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Der Funktor EXTR(., R) in endlichen, graduierten Algebren

von Erhard Senn, Basel

§1. Einleitung

1. Wir beschâftigen uns in der vorliegenden Arbeit mit graduierten Algebren der
FormR= ®j^0Rp die iiber dem Grundkôrper K endlich erzeugt seien, und fiir die
RQ K gzlte. Ober ^Tmachen wir keine weiteren Voraussetzungen.

Als wichtigste Beispiele haben wir dabei Ringe von Modulformen im Auge, die
bekanntlich (vgl. etwa M. Eichler [4] S. 95) die obigen Voraussetzungen erfûllen.

2. Einen Polynomring R'=K[XU..., Xd~] bezeichnen wir als Modell von R, wenn
ein homogener AT-Homomorphismus f:R'-+R vom Grad Null existiert, sodass R

ganz ist ûber f(R')9 dabei sei die Graduierung von R' gegeben durch:

Grad Xt g Grad des Modells.

Ist/injektiv, so heisse das Modell injektiv. Nach dem Normalisationslemma existieren
immer injektive Modelle.

3. Ein endlicher, graduierter i?-Modul M kann vermôge/auch als endlicher, gra-
duierter i^-Modul aufgefasst werden und die ExtlR>(M, R'), mit denen wir uns vor
allem befassen werden, sind dann wohldefinierte, endliche, graduierte i?'-Moduln.
Dièse Ext-Moduln spielen bei Eichler [3] eine wesentliche Rolle (vgl. etwa [3] S. 40:

,,Theorem of Riemann-Roch" und S. 43: ,,Theorem of Duality").
4. Im ersten Teil unserer Arbeit weisen wir nach, dass die Dualmoduln dieser

Ext^(M, R') isomorph sind zu gewissen ,,Stôr-Untermoduln", die bei Reduktion nach
einer Nicht-Nullteilerfolge beziiglich M auftreten (§2 Satz 1).

5. Eine der wichtigsten Folgerungen dièses Ergebnisses war urspriinglich die Tat-
sache, dass die Dimension

- g(R')d(R'), Ext^-'CM, R'))

(wo g(R') der Grad, d{R') die Diemension des Modells und L(ï, M) die Dimension
des i^-Vektorraumes Mt bedeuten) modellinvariant ist. Nun hat aber M. André
(Lausanne) bei der ersten Durchsicht der Arbeit einen einfachen, direkten Beweis
dieser Modellinvarianz-Aussage geben kônnen, der mit seiner freundlichen Genehmi-

gung im Anhang 2 wiedergegeben werden soll. Fur diesen Hinweis und auch fur die

iibrigen wertvollen Anregungen môchte ich Herrn Prof. André an dieser Stelle herz-

lich danken.
6. Ein graduierter JR-Modul M heisst nach Eichler ([3] S. 35) quasinull, wenn
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Mi=0 nur fut n^i^m gilt, mit gewissen Konstanten n, m. FernerheisstMquasifrei,
wenn fur ein Modell Rf und fur aile k^l Ext^(M, R') quasinull ist. Nach 5. ist die

Quasifreiheit ein modellinvarianter Begriff.
7. Der zweite Teil unserer Arbeit besteht nun im Nachweis, dass fur einen R-

Modul M die Quasifreiheit im wesentlichen das globale Aequivalent ist zur lokalen
Macaulay-Eigenschaft (§3 Satz 3).

8. Bei den in der vorliegenden Arbeit verwendeten Methoden handelt es sich vor-
wiegend um die Methoden der kommutativen Algebra, wie sie etwa zu finden sind in
Serre [8], Matsumura [6], Atiyah-Macdonald [1], Nagata [7] oder Zariski-Samuel [10],
iibertragen auf den graduierten Fall. Wir setzen insbesondere voraus, dass der Léser

einigermassen vertraut ist mit der Noether'schen Primârzerlegung (auch in graduierten

Moduln), der Dimensionstheorie, der Théorie der Parametersysteme und M-
Folgen in halblokalen Ringen und damit dem Begriff der Tiefe (depth in [6], codimen-
sion homologique in [8]) und schliesslich der homologischen Dimensionstheorie.

9. Die von uns betrachteten Algebren R bzw. ihre homogenen Lokalisierungen
RP (homogen soll bedeuten, dass man nur die homogenen, nicht in P liegenden
Elemente als Nenner aufnimmt) besitzen nâmlich ein unter den homogenen Idealen
maximales, das wir als homogen-maximales Idéal bezeichnen wollen, und die Théorie
der lokalen Ringe lâsst sich iibertragen, wenn man anstelle von Idealen homogène
Idéale, anstelle von Elementen homogène Elemente (z.B. homogène Af-Folgen) be-

trachtet. (Die Idée stammt von Urs Schweizer, Basel)
10. Die einzige Schwierigkeit bei dieser Ûbertragung ist die, dass die Aussage

(1) Wenn ein homogènes Idéal I in keinem der endlich vielen homogenen Primideale

Pu...9Pk liegt, so existiert ein homogènes Elément aelmit a$PlvP2v...vPk.
nicht unbedingt richtig zu sein braucht (im inhomogenen Fall ist dièse Aussage be-

kanntlich richtig). Es lâsst sich aber leicht zeigen, dass (1) gilt, wenn eine der beiden

folgenden Eigenschaften richtig ist:
(a) Aile homogenen Nicht-Einheiten besitzen positiven Grad.

(Dièse Eigenschaft haben wir fur unsere Algebren Rinl. vorausgesetzt.)

(b) Es existiert eine homogène Einheit positiven Grades.

(Dièse Eigenschaft ist in den homogenen Lokalisierungen erfullt.)

§2. Iterierte M-Folgen und deren Beziehungen mit den Ext-Moduln

L R sei wieder wie in §1.1. vorausgesetzt und Z ©J>1i?i das homogen-maxi-
male Idéal, ferner M ein endlicher, graduierter iÊ-Modul. Als Vorbereitung auf den

Hauptsatz dièses Paragraphen benôtigen wir folgende Définition:
2. Eine Folge aus homogenen Elementen x0, xu...9 xdeZ (d=dimM) heisst

iterierte M- Folge, wenn man die xt und die dazu gehôrigen Moduln Pt{M), Qt(M)
und Pt(M) (i =0,..., d) durch folgende, induktiv definierte Konstruktion erhâlt:
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Wir setzen x0=0 uncl P0{M) M. Wenn dann die x, und die Pt(M) fiir i 0,..., A:,

die Qi(M) und die Pt(M) fur f 0,..., fc— 1 bereits definiert sind, so sei Qk(M) defi-
niert als der umfassendste Quasinull-Untermodul von Pk(M) und Fk(M) als der Rest-
klassenmodul Pk(M)IQk(M).

Der umfassendste Quasinull-Untermodul ist wohldefiniert, denn der Nullmodul
ist immer quasinull und mit zwei Untermoduln ist auch deren Summe quasinull.

Ist Pk(M) 0, so brechen wir unsere Konstruktion ab. Andernfalls ûberlegt man
sicb, dass Qk(M) auch definiert werden kônnte als der Durchschnitt aller nicht zum
homogen-maximalen Idéal Z gehôrigen Primârkomponenten einer reduzierten Pri-
mârzerlegung von Null in Pk(M)9 woraus folgt, dass in Z homogène Nicht-Nullteiler
bezûglich Pk(M) existieren. Wir wâhlen fiir xk+l einen solchen und setzen noch

womit der Induktionsschritt vollzogen ist.
3. Dass das Verfahren beim d-ten Schritt abbricht, folgt aus der Tatsache, dass

die Dimension beim Ûbergang von Pk(M) zu Pk(M) unverândert bleibt, wâhrend sie

beim Schritt von Pk(M) zu Pk+i(M) um genau eins abnimmt.
4. Aus diesen Oberlegungen, zusammen mit der Tatsache, dass die abgespaltenen

,,Stôr-Moduln" Qt(M) Quasinull-Moduln waren, folgt auch, dass jede iterierte M-
Folge homogènes Parametersystem beztiglich M ist.

SATZ 1. Seien R und M wie in L, R' ein Modell von R vom Gradg und der Dimension

m, ferner x0,..., xd eine iterierte M-Folge mit Grad x^gifur i^l und go 0.

Dann existiertfurk O,...t dein homogener K-Homomorphismus von Grad —^=0
+ g-m:

(../ bedeutet DuaîmoduUBildung mit Vorzeichenwechsel der Grade), dessen Beschrân-

kung aufden Gradj:

gf :E<rk(M, R')j - (Qk(M)')j.îgl+gm

ist ein Isomorphismus fiir

j < Min{»/3î:Ex4(Af, R')n * 0} + Min{g//i 1,..., k}.

Beweis. Wir setzen zur Abkûrzung Pk, Qk, Pk fur Pk(M), Qk(M), Pk(M) und
definieren R't-K[Xl9...9 Xt] fur /=0,..., m (sodass also R' R'm). Durchmehrmalige
Anwendung des Reduktionslemmas (siehe Anhang 1) erhalten wir nun fur einen
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Quasinullmodul Qk:

EX& (fi*, R') s Extj^ (&, COs-s
Daraus folgt:

Ex4(Qk,R') 0 fur Km (1)

und es gibt einen homogenen JMsomorphismus vom Grad gm:

r»: Ext;. (&,*')->&•
Da #*+j Nicht-Nullteiler bezuglich .P*, so ist die Multiplikation mit xk+x als Abbildung
Pk-+xk+1Fk ein homogener Isomorphismus vom Gradgfc+1. Dieser induziert ebenfalls
einen homogenen Isomorphismus vom Gradgk+1:

Aus der Définition der Pk9 Qk und Pk folgen die kurzen exakten Sequenzen:

0-+Qk-+Pk->Pk-+0 und 0-+xk+lFk^Fk^Pk+1-+0

mit Abbildungen vom Grade Null. Sie induzieren die langen exakten Sequenzen:

:-+ExtlR,(Pk9R')% ExtlR.(Pk9R') ^ Exti,(&,«')-*- (2)

mit homogenen jR'-Homomorphismenp(k\ q^, skl) vom Grade Null.
Wegen (1) istpkl) Isomorphismus fur i<m. q(km) ist ebenfalls Isomorphismus, denn

Ext£(A,*')»0- (4)

Wâre das nâmlich nicht der Fall, so wurden der Isomorphismus (jc^i)"1 und die

gradweise Exaktheit von (3) induzieren:

was nicht geht, da die homologische Dimension jedes i£'-Moduls <m ist.

Die Abbildungen

h
i-l
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und g(0) r0 <7om) sind ^so wohldefinierte, homogène X-Homomorphismen vom Grad

Esbleibt noch zu zeigen, dass fur die betreffenden Grade auch dies["lTil) isomorph
abbilden, wenn die letzte Ungleichung des Satzes 1 vorausgesetzt wird. Dazu uberlegt
man sich, dass die graduierten Moduln Ext^(Pfc, R') nicht verschwindende Elemente
hôchtens von einem hôheren Grad als dem betrachteten besitzen kônnen und nutzt
dann die gradweise Exaktheit von (3) aus. Damit ist Satz 1 bewiesen.

Folgerungen aus Satz 1 :

5. Wâhlen wir eine iterierte M-Folge, deren Grade geniigend gross sind, so ergibt
sich aus Satz 1 unmittelbar die Modellinvarianz-Aussage von §1.5. und daraus auch
die Modellinvarianz der homologischen Dimension, inbesondere also der Freiheit

von M als i£'-Modul.
6. Auf analoge Weise folgt, dass die Grôssen

l(j+ y *„<

unabhângig von der Wahl der zugrundegelegten iterierten M-Folge sind, sofern die
Grade gt geniigend gross sind.

7. Wenn wiederum m dimR' und d dimM bedeuten, ferner d>0 ist, so gilt:

Ext£ (M, R') ist immer quasinull

und

Ext£"d (M, R') ist nie quasinull.

Das erstere gilt wegen dem Isomorphismus q(^\ Wâre das zweite nicht der Fall und
n der grôsste Grad mit ExtJjrd(M, ^')n^0, so wurde aus der Sequenz (3) und den

Isomorphismen/?!0 folgen: Ext^"d(Pfc(M), R')n¥>0 fur k= 1, 2, 3,... und das Reduk-
tionsverfahren wiirde nicht abbrechen.

§3. Die lokale Charakterisierung der Quasifreiheit

Sei wiederum R @j^0Rj mit R0~K eine endliche, graduierte i£-Algebra und

M ein endlicher, graduierter iÊ-Modul. R'=K[y0,..., yn] sei ein injektives Modell, von
dem wir voraussetzen kônnen: R'&R.

SATZ2. Wenn zusâtzlich zu diesen Voraussetzungen dimi£^2 (also n^\) und

dimAf>l ist, so gilt: Max{fc/Ext^(M, R') nicht quasinull} =n-MintRp(MP). Dabei
bedeutet tRp(MP) die Tiefe von MP als RP-Modul und das Minimum wird erstreckt
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uber aile homogenen, eindimensionalen Primideale P von R, deren homogène Lokali-
sierung MP#0 ist.

Bemerkung 1. dimjR^l miissen wir ausschliessen, da sonst die rechts stehenden
Tiefen nicht mehr definiert wâren. Im iibrigen sind dièse Ausnahmefâlle trivial.

Bemerkung 2. Wegen §2.7. ist der Ausdruck links wohldefiniert und <«. Wegen
den Âquivalenzen

(1) dimM^l < > M nicht quasinull < > Es gibt ein homogènes, eindimen-
sionales Primideal P mit annM^ P,

(2) an«Mç?< )MP#0
ist auch der Ausdruck rechts wohldefiniert.

Zuerst stellen wir anhand einer Beweisskizze kurz die aus der Literatur bekannten
Ergebnisse zusammen, die im folgenden benutzt werden.

Ausgehend von der Betrachtung eines Moduls M uber dem Polynomring Rf gehen
wir zunâchst uber zu den Lokalisierungen MP> (iiber R'P.) nach den homogenen
Primidealen P' von R'. Dabei benutzen wir das Ergebnis ([8] Prop. 18 S. IV-31), dass

das Tensorieren mit einem flachen Modul (hier insbesondere die Nenneraufnahme)
mit der Ext-Bildung vertauscht.

Als nâchstes benutzen wir das Ergebnis, dass Polynomringe regulâr sind ([8] Corollaire

du Prop. 25 S. IV-43) und dass jede Lokalisierung eines regulâren Ringes nach
einem Primideal regulâr-lokal ist ([8] Prop. 23 S. IV-41). Damit folgern wir, dass die

Unterringe Nullten Grades der R'P> regulâr-lokale Ringe sind und wenden nun das

bekannte Ergebnis an, dass sich die homologische Dimension und die Tiefe eines

Moduls uber einem regulâr-lokalen Ring zur Dimension des Ringes ergânzen ([8]
Prop. 21 S. IV-35). Zuletzt untersuchen wir den Zusammenhang zwischen der Tiefe

von MP, iiber R'P, und der Tiefe von MP uber RP mit uber P' liegenden Primidealen
P von R. Dabei benutzen wir vor allem das etwa in [8] S. IV-14 unten und S. IV-15
beschriebene notwendige und hinreichende Konstruktionsprinzip fur M-Folgen:

**+i ergânzt die M-Folge jc15 xk genou dann zu einer langeren M-Folge, wenn xk+1
in keinem der zugehôrigen Primideale von

k

£ xtM in M

liegt und xt,..., xk ist genou dann maximale M-Folge, wenn unter diesen zugehôrigen
Primidealen ein maximales (in unserm Fall: homogen-maximales) vorkommt.

Fur den Beweis des folgenden Satzes 3 benôtigen wir an bekannten Ergebnissen
noch das going-down-Theorem, das bei Serre ([8] Prop. 5 S. III-5) nicht in seiner

vollen Schârfe bewiesen wird. Der Satz gilt nâmlich schon, wenn der darûberliegende

Ring als Modul iiber dem unterliegenden ganz abgeschlossenen Integritâtsbereich
torsionsfrei (und natûrlich ganz) ist. (vgl. etwaZariski-Samuel [10.1] Theorem 6 S. 262.)

Wir benôtigen zunâchst die drei Lemmata:
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LEMMA 1. Folgende beiden Aussagen sind àquivalent:
(a) Ext^(M, Rf) nicht quasinull.

(b) Esgibt ein homogènes, eindimensionalesPrimidealP' von Rf, sodassExt^>p,(MP>,

Dies folgt unmittelbar aus den Âquivalenzen (1) und (2) angewandt auf den Modul
(Âf, R') ùber dem Ring R' und der Gleichung:

Ext*, (M, R')P, s Ext*v (MP,, Ri,)

(vgl. Serre [8] Prop. 18 S. IV-31).

LEMMA 2. Fur ein homogènes Primideal Pf von Rr mit den Eigenschaften: dimP ' ^

*R'P. (MP>) + hdnVf (Afp,) hdim jRP, dim Rf - dim P',

wobei die homologische Dimension definiert Sei durch:

hdR,p, (Mr) Max {fc/Ex&p, (AfP., /?P.) # 0}.

(hdim homogène Dimension, sie unterscheidet sich von der ùblichen dadurch, dass

man nur Ketten aus homogenen Primidealen betrachtet.)
Beweis. Mindestens ein yi - ohne Beschrânkung der Allgemeinheit sei dies y0 -

liegt nicht in P'. Deshalb lâsst sich der Unterring (RP>)0 aller Elemente von R'P> vom
Grade Null als Lokalisierung des Polynomrings

nach einem (inhomogenen) Primideal auffassen und ist deshalb regulâr-lokal (vgl.
Serre [8] Corollaire du Prop. 25 S. IV-43). Wenn wir

setzen (^=Grad der yt), so gilt deshalb (vgl. Serre [8] Prop. 21 S. IV-35):

Anderseits lâsst sich die Struktur von RP* sehr einfach iiberblicken, wenn man die-
jenige von {Rrr)0 kennt, denn die Multiplikation mit den Potenzen von y0 ist ein
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Isomorphismus. Insbesondere verifiziert man leicht:

dim (RP')o hdim R'P, dim R' - dimP'

damit ist Lemma 2 bewiesen.

LEMMA 3. SeiP ' ein homogènes Primideal in R' mit dimP ' ^ 1 und MP> # 0. Dann
ist fur mindestens eines der uber P ' liegenden Primideale Pt(i 1 ,...,&) von R die homogène

Lokalisierung MPi ^ 0.

w .,1*0 fur i l,...9s
WennMPi{n [= 0 fur i =$+ l,...,i

so gilt:

W(M*")= Min ^«(Wp,).
i=l,.,s

Beweis. Fur das homogène i?-Ideal annM gilt wegen MP>^0: (annMni?')çjP'(
Daraus folgt: Fur mindestens ein i ist annM £ p., was gleichbedeutend ist mit
MPt^0. Den zweiten Teil zerlegen wir in die Teilschritte

t*AMr) tRP.{Mr). (2a)

tRPXMi»)< Min tRpt(MPi). (2b)

Fur mindestens ein ie{l,..., s} ist

tRpi(MPi) tRp,(MP,). (2c)

Der Ring RP> sei dabei der Ring Rs mit der Nennermenge S aller nicht in P' liegender
homogener Elemente von R'. Dieser graduierte Ring besitzt nur endlich viele homo-
gen-maximale Idéale, nâmlich die von den Pt erzeugten und ist ganz uber RP>.

Um (2a) zu beweisen setzen wir t tR>p,{MP>) und wâhlen eine homogène MP>-

Folge #!,..., xt in R'P>. Trivialerweise ist die Folge auch MP,-Folge mit RP> als Ring.
Die Maximalitât geht aus der Tatsache hervor, dass, wie man sich leicht iiberlegt,
mindestens eines der homogen-maximalen Primideale von RP, als zugehôriges Primideal

von IxtMP> in MP> vorkommt, wenn uber R!r das homogen-maximale Idéal
zugehôrig ist.

Sei P eines der uber P' liegenden Primideale mit MP#0 und s\RP,^>RP die
kanonische Abbildung (Aufnahme aller homogenen, nicht im durch P erzeugten
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Primideal von RP. liegenden Elemente als Nenner). Wenn nun die Elemente xu..., xr
von RP> eine homogène MP>-Folge sind, so uberlegt man sichmit Hilfe des Konstruk-
tionsprinzips fur Af-Folgen und dem Verhalten der zugehôrigen Primideale bei Nen-
neraufnahme (vgl. etwa Serre [8] Prop. 6 S. 1-16), dass die Bilder s(xi)9..., s(xr) eine

Mp-Folge in RP bilden. Daraus folgt (2b). Um (2c) zu beweisen, wâhlt man eine

maximale MP,-Folge xl9...9 xr in RP> und zeigt mit denselben Mitteln, dass fur min-
destens eines der ùber P' liegenden Primideale P die Folge s(xl),..., s(xr) maximale

Mp-Folge ist.
Damit ist Lemma 3 bewiesen.

Mit Hilfe der drei Lemmata erhâlt man nun Satz 2 (die vorkommenden
Primideale P'^R' bzw. P^R seien stillschweigend als homogen, von der Dimension 1

und als annAf umfassend vorausgesetzt) :

Aus Lemma 1 folgt

Max {k/ExtkR> (M, R') nicht quasinull} Maxhd*^, (MP,).

Wegen Lemma 2 ist dieser Ausdruck

n — Min tRrp, (MP^).

Nach Lemma 3 gilt schliesslich

*R'AMr)= Min tRp(MP)
PûberP'

und damit

Min tR.p, (MP>) Min tRp (MP) q.e.d.

Die Bedeutung des eben bewiesenen Satzes 2 besteht vor allem darin, dass er den

schwierigsten Teil des folgenden Satzes 3 vorwegnimmt. Satz 3 betrachten wir als den

Hauptsatz dièses zweiten Teils unserer Arbeit.

SATZ 3. Seien R, R' und M wie zu Beginn von §3, und à\mR^2. Dann sind fol-
gende Aussagen âquivalent:

(a) M ist quasifreier R'-Modul.
(b) Fur jedes homogène, eindimensionale Primideal P von R gilt genou eine der

beiden Alternativen:
(bl) MP=0
(b2) tRp(MF) timR-\.

(c) Es ist entweder

(cl) M quasinull oder
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(c2) M torsionsfreier R'-Modul und fur aile eindimensionalen, homogenen Primideale
P von R mit MP#0 gilt:
MP ist Macaulay-RP-Modul.

(d) Wenn auch der Nullmodul als Macaulay'sch bezeichnet wird, so kann (c2) er-
setzt werden durch:

{cl') M torsionsfreier R'-Modul undfur aile homogenen Primideale P von R mit dimP ^
^ 1 ist die homogène Lokalisierung MP Macaulay'sch.

Bemerkung. Die Aussage 99M torsionsfreier jR'-Modul" ist, wie man sich leicht
ûberlegt, gleichbedeutend mit der modellinvariant formulierten Aussage ,,die zuge-
hôrigen i£-Primideale von 0 in M sind aile von maximaler Dimension (=dimi£)".

Beweis von Satz 3. Die Âquivalenz von (a) mit (b) folgt unmittelbar aus Satz 2.

(a), (b)=>(c): Zuerst zeigen wir: Wenn (a) gilt, und M nicht quasinull ist, so ist M
torsionsfreier i?'-Modul. Wir nehmen an, M sei nicht quasinull, d.h. dimM^l und
nicht torsionsfreier R'-Moâul. Dann existiert ein zugehôriges i?'-Primideal <?V0 von
0 in M mit dim Q ^ 1. Sei P' ein Q umfassendes homogènes Primideal der Dimension
1. MP' ist dann nicht Null und als R^-Modul nicht torsionsfrei, also nicht frei. Daraus
folgt nach Lemma 1 : M nicht quasifrei im Widerspruch zu (a).

Die Macaulay-Eigenschaft der betreffenden homogenen Lokalisierungen ist eine

unmittelbare Folgerung aus (b2), denn (b2) induziert wegen

tRp (MP) < hdimiîp (MP) < hdim RP ^ dim R - 1

die Gleichung

(Mp), (3)

und dies ist eine Charakterisierung der Macaulay-Moduln, bzw. die sinngemâsse

Verallgemeinerung auf den homogenen Fall (Vgl. Serre [8] Def. 1 S. IV-18).
(c)=>(b): Wenn (cl) zutrifft, so gilt fur aile homogenen, eindimensionalen

Primideale P :MP=0 also (bl).
Es sei nun M ein torsionsfreier J?'-Modul und P ein eindimensionales, homogènes

Primideal mit annAf s p. Wegen der Torsionsfreiheit lâsst sich jedes Modell R' auch

als Modell von i?/annAf auffassen und jR/annM ist als jR'-Modul torsionsfrei. Aus
dem going-down-Theorem folgt nun: Es gibt eine homogène Primidealkette der Lange

dinuR-1, die annAf mit P verbindet. Dies induziert

hdim^ (MP) =» hdim RP dim jR — 1.

Zusammen mit der Macaulay-Eigenschaft (3) folgt daraus (b2).
Die Âquivalenz von (c2) und (c2') folgt unmittelbar aus der Tatsache, dass mit

einem Modul M ûber einem lokalen Ring R auch aile Lokalisierungen MP uber RP

Macaulay'sch sind (vgl. Serre [8] Théorème 6 S. IV-23).



Der Funktor EXT*(., R) in endlichen, graduierten Algebren 11

Anhang 1. Das Reduktionslemma

SATZ. Sei R ein graduierter Ring, S R[X]. Mon schreibt auch dem Elément X
einen Gradg zu (geZ). Damit ist auch S graduiert.feS sei ein normiertes, homogènes

Polynom, d.h.

f Xn + c^""1 +..-+ cn (CieR9 Grade, g-î).

Wenn der endliche, graduierte S-Modul M von f annuliert wird, so ist er auch endlicher,

graduierter R-Modul und es gibt homogène R-Isomorphismen vom Gradg:

rt : Extï (M, S) -> ExtJT1 (M, R) î > 1

Beweis. Q sei der graduierte Ring aller formalen Potenzreihen in X'1 (Anfangs-
exponent in Z) mit Koeffizienten in R. Als homogène Elemente bezeichnen wir dabei
die Reihen

c^X-^ + c^ + iX-"10-1*--- mit cmo+ieR, homogenvom
Grad (Grad cmo + g • i).

S lâsst sich als Unterring von Q auffassen und wir erhalten die kurze, exakte Sequenz:
0. Dièse induziert die lange, exakte Sequenz:

•»-+ Ex4 (M, S) -> Extls (M, Q) ^ Ext^ (M, Q/S) -> • • •. (1)

Wegen der Normiertheit ist fin Q invertierbar, die Multiplikation mit/also ein Iso-

morphismus. Als Abbildung M-+M aufgefasst ist jedoch die Multiplikation mit /die
Nullabbildung. Daraus folgt: Die Multiplikation mit/ rExt^M, g)-»Ext£(M, Q) ist

gleichzeitig die Nullabbildung und ein Isomorphismus, was Ext^M, Q)=0 induziert.
Aus (1) folgt daher:

Si : Ext^ (M, S) 5 Ex4~l (M, Q/S)

ist ein homogener, natiirlicher 5-Isomorphismus vom Grad Null. Die Elemente von
QjS kônnen eindeutig reprâsentiert werden durch Elemente der Form

c c^X'1 + c2X'2 + c2X~3 +••• (cteR).

Jedem solchen c ordnen wir das Elément gceHomR(S, R) zu, das definiert sein soll
durch gc(Xi) ci+1 (/=0, 1,2,...). Man verifiziert leicht, dass dièse Abbildung ein

homogener S-Isomorphismus vom Gradg ist. (HomR(5, R) lâsst sich bekanntlich
auch als 5-Modul auffassen) Dieser induziert einen naturlichen, homogenen S-Iso-



12 ERHARD SENN

morphismus vom Gradg:

/, : Exti (M, Q/S) -> Ex4 (M, Hom* (S, K)).

Nun existiert bekanntlich ein natûrlicher Isomorphismus, den man sofort als R-
Isomorphismus erkennt:

Homs Hom* (S, R)) 5 Hom* (.,£),

definiert durch/-» g mit g(m): =(f(m))(l) (vgl. Cartan-Eilenberg [2] Prop. 5.2 S. 28).
Diesen wenden wir an auf eine S-freie Auflôsung von M (die dann auch i^-freie Auf-
lôsung ist), wo er einen Kettenisomorphismus :

Homs (freie Auflôsung, HomR(S, R)) -> HomK (freie Auflôsung, R)

induziert. Daraus folgt:

m,: Extî(M, HomK (5, U)) 5 Extjj(M, K)

ist homogener, natiirlicher i?-Isomorphismus vom Grad Null.

liefert nun das gewiinschte.

Anhang 2. Der Invarianzbeweis nach M. André

SATZ. Sei S eine endliche, graduierte K-Algebra, M ein endlicher, graduierter
S-Modul. Dann hângt

nicht vom verwendeten Modell R ab. (Der Begriff des Modells ist definiert wie in § 1.2.,

nur dass die gt GradXt auch verschieden sein diirfen.)
Beweis. Seien R=K[XU...9 Xn](n d(R)9 GraûX^gi) und R!=K\Xi...,X£\

(m d(R')9 Grad-Y/ gj) zwei Modelle von S. Dann ist R®KR' auch ein Modell der
Dimension d(R) + d(Rf). Es genùgt zu zeigen:

oder

Ex^-g? (M, XfK');-v, Ext« (M> R)i •

Dièse Isomorphismen folgen unmittelbar aus dem Reduktionslemma angewandt auf
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folgende Paare:

Wir betrachten etwa das Paar

•» Xi] cz R \_xl9., Xi9

Das Bild von X[+ x in Sgenûgt einer Ganzheitsgleichung/(^+1) 0 mit Koeffizienten
im Bild von R. f sei ein Urbildpolynom von/mit Koeffizienten in R. Es gilt natiirlich

/•M 0, was die Anwendung des Reduktionslemmas gestattet. Bei jedem Schritt
wird der Index von Ext* um eins erniedrigt, und der Grad uni g[ erhôht.
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