+¢, (c;eR,Gradc;=g-i).

Wenn der endliche, graduierte S-Modul M von f annuliert wird, so ist er auch endlicher,
graduierter R-Modul und es gibt homogene R-Isomorphismen vom Gradg:

r;:Exts (M, S) - Exty '(M,R) (i>1).

Beweis. Q sei der graduierte Ring aller formalen Potenzreihen in X ~! (Anfangs-
exponent in Z) mit Koeffizienten in R. Als homogene Elemente bezeichnen wir dabei
die Reihen

CrgX ™+ Cpgr1 X ™ '+ mit ¢, 4;€R, homogen vom
Grad (Gradc,,, + g-i).

S ldsst sich als Unterring von Q auffassen und wir erhalten die kurze, exakte Sequenz:
0-S— Q- Q/S—0. Diese induziert die lange, exakte Sequenz:

Wegen der Normiertheit ist f in Q invertierbar, die Multiplikation mit f also ein Iso-
morphismus. Als Abbildung M — M aufgefasst ist jedoch die Multiplikation mit f die
Nullabbildung. Daraus folgt: Die Multiplikation mit f : Exty(M, Q) — Exty(M, Q) ist
gleichzeitig die Nullabbildung und ein Isomorphismus, was Ext5(M, Q) =0 induziert.
Aus (1) folgt daher:

s Exti (M, S) 5 Exti™! (M, 0/S)

ist ein homogener, natiirlicher S-Isomorphismus vom Grad Null. Die Elemente von
Q/S konnen eindeutig reprisentiert werden durch Elemente der Form

c=c; X '+, X 243X +- (ceR).

Jedem solchen ¢ ordnen wir das Element g.e Homg(S, R) zu, das definiert sein soll
durch g.(X))=c;+, (i=0, 1, 2,...). Man verifiziert leicht, dass diese Abbildung ein
homogener S-Isomorphismus vom Gradg ist. (Homg(S, R) ldsst sich bekanntlich
auch als S-Modul auffassen) Dieser induziert einen natiirlichen, homogenen S-Iso-
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morphismus vom Gradg:
t;: Extg (M, Q/S) — Exts (M, Homg (S, R)).

Nun existiert bekanntlich ein natiirlicher Isomorphismus, den man sofort als R-
Isomorphismus erkennt:

Homyg (., Homg (S, R)) 5 Homg (., R),

definiert durch f — g mit g(m): = ( f(m))(1) (vgl. Cartan-Eilenberg [2] Prop. 5.2 S. 28).
Diesen wenden wir an auf eine S-freie Auflésung von M (die dann auch R-freie Auf-
16sung ist), wo er einen Kettenisomorphismus:

Homyg (freie Auflosung, Homg(S, R)) » Homg (freie Auflosung, R)
induziert. Daraus folgt:
u;: Extg (M, Homg (S, R)) S Extl, (M, R)
ist homogener, natiirlicher R-Isomorphismus vom Grad Null.
Fi=Uj—1°Li—31°8;

liefert nun das gewiinschte.
Anhang 2. Der Invarianzbeweis nach M. André

SATZ. Sei S eine endliche, graduierte K-Algebra, M ein endlicher, graduierter
S-Modul. Dann hdngt

Exty *® (M, R);_g,,
nicht vom verwendeten Modell R ab. ( Der Begriff des Modells ist definiert wie in §1.2.,
nur dass die g,=Grad X; auch verschieden sein diirfen.)

Beweis. Seien R=K[Xy,..., X,] (n=d(R), GradX;=g;) und R'=K[Xj,..., X,;]
(m=d(R’"), Grad X; = g;) zwei Modelle von S. Dann ist RQ x R" auch ein Modell der
Dimension d(R)+d(R’). Es geniigt zu zeigen:

3 # ~ k+d
Extrgar (M, RQkR');_5g-rg, = Extg *® (M, R);_s,,,
oder
Extpeik? (M, RER'); 5y, = Extg (M, R);.

Diese Isomorphismen folgen unmittelbar aus dem Reduktionslemma angewandt auf
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folgende Paare:

RcR[X|]=R[X}, X3] == R[X],..., X,].
Wir betrachten etwa das Paar

R[X}, . Xi] @ R[x{, o X0 X411

Das Bild von X}, , in S geniigt einer Ganzheitsgleichung f (X}, ,)=0 mit Koeffizienten
im Bild von R. f sei ein Urbildpolynom von f mit Koeffizienten in R. Es gilt natiirlich
f-M =0, was die Anwendung des Reduktionslemmas gestattet. Bei jedem Schritt
wird der Index von Ext* um eins erniedrigt, und der Grad um g; erhoht.
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