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tlber Kohomologietheorien mit formater Grappe der Charakteristik/?

Urs Wurgler

1. Einleitung und Ergebnisse

Es sei A*( —) eine C-orientierte Kohomologietheorie, d.h. A* — ist multiplikativ
und das kanonische komplexe Linienbûndel rj iiber dem unendlich-dimensionalen
komplexen projektiven RaumP^C ist /î*-orientiert. Wir werden stets annehmen, dass

A*(-) ùber der Kategorie W der Râume vom Homotopietyp eines CW- Komplexes
gegeben ist und durch ein Ringspektrum dargestellt wird. Sei /1 h*(pt). A*P00C ist

isomorph zu -4[M], dem graduierten Ring der homogenen Potenzreihen in a wobei
a=e(rf)eh2Po0C die Eulerklasse von rj bezeichnet. Sei m.P^ CxP^C-^P^C die
klassifizierende Abbildung des Linienbûndels rç(g)rç. Das Elément m*(a)eh2(PaoCx
xP^C) definiert eine Potenzreihe Fa(X, Y)eA[[X, Y]"] derart, dass fiir die Euler-
klassen komplexer Linienbûndel gilt:

Fa(X, Y) ist eine kommutative formale Gruppe iiber dem graduierten Ring A und

man hat

£ ^ (1.1)
i, J>0

Ist k eine natiirliche Zahl, so sei [fc]F(Ar)eyl[[Ar]] definiert durch

Fm(X9 \k - 1]F(X)), [1]F(X) X. (1.2)

Die kleinste natiirliche Zahl k, fur welche [k]F (X)=0 ist, nennen wir die Charakteristik
der formalen Gruppe Fa(X, Y). Falls kein solches k existiert, habe Fa(X9 Y) Charakteristik

0. Sind a und b Eulerklasse von t\ so sieht man leicht, dass die formalen

GruppenFfl(X, 7)undFb(Ar, F) isomorph sind, insbesondere ist also die Charakteristik

von Fa(X, Y) unabhângig von der Wahl der Eulerklasse a und somit eine

Invariante der Kohomologietheorie.
Bezeichnet H* (X, R) singulâre Kohomologie mit Koeffizienten in einem Ring der

Charakteristik/>#0, so ist e(rj®p)=pe(ri)=O, d.h. die formale Gruppe von H*(-,R)
hat Charakteristik p. In der vorliegenden Note soll umgekehrt gezeigt werden, dass

H*(-,R)im wesentlichen die einzige Théorie mit dieser Eigenschaft ist. Genauer:

1.3 SATZ. Es sei A* —) eine C-orientierbare Kohomologietheorie, h°(pt) ein
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endlicher Kôrper der Charakteristik p. Hat die formule Gruppe F(X, Y) von A* —)
Charakteristikp, so gibt es eine iiber W definierte naturliche Aequivalenz multiplikativer
Kohomologietheorien

Bemerkungen.
(1) Man beachte, dass die formate Gruppe von h* — wegen (1.1) sicher dann

Charakteristikp hat, wenn h2n (pt) O fur n <0.

(2) Nach dem Struktursatz von Lazard (vgl. etwa [4]) ist jede kommutative
formate Gruppe der Charakteristik p ûber einem Ring der Charakteristik/? isomorph zur
linearen Gruppe X+ Y. Satz 1.3 kann also auch als Eindeutigkeitssatz fur Kohomologietheorien

mit linearer formater Gruppe interpretiert werden.
(3) Zur Frage wann eine Kohomologietheorie C-orientierbar ist, vgl. man A.

Dold [3].
(4) Betrachtet man anstelle von C-orientierbaren Theorien R-orientierbare, kann

man etwas mehr sagen (vgl. [7]).

2. Zur Darstellbarkeit der singulâren Kohomologie

Sei h* (—) eine zusammenhângende Kohomologietheorie, d.h. h9(pt) O fur q>0.
Die Atiyah - Hirzebruch - Spektralsequenz H* (X9 h* (*))=> h* (X) besitzt dann
einen ,,edge-homomorphism" e:E^ °>->EZ' ° und vermôge e kann man eine naturliche
Transformation von Kohomologietheorien

T: hp(X) -^£j°A£f^ HP(X, h° (*)) (2.1)

iiber der Kategorie der endlichdimensionalen CW-Komplexe definieren. Ist h* —

multiplikativ, so auch T. Weil lim1 Hp~1(Xn9 A°(*))=0 ist, kann man Tauf ganz W
erweitern:

T : hp (X) -+ lim hp (Xn) -> lim Hp {X\ h° (*)) s Hp (X, h° (*)).

Dabei bezeichnet Xn das /z-Gerust von X.
Wie iiblich sagen wir, die Théorie h* (-) stelle die singulâre Kohomologie H* (-,

A°(*))dar, wenn

Tx:h*(X)-*H*(X,h°(*))

fur aile Zeob (W) epimorph ist.

Ziel dièses Abschnittes ist der Beweis des folgenden Satzes:
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2.2. SATZ. Sei h*( — eine C-orientierte, zusammenhângende Kohomologietheorie,
K=h°(*) ein endlicher Kôrper der Charakteristik /?. Hat die formate Gruppe von
h* (-) Charakteristikp, so stellt h* (-) die singulàre Kohomologie H*(-9K) dar.

Sei L2pn + 1 S2n+1/lp ein Linsenraum. In [5] hat C.P. Rourke gezeigt, dass eine

zusammenhângende multiplikative Théorie /** (-) mit h°(*) Zp die Kohomologie
H*(-,Zp) dann darstellt, wenn T:h*(L2pn+1)->#*(Lf+\ Ip) epimorph ist fur
hinreichend grosse n. Wir zeigen vorerst, dass die Bedingung [/?]F(^)=0 die Voraus-

setzungen des Satzes von Rourke impliziert und verallgemeinern dann dessen Méthode
etwas, um Satz 3.2 zu bekommen.

Fur eine beliebige natûrliche Zahl k bezeichne Bïk den klassifizierenden Raum der

Gruppe Zfc

2.3 LEMMA. Es sei h* — eine zusammenhângende, C-orientierte Kohomologietheorie,

R h°(*) ein Ring der Charakteristik p ^ o. Hat die formate Gruppe von h* —

Charakteristikp, so ist

T:h*(BZp)-+H*(BZp,R)

ein Epimorphismus.
Beweis. Sei rj®p die p-te Tensorpotenz des kanonischen Linienbiindels n ùber

PooC, n:S(i/®1')--»Pa)C das assoziierte Sphârenbiindel. Mittels der exakten Homoto-

piefolge der Faserung S1 -»Sl(//®p)->/>00C kann man zeigen, dass S(rç®p) ein Eilen-

berg-Mac Lane-Raum K(IP, 1) und somit homotopieaequivalent zu Blp ist. Die

Gysinfolge des Sphârenbiindels n hat die Form

> h«S(n®p)-> A'-^C -+
\\l

Weil die formale Gruppe von h* (-) Charakteristik/? hat, ist e{r\®p)= [p]F(e(ri))=0
und somit zerfâllt die Gysinfolge in kurze exakte aufspaltende Folgen

0 -? AfPwC -> hqBlp

Wendet man darauf die Transformation T an, so folgt die Behauptung sofort, denn

T:h*(Po0C)-*H*(P00C, R) ist offensichtlich epimorph, da Tdie Eulerklasse e{n) auf
die H* -, i*)-Eulerklasse von rj abbildet.

Sei L™ das m-Geriist von Ln=BZP x • • • x Blp (n Faktoren).

2.4 KOROLLAR. 5e/ A* (—) wfe in Lemma 3.3, R=K ein endlicher Kôrper der
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Charakteristikp. Dann ist

fur aile m, n epimorph.
Beweis. Mittels des kommutativen Diagramms

h*(Ln) 1 >H*(Ln,R)

h*BZp ® • • • (g) h*BZp lî^îî H* (BZp9 R)®-®H* (BZp9 R)

folgt, dass T{Ln) epimorph ist. Weil auch H* (Ln9 R) -? #* (L™, R) epimorph ist, folgt
die Behauptung.

Wir kommen nun zum Beweis von Satz 2.2.
Sei u das Erzeugende von H1 (Blp, lp), v P(u)eH2 (Blp9 lp) wo p den Bockstein-

homomorphismus zur Folge 0-»Zp-*>lp2-* Zp->0 bezeichnet. Das Produkt uxvx
xuxvx ••• xmx veH2n(L2n, Zp) definiert eine Abbildung oc:L2t!t-+K(Zp, 3«)4w und
nach [6], VI, Kor. 2.6. ist a* : H* (K(Zp9 3«)4w, Zp) ^ H* (L?n, Zp) ein Monomorphis-
mus.

Sei A* (*)=yl. Der endliche Kôrper A° habe etwa Ordnung/. Dann ist ^(/l0, 3«)

c*K(Zp, 3n) x ••• x -K(Zp, 3w) (r Faktoren) und weil /l0 ein Kôrper ist folgt, dass auch
die durch a' a x • • • x a induzierte Abbildung

a'* : H* (K (A0, 3n)4n, /1°) - H* (L\nnr9 A0)

monomorph ist.
NachKorollar 3.4 ist T:h*{Ltnnr)->H*{L\nnr9 A0) epimorph, d.h. (vgJ. (3.1)) der

,,edge-homomorphism" der Spektralsequenz ist ein Isomorphismus und somit ist die

Spektralsequenz von L\nnr trivial. Weil a'* monomorph ist, bricht auch die Spektralsequenz

von K(A°9 3n)4tt zusammen und somit ist T:h*(K(A°, 3nyn)^>H*(K(A°9
3n)4n9 A0) epimorph. Sei nun X ein CW-Komplex, dimZ=w und xeHq(X9 A0)

Èq(X+9 A°)^Ë3m(I3m-qX+9 A0). Weil K(A°, 3nfn 3«-dimensionale Kohomo-
logie fur Komplexe der Dimension < An klassifiziert und T mit Einhângungen ver-
trâglich ist folgt, dass x im Bild von T liegt. Wegen lim1 H*{Xn9 A°)=0 folgt die

Behauptung.

3. Beweis von Satz 1.3

Wir beweisen 1.3 zunâchtst fiir zusammenhângende Theorien und fûhren an-
schliessend den allgemeinen Fall daraufzuriick.

Sei also fc*(—) eine zusammenhângende Kohomologietheorie, welche die Voraus-
setzungen von 1.3 erflille, Zein endlicher CW-Komplex.

Nach Satz 2.2 ist die Spektralsequenz H*(X9 A)=>k*(X) trivial und somit auch
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H*(X, A)=>k*(X) Weil A0 ein Korper ist, mduziert das Kroneckerprodukt
&* (X)®k* (X) -? A nach (Adams [1], Prop. 17) emen Isomorphismus

k*(X)^Homï(k*X,A) (3.1)

Aufgrund desselben Satzes mduziert die Abbildung k*X®H* (X, A0) -^/f* (X9 A0)

®H* (X, ylo)-^yl0 emen Isomorphismus

H* (X, A0) « Hom* (k*X, A0) (3.2)

Die Embettung A°œA definiert mittels 3.1, 3 2 eine Transformation G:H*(X9 A°)-+
-*k*(X), welche fur X=pt mit A°czA uberemstimmt. Weil A flach uber A0 ist,
mduziert 9 uber der Kategone der endhchen CW-Raume eme Aequivalenz

k* (X) « H* (X, A0)® A* H* (X, A) (3.3)

Dass dies eine Aequivalenz multiphkativer Theonen ist, bestatigt man leicht durch
nachrechnen.

Ist /**(—) eine behebige Kohomologietheone, so kann man mittels

kq(X). Bûd{h*(X, X"-1) - hq(X, Xq~2)} (3.4)

eine zusammenhàngende Théorie defimeren (vgl [2]). Man hat eine offensichtliche
natûrhche Transformation Q.k*(X)-+h*(X) mit Qq(pt) \d fur g<0. h*(~) und
A:*( — seien durch die Spektren E bzw K dargestellt. Wir betrachten die Cofaser-

Folge K~>E-^CK \JQ E-*- m der Kategone der Spektren Weil nq(K) 0 ist fur
q<Q und nq(g) isomorph fur q^O, folgt tt^CK l^Jc E)=0 fur q^O. Sei nun E ein
Ringspektrum mit Multiphkationsabbildung /i£:EaE-*E Dann faktonsiert die

Abbildung ^o(^a^):KaK-^E durch Q.K-+E und man venfiziert unschwer, dass

auch K em Ringspektrum ist. g ist tnvialerweise eine Abbildung zwischen Rmgspektren
Sei ae^P^C eine C-Onentierung von h* (-). Wegen 3.4 ist A:2P00C /i2P00C und
somit ist auch k* — C-onentierbar. Weil (vgl. (1.1)) die Koeffizienten der formalen

Gruppe von h* — négative Dimension haben, erfullt k* (—) genau dann die Voraus-

setzungen von 1 3, wenn dies fur A* (—) zutrifft Nach 3.3 kann man nun eme multi-
plikative Transformation

q> : H* (X, k° (pt)) ->H*(X, k* (pt)) *k*(X)-?>h* (X)

defimeren, welche fur X=pt die Identitât auf k°(pt)=h°(pt) mduziert. Wie oben

definiert cp somit eine Aequivalenz

H*(X,h*(pt))*h*(X) (3.5)

uber der Kategone der endhchen CW-Râume.
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Sei nun X ein beliebiger CW-Komplex, {Xa} das gerichtete System seiner end-
lichen Unterkomplexe. Entweder direkt oder mittels ([1], Prop. 17) verifiziert man die
Beziehung H*(X, h*(pt))& lim H*(Xa, h*(pt)) und man erhâlt eine Transformation

additiver Kohomologietheorien ûber W,

h* (X) -> lim h* (Xa) « lim H* (Xa, h* {pi)) « H * (X, A* (pt)),

welche auf dem Punktraum einen Isomorphismus induziert. Weil aile betrachteten
Transformationen produkttreu sind, ist damit Satz 1.3 bewiesen.

Bemerkung

Die Aequivalenz 3.3 kann man auch direkt, ohne Rùckgriffauf [1], herleiten.
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