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Uber Kohomologietheorien mit formaler Gruppe der Charakteristik p

URrS WURGLER

1. Einleitung und Ergebnisse

Es sei #* (— ) eine C-orientierte Kohomologietheorie, d.h. A* (—) ist multiplikativ
und das kanonische komplexe Linienbiindel # iiber dem unendlich-dimensionalen
komplexen projektiven Raum P C ist h*-orientiert. Wir werden stets annehmen, dass
h* (—) tiber der Kategorie W der Rdume vom Homotopietyp eines CW- Komplexes
gegeben ist und durch ein Ringspektrum dargestellt wird. Sei A=#h*(pt). *P,C ist
isomorph zu A[[a]], dem graduierten Ring der homogenen Potenzreihen in a wobei
a=e(n)eh*P,C die Eulerklasse von 5 bezeichnet. Sei m:P,, CxP C—P,C die
klassifizierende Abbildung des Linienbiindels #®#. Das Element m*(a)eh? (P, C x
x P, C) definiert eine Potenzreihe F,(X, Y)eA[[X, Y]] derart, dass fiir die Euler-
klassen komplexer Linienbiindel gilt:

e(Li®L,)=F,(e(Ly), e(Ly)).

F,(X, Y) ist eine kommutative formale Gruppe iiber dem graduierten Ring A und
man hat

F,(X,Y)=X+Y + Y a,;X'V’, a;eh* 2" (pt). (1.1
i 0

i,j>

Ist k eine natiirliche Zahl, so sei [k]z(X)e A[[X]] definiert durch
[K]r (X) = Fa(X, [k — 1]p (X)), [1] (X) = X (1.2)

Die kleinste natiirliche Zahl k, fiir welche [k](X)=0ist, nennen wir die Charakteristik
der formalen Gruppe F,(X, Y). Falls kein solches k existiert, habe F,(X, Y) Charak-
teristik 0. Sind a und b Eulerklasse von n so sieht man leicht, dass die formalen
Gruppen F, (X, Y)und F, (X, Y)isomorph sind, insbesondere ist also die Charakter-
istik von F,(X, Y) unabhdngig von der Wahl der Eulerklasse @ und somit eine
Invariante der Kohomologietheorie.

Bezeichnet H* (X, R) singulire Kohomologie mit Koeffizienten in einem Ring der
Charakteristik p#0, so ist e(n®?)=pe(n)=0, d.h. die formale Gruppe von H*(—, R)
hat Charakteristik p. In der vorliegenden Note soll umgekehrt gezeigt werden, dass
H*(—, R) im wesentlichen die einzige Theorie mit dieser Eigenschaft ist. Genauer:

1.3 SATZ. Es sei h* (—) eine C-orientierbare Kohomologietheorie, h°(pt) ein
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endlicher Korper der Charakteristik p. Hat die formale Gruppe F(X, Y) von h* (=)
Charaketeristik p, so gibt es eine iiber W definierte natiirliche Aequivalenz multiplikativer
Kohomologietheorien

P(X)S go H'(X; k"' (pt)).

Bemerkungen.

(1) Man beachte, dass die formale Gruppe von h* (—) wegen (1.1) sicher dann
Charakteristik p hat, wenn h*"(pt ) =0 fiir n 0.

(2) Nach dem Struktursatz von Lazard (vgl. etwa [4]) ist jede kommutative for-
male Gruppe der Charakteristik p iiber einem Ring der Charakteristik p isomorph zur
linearen Gruppe X + Y. Satz 1.3 kann also auch als Eindeutigkeitssatz fiir Kohomolo-
gietheorien mit linearer formaler Gruppe interpretiert werden.

(3) Zur Frage wann eine Kohomologietheorie C-orientierbar ist, vgl. man A.
Dold [3].

(4) Betrachtet man anstelle von C-orientierbaren Theorien R-orientierbare, kann
man etwas mehr sagen (vgl. [7]).

2. Zur Darstellbarkeit der singuléiren Kohomologie

Sei h* (— ) eine zusammenhingende Kohomologietheorie, d.h. h?(pt)=0 fiir ¢>0.
Die Atiyah — Hirzebruch — Spektralsequenz H* (X, h*(*))=h*(X) besitzt dann
einen ,,edge-homomorphism” e: EZ; °>» E%* ® und vermdge e kann man eine natiirliche
Transformation von Kohomologietheorien

T:h?(X)» E%° 5 ES° ~ HP(X, h° (x)) 2.1)

iiber der Kategorie der endlichdimensionalen CW-Komplexe definieren. Ist A* (—)
multiplikativ, so auch T. Weil lim* H?~! (X", h° (*))=0 ist, kann man T auf ganz W
erweitern: -

T:h?(X)— lim A (X") — lim H?(X", h°(+)) = H? (X, h° (+)).

Dabei bezeichnet X" das n-Geriist von X.
Wie iiblich sagen wir, die Theorie A* (— ) stelle die singuldre Kohomologie H* (—,
h°(+)) dar, wenn

Ty: h* (X) — H*(X, h° (%))

fiir alle Xeob (W) epimorph ist.
Ziel dieses Abschnittes ist der Beweis des folgenden Satzes:
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2.2. SATZ. Sei h*(—) eine C-orientierte, zusammenhdngende Kohomologietheorie,
K=h°(x) ein endlicher Kérper der Charakteristik p. Hat die formale Gruppe von
h* (—) Charakteristik p, so stellt h* (—) die singuldre Kohomologie H* (-, K) dar.

Sei L2"*!=52%"*1/7  ein Linsenraum. In [5] hat C.P. Rourke gezeigt, dass eine
zusammenhéngende multiplikative Theorie #* (—) mit 4°(x)=Z, die Kohomologie
H*(—,Z,) dann darstellt, wenn T:h*(L2"*')— H*(L2""',Z,) epimorph ist fiir
hinreichend grosse n. Wir zeigen vorerst, dass die Bedingung [p];(X)=0 die Voraus-
setzungen des Satzes von Rourke impliziert und verallgemeinern dann dessen Methode
etwas, um Satz 3.2 zu bekommen.

Fiir eine beliebige natlirliche Zahl k bezeichne BZ, den klassifizierenden Raum der
Gruppe Z,=Z[kZ.

2.3 LEMMA. Es sei h* (—) eine zusammenhdngende, C-orientierte Kohomologie-
theorie, R=h°(x) ein Ring der Charakteristik p # o. Hat die formale Gruppe von h* (—)
Charakteristik p, so ist

T:h*(BZ,) — H* (BZ,, R)

ein Epimorphismus.

Beweis. Sei n®? die p-te Tensorpotenz des kanonischen Linienbiindels n iiber
P,C, n:S(n®") - P,C das assoziierte Sphirenbiindel. Mittels der exakten Homoto-
piefolge der Faserung S' —S(n®?)— P, C kann man zeigen, dass S(#®”) ein Eilen-
berg-Mac Lane-Raum K(Z,, 1) und somit homotopieaequivalent zu BZ, ist. Die
Gysinfolge des Sphérenbiindels n hat die Form

s hm2p_C 2280 pap € — 1S (n®7) — KTIPC —
i
hBZ,

Weil die formale Gruppe von #* (— ) Charakteristik p hat, ist e(n®?)=[p]r(e(1)) =0
und somit zerfillt die Gysinfolge in kurze exakte aufspaltende Folgen

0— h*P_C — h*'BZ,— k" 'P,C—0

Wendet man darauf die Transformation T an, so folgt die Behauptung sofort, denn
T:h*(P,C)— H*(P,C, R)ist offensichtlich epimorph, da T die Eulerklasse e(n) auf
die H*(—, R)-Eulerklasse von n abbildet.

Sei L™ das m-Geriist von L,=BZ, x --- x BZ, (n Faktoren).

2.4 KOROLLAR. Sei h* (—) wie in Lemma 3.3, R=K ein endlicher Kirper der
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Charaketeristik p. Dann ist
T:h*(Ly)— H* (L), R)

fiir alle m, n epimorph.
Beweis. Mittels des kommutativen Diagramms

*(Ly) - »H* (L, R)
= T®.--@T =1

h*BZ,®-® h*BZ,—— H*(BZ,, R) ®---®H* (BZ,, R)
folgt, dass T'(L,) epimorph ist. Weil auch H*(L,, R)-> H*(L}, R) epimorph ist, folgt
die Behauptung.

Wir kommen nun zum Beweis von Satz 2.2.

Sei u das Erzeugende von H' (BZ,, Z,)), v=f(u)e H*(BZ,, Z,) wo B den Bockstein-
homomorphismus zur Folge 0—Z,—Z,.—Z,— 0 bezeichnet. Das Produkt u x v x
XUX VX XuxveH>"(L,,, Z,) definiert eine Abbildung «:L3,— K(Z,, 3n)*" und
nach [6], VI, Kor. 2.6. ista*: H*(K(Z,, 3n)*", Z,) > H* (L3, Z,) ein Monomorphis-
mus.

Sei h* (*)= A. Der endliche Kérper A° habe etwa Ordnung p". Dann ist K(A°, 3n)
~K(Z,, 3n)x --- x K(Z,, 3n) (r Faktoren) und weil 4° ein Korper ist folgt, dass auch
die durch a’=a x --+ x a induzierte Abbildung

o'*: H* (K (4° 3n)*", A%) - H* (LY, A°)

monomorph ist.

Nach Korollar 3.4 ist T:h*(L3,,) —» H*(L3n,, A°) epimorph, d.h. (vgl. (3.1)) der
,»,edge-homomorphism‘‘ der Spektralsequenz ist ein Isomorphismus und somit ist die
Spektralsequenz von Ljn, trivial. Weil a’* monomorph ist, bricht auch die Spektral-
sequenz von K(A°, 3n)*" zusammen und somit ist T: h* (K(A°, 3n)*")—» H*(K(A°,
3n)*", A°) epimorph. Sei nun X ein CW-Komplex, dim X=m und xe H(X, A°)
=H9(X*, A°)= A3 (231X *, A°). Weil K(A° 3n)*" 3n-dimensionale Kohomo-
logie fiir Komplexe der Dimension < 4n klassifiziert und 7 mit Einhdngungen ver-
traglich ist folgt, dass x im Bild von T liegt. Wegen hm H*(X", A°)=0 folgt die
Behauptung.

3. Beweis von Satz 1.3

Wir beweisen 1.3 zunidchtst fiir zusammenhidngende Theorien und fiihren an-
schliessend den allgemeinen Fall darauf zuriick.

Sei also k*(—) eine zusammenhédngende Kohomologietheorie, welche die Voraus-
setzungen von 1.3 erfiille, X ein endlicher CW-Komplex.

Nach Satz 2.2 ist die Spektralsequenz H* (X, A)=>k*(X) trivial und somit auch
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Hy (X, A)=>ky(X). Weil A° ein Korper ist, induziert das Kroneckerprodukt
kv (X)®k* (X)— A nach (Adams [1], Prop. 17) einen Isomorphismus

k* (X)— HomJ (k. X, A). (3.1)

Aufgrund desselben Satzes induziert die Abbildung k, X® H* (X, A°)——>H, (X, A°)

QH*(X, A°)—ﬁ-—>->A° einen Isomorphismus
H*(X, A°) ~ Hom} (k, X, 4°). (3.2)

Die Einbettung A° = A definiert mittels 3.1, 3.2 eine Transformation @: H* (X, A°) -
— k*(X), welche fiir X=pt mit A°c A iibereinstimmt. Weil A flach iiber A° ist,
induziert 0 iiber der Kategorie der endlichen CW-Rdume eine Aequivalenz

K*(X)~ H* (X, A°) ® A ~ H* (X, A). (3.3)

Dass dies eine Aequivalenz multiplikativer Theorien ist, bestdtigt man leicht durch
nachrechnen.
Ist h*(—) eine beliebige Kohomologietheorie, so kann man mittels

K(X): = Bild {#*(X, X*™ ') - (X, X7 ?)} (3.4)

eine zusammenhédngende Theorie definieren (vgl. [2]). Man hat eine offensichtliche
natiirliche Transformation g:k* (X)— h*(X) mit ¢%(pt)=id fir ¢<0. #*(—) und
k*(—) seien durch die Spektren E bzw. K dargestellt. Wir betrachten die Cofaser-
Folge K->E—CK | _J,E— - in der Kategorie der Spektren. Weil r,(K)=0 ist fiir
g <0 und =, (¢) isomorph fiir >0, folgt ,(CK |, E)=0 fiir g>0. Sei nun E ein
Ringspektrum mit Multiplikationsabbildung ug:EAE—E. Dann faktorisiert die
Abbildung pzo(¢ A ¢):KAK—-E durch ¢:K—E und man verifiziert unschwer, dass
auch K ein Ringspektrum ist. g ist trivialerweise eine Abbildung zwischen Ringspektren
Sei ach®P,C eine C-Orientierung von h* (—). Wegen 3.4 ist k*P,C=h?P_C und
somit ist auch k* (—) C-orientierbar. Weil (vgl. (1.1)) die Koeffizienten der formalen
Gruppe von h* (— ) negative Dimension haben, erfiillt k* (—) genau dann die Voraus-
setzungen von 1.3, wenn dies fiir #* (— ) zutrifft. Nach 3.3 kann man nun eine multi-
plikative Transformation

@: H*(X, k°(pt)) » H*(X, k* (pt)) = k* (X) > H* (X)

definieren, welche fiir X=pt die Identitdt auf k°(pt)=Ah°(pt) induziert. Wie oben
definiert ¢ somit eine Aequivalenz

H*(X, h* (p1) ~ h* (X) (3.5)

iiber der Kategorie der endlichen CW-Rédume.
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Sei nun X ein beliebiger CW-Komplex, {X,} das gerichtete System seiner end-
lichen Unterkomplexe. Entweder direkt oder mittels ([1], Prop. 17) verifiziert man die
Beziehung H* (X, h*(pt))~ lim H*(X,, h*(pt)) und man erhilt eine Transformation

additiver Kohomologietheorien iiber W,

h* (X) — lim #* (X,) = lim H* (X,, h* (pt)) ~ H* (X, h* (pt)),

welche auf dem Punktraum einen Isomorphismus induziert. Weil alle betrachteten
Transformationen produkttreu sind, ist damit Satz 1.3 bewiesen.

Bemerkung

Die Aequivalenz 3.3 kann man auch direkt, ohne Riickgriff auf [1], herleiten.
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