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Some Non-Linear Equivariant Sphere Bundles

DIETER ERLE

1. Introduction

Let ¢:G—0,, be a real m-dimensional representation of a compact Lie group G.
Assume that 7:7— B is a smooth G bundle such that the action takes place on the
fibres, and each fibre is equivariantly diffeomorphic to S™! where the action of
G on S™~ 1 is given by the representation ¢.

Is # smoothly equivalent to the sphere bundle of a G vector bundle with fibre
representation ¢?

If yes, = is called linear, otherwise it is called non-linear. If = is linear it bounds a
smooth equivariant disk bundle with fibre action induced by ¢. Topologically, of
course, 7 is always the boundary of a disk bundle with fibre action induced by ¢: The
mapping cylinder of n serves as the total space of the required equivariant disk bundle.

For G the trivial group, examples of non-linear sphere bundles over spheres were
found by S. P. Novikov [15] and P. Antonelli, D. Burghelea, P. J. Kahn [1]. Let G be
one of the groups O,, U,, Sp,, and let g, be the standard representation of G, of real
dimension #n, 2n, or 4n, respectively. It is not difficult to show that any sphere bundle
with fibre representation g, is linear. We consider sphere bundles with fibre represen-
tation ¢,®g,  We prove that for G the orthogonal group O,, n>3, any G sphere
bundle with fibre representation g,®g, is linear (Corollary 4.4). On the other hand,
for G the unitary or symplectic group of n dimensions, n>3, we will construct many
non-linear G sphere bundles with fibre representation g,®o, and base space a sphere
(Theorem 4.5). It is not clear whether or not these sphere bundles are smoothly linear
if one forgets the action of G.

The methods used in this work are quite different from those of [15; 1]. The total
space of an equivariant sphere bundle with action induced by ¢,®g,(7>3) on the
fibres, is a G manifold with two orbit types and orbit space a manifold with boundary.
The construction of our non-linear bundles relies on the classification of these G ma-
nifolds by W. C. Hsiang and W. Y. Hsiang [10] and K. Jdnich [11].

Our results have some consequences, naturally, concerning the homotopy type of
the topological group of all equivariant self-diffeomorphisms of the unit sphere in the
representation space of ¢,@®e,, n=> 3. In the orthogonal case, this group has the homo-
topy type of O, (Theorem 4.3), whereas in the unitary case it does not have the homo-
topy type of a finite CW complex (Theorem 4.8).

We finally deal with the problem of classifying equivariantly the total spaces of the
non-linear bundles over spheres constructed here. It turns out that in most cases these
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total spaces are products of a homotopy sphere and the fibre (Theorem 5.2 and Pro-
position 5.4).

2. A, manifolds ocer Z* x Di+1

As we simultaneously deal with orthogonal, unitary, and symplectic actions, the
following notation will be convenient (cf. [7]). 4, is the orthogonal group O,, the
unitary group U,, or the symplectic group Sp,. g, is the corresponding standard
representation of real dimension n, 2n, or 4n, respectively. Let n:T— B be a smooth
A, sphere bundle over B, with fibre action g,@®¢,. The fibre is S?9"~! where d=1, 2,
or 4 depending on the group acting. = factors through the orbit map T— T, and we
have a commutative diagram:

T—— T =T/A,

AN
N,

S24n=1 and T are A, manifolds with orbit types (4,-,) and (4,-,), the slice represen-
tations corresponding to the orbit types are g,_, @ trivial and trivial, respectively.
The orbit space of $24"~1is D4*!, hence T’ — Bis a D**! bundle. To find and distin-
guish bundles n:T— B, it is therefore important to classify A, manifolds with orbit
space a D?*1 bundle over B such that over each fibre of this bundle we have §24"~!
with action ¢,®¢,. We use [10] and [11] to do this for a special case.

THEOREM 2.1. Let k be a positive integer;, k>1 if A,=0, or Sp,. Let Z* be a
smooth manifold homeomorphic to S*. For every n>3, there is a 1 —1 correspondence
between equivariant diffeomorphism classes of smooth A, manifolds over X*x Di*1
satisfying the conditions

(i) for each peX*, the union of the orbits over p x D**! is equivariantly diffeomor-
Pphic to $?"~ 1 with action induced by 0,®0,,

(ii) the principal orbit bundle is trivial, and elements of cok (1, SOy, — 1,Gysy).

G,+ 4 is the H-space of degree one mappings of S¢ onto itself, and m,SO0,,, —
— 1G4, is induced by inclusion. Lateron we will see that a A, manifold corre-
sponding to a non-zero element of cok (7,80, = m,G,4) is the total space of a
non-linear A, sphere bundle over Z*.

Proof of Theorem 2.1. Let T be a A, manifold over £*x D**! with the properties
stated in the theorem. T is a so-called special A4, manifold [11], also [10], and is classi-
fied by an equivalence class of pairs (P, o). Our notation follows [11; 12; 7]. P is the
compactified principal bundle of the principal orbit bundle of T, i.e. Z¥x D4*1 x
x A, - ¥ x D**1 by (ii). ¢ is a reduction of the structure group A4, of 6P to the sub-
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group A, x A, (cf. [7, 3.2]), i.e. a cross-section ¢: Z¥x §%4— ¥ x §4x (A,/A; x A,) of
the bundle 0P/A, x A,. As A,/A, x A, is diffeomorphic to S o is given by a map f:
¥ x 89— S4(=4,/4, x A;). Because of condition (i), f | p x S*has degree +1 [7, 3.2].
Thus f is a fibre homotopy trivialization of the trivial d-sphere bundle over Z*. By
taking a suitable identification of A,/4, x A, with S¢ f becomes an oriented fibre
homotopy trivialization. On the other hand, by Jadnich’s construction, any such fibre
homotopy trivialization gives rise to a A4, manifold as in Theorem 2.1. Now f:
Z*x §9— S4is nothing but a map Z* - G, , which we also denote by f. It is the class
represented by f in cok(m,SO,,; = m,G;+,) which corresponds to the equivariant
diffeomorphism class of T. To prove the 1—1 correspondence we have to analyze
Janich’s equivalence relation of pairs (P, ¢) in our particular case. Two pairs (P, o)
and (P’, ¢') are equivalent (i.e. the corresponding A, manifolds equivariantly diffeo-
morphic over X* x D4*!) if and only if there is a bundle isomorphism of P and P’
carrying o to ¢’ [11, 3.1]. If P and P’ are identified with the trivial bundle Z* x D4*1 x
XA, —»Z¥x D**! (P, 6) and (P, ¢') are equivalent if and only if there is a bundle
automorphism of the above trivial bundle carrying ¢ to ¢’. Such a bundle auto-
morphism is given by

H:Z*x D' x A, »Z*x D' x 4,
H(x, , 2) = (%, , 2n(x, ))

where n:Z*x D**t*! > A,. (P is a right principal bundle.) Therefore equivalence of
(P, o) and (P, ') means the existence of a commutative diagram

TEx St x A, —l, sk % S x A,

! l
¢ x 9% 84— 5 3* x §4 x S *)
N /
"\z,, s

x S¢

where H is defined by :Z*x D?*! - A, as above and 4 is induced by H via the iden-
tification of A,/A4; x A, with S%. We shall need two facts: If ¢ and ¢’ are homotopic
reductions, then (P, o) and (P, ¢') are equivalent [9, p. 23]. 4,/4,; x A, can be iden-
tified with S in such a way that the action of 4, on A,/A4, X A, corresponds to the
orthogonal action of 4, on S? via a homomorphism 7:4, — 0,,, with kernel the
center of A,. This is well-known (e.g. [2]).

Now suppose (P, o) is equivalent to (P, ¢’), the equivalence given by n:Z* x
x D?*1 A,. Let 6 (¢”) be given by a map f (f'):2¥— G,,,. Change # by a homo-
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topy such that it is constant on all disks p x D*1, peZ*. This changes ¢’ by a homo-
topy, using the diagram (*), and changes neither the equivalence class of (P, ¢’) nor
the homotopy class of f'. So we may assume that we have a diagram (*) with n a map
from 2* to A,. ¢'=ho, h being defined by n:Z*— A,. If §:2* - 0, , is the composi-
tion of n with the above homomorphism t:4,— 0,,,, this means f’'=#"f, or
[f'1-[f1=[4]. Thus [f], [f'lenGy,, differ by an element in the image of
SO0y 4 1-

Conversely, given f, f':Z*—> G,,,, defining reductions o, ¢’, assume there is
f:Z¥—> SO, 4, such that [ f']1— [ f]1=[77] in G, ,. j can be lifted to : Z* — A,. (Here,
if A,=0, or Sp,, k>1 is used; see Remark 1 below.) This shows that the reduction
defined by 7 f can be obtained from ¢ by an automorphism of P (namely the one
defined by 7). As #* f and f ' are homotopic, (P, o) and (P, ¢’) are equivalent, and
the proof'is complete.

Remark 1. For k=1, the proof shows what has to be modified if A,= 0, or Sp,.
In the symplectic case, one gets a 1 — 1 correspondence to the elements of n, Gs. In the
orthogonal case, one gets a 1 —1 correspondence with the elements of cok(n; SO, -
—71,G,) where n,S0, — 7,G, is obtained by composing the double covering SO, —
— S0, with the inclusion SO, = G,.

Remark 2. The zero element of cok(m S04y — 7,Gyy ) clearly corresponds to
the ‘trivial’ 4, manifold Z* x 29"~ ! over ¥ x D*1,

Remark 3. The inclusion SO, =G, is a homotopy equivalence, so cok(n,SO, —
-mn,G,)=0. 1,505 mG; is a monomorphism [14], so cok(mSO;— m,G3)=
>, (G5, SO5) which is isomorphic to r; . ,S? for k >3.

3. The Orbit Space as a Bundle

It was proved in [7, 2.3] that the linear automorphisms of $?4"~! compatible with
the representation g,@®g,, form a group isomorphic to A, (n=>3). The action of this
group on the orbit space §24"~!/A, = D**1 is what one would expect:

PROPOSITION 3.1. The action of the group A, of equivariant linear automor-
phisms of $*4"~1 (n>3) induced on the orbit space S**"~*|A,= D**" is equivalent to the
orthogonal action of A, on D**! given by a homomorphism t: Ay — Oy With ker 1=
center (4,).

Proof. Let F be the real, complex, or quaternionic field, depending on whether the
orthogonal, the unitary, or the symplectic group acts. Recall from [7, 2.4] how 4, and
A, act on S24"~1, Write elements of $>"~* as n by 2 matrices over F. Then A, acts by
left multiplication, and /4, acts by right multiplication. To prove Proposition 3.1 we
may confine ourselves to the orbits of A, over B**!=intD?** (i.e. principal orbits).
An n by 2 matrix is on a principal orbit if and only if the two columns are linearly
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independent. If a=./4, then the A, orbit of the point
Ex
0«a
g=|00

00
is a fixed point of the action of A,. We are going to determine the orbit type of non-
fixed points of the 4, action on B*1, We first need nice representatives of the points
in the orbit space B**1/4,.

Clearly, any point of $29*~! over B**! is on a A, orbit of a point of the form

**)

- O
e O

00

reR, r>0, s#0. Applying a suitable element of 4, (i.e. without changing the A, orbit)
makes ¢ real non-negative. Then we make s real positive by applying an appropriate
element of A4,. So far we have shown that any point in the orbit space B**!/A4, has a
representative of the form (**) with r, s, zeR, r>0, s>0, 1>0. The following lemma
guarantees that we may even assume ¢ =0.

LEMMA 3.2. Given real numbersr+#0, s#0, t, there are orthogonal 2 by 2 matrices
M, N such that

rt
M [0 s] N
is a diagonal matrix.
(Lemma 3.2 is proved below.)
Assume [z 3] is in the isotropy group of a point of B**! represented by
BEX [ r 0] [ ra rb |
0s 0s 2 b sc sd
00|. Then |00 [ ]= 00
Dol .o led s 2
00 (00 [0 0
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is on the same A, orbit as
= o]
0s
00].

00
- = )

Therefore r*=r?|a|®>+s%|c|> and s*=r?|b|?>+5%d|%, so ri(1—|a|*)=r?c|*=
s%|c|? and s*(1—|d|*)=s%|b]>*=r?|b|?, i.e. r=5 or ¢=0 and b=0. For r=s we have
the fixed point g, otherwise the isotropy group is A, x A,. Thus the positive dimen-
sional orbits of A4, on B?*! are spheres A,/4, x A, of dimension d, the orbit space
B?*1/A, is the half open interval (0, «], parametrized by r. Hence B**! is equivalent,
as a A, space, to the representation space of 7 composed with the standard orthogonal
representation of O,, SO,, or SO, respectively.

Proof of Lemma 3.2. Left (right) multiplication by an orthogonal matrix does not
change the inner product of the columns (rows) of a real 2 by 2 matrix. As the ortho-
gonal group operates transitively on spheres, it is sufficient to find an orthogonal matrix

uu'l —
[ Z ul u'=\/1 —u?, such that the columns of

r t] u u'
Os| |—u u

have inner product zero. This leads to an equation

rit? 0
(r2 — t* — 5%)* + 4r?t?

ut —u? +

which does have a solution u in the unit interval.

COROLLARY 3.3. If an equivariant linear S**"~' bundle n:T— B is defined by
transition functions t;:X;— A,, then the orbit space T’ is the total space of a D**?

bundle over B with transition functions tot;.
4. The Homotopy Type of the Equivariant Diffeomorphism Group of the Fibre

The following two (well-known) lemmas are used in the proof of the next theorem.

LEMMA 4.1. The group of diffeomorphisms of D? is homotopy equivalent to O,.
Proof. The group of diffeomorphisms of S’ is homotopy equivalent to O,. This is
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elementary. So the group of all diffeomorphisms of D? is homotopy equivalent to the
group of all diffeomorphisms of D? being orthogonal on the boundary. The latter is
homotopy equivalent to the product of O, and the group of all diffeomorphisms of
D? leaving S fixed. But the second factor is contractible [6, p. 132].

Lemma 4.2. Let G be the group of equivariant diffeomorphisms of a manifold M
with respect to some fixed smooth action of a Lie group on M. Then G has the homotopy
type ofa countable CW complex.

Proof. If the action is trivial, the Lemma is obtained by combining [5, p. 277, 283]
and [16, Theorem 14]. In [5], the diffeomorphisms close to the identity are identified
with certain cross-sections of the tangent bundle of M. This gives the local structure of
a locally convex topological vector space. Therefore it is sufficient to observe that the
equivariant diffeomorphisms correspond to equivariant cross-sections, which form a
linear subspace.

DEFINITION. The diffeomorphisms of $2¢"~! onto itself which are equivariant
with respect to the diagonal action ¢,®g, of 4,, endowed with the C* topology, form
a topological group. We denote this group by Diff (4,, 9"~ 1), or briefly D,(A).

The group of all linear equivariant diffeomorphisms of S?%*~! is a subgroup of
D, (A) which is isomorphic to 4, [7, 2.3].

THEOREM 4.3. For n>3, the inclusion j:0,< D,(0O) is a homotopy equivalence.

Proof. Every equivariant self-diffeomorphism of $*"~! is homotopic to a linear
one [7, 6.1]. So jinduces an isomorphism for 7,. To prove that j induces isomorphisms
for m, k>0, we use that the equivalence classes of bundles over S**! with structure
group G are classified by n,G modulo the action of n,G [19, 18.5]. Let n:T— S**! be
an equivariant S$*"~! bundle (with structure group D,(0)). The orbit space T’ is a
D? bundle over S**!, with structure group O, (Lemma 4.1).

Assume k>1. Then T'— S**! is a trivial bundle, so T is an O, manifold over
S**1x D?. The principal orbit bundle of T is a bundle over S**! x B? with structure
group O,, so is also trivial. Thus by Theorem 2.1, the O, manifold T corresponds to an
element of cok (m,+,;S0,—>m ,,G,). As this cokernel is zero, T is the ‘trivial’ O,
manifold over S**1 x D?,i.e. S¥*1 x §2"~ 1, Therefore every equivariant $?"~! bundle
over S**1is trivial, which means 7, D(0) =0=m,0, (k> 1).

The case k=1 is slightly more complicated. The principal orbit bundle of T is a
bundle over int (T")~S?. If n: T— S is given by an element ten, D, (0), the principal
orbit bundle of T is given by some element t,em; O, such that (j.Z,) 'ten,D,(0)
defines an equivariant S2"~! bundle over S? with trivial principal orbit bundle. So we
may assume that T already has trivial principal orbit bundle. If T’ is a non-trivial
D? bundle over S2, T is a lens space L(q)(g>1). The principal bundle of the princi-

-
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pal orbit bundle of T is int T’ x O, —int T’, the reduction of the structure group to
0, x O; according to Jdnich’s classification is a cross-section of the bundle 6T’ x
X 0,/0y x O, »0T"’, which is of degree + 1 on any fibre of T’ — S2. So it is given by
a map

5T’ —‘)02/01 X 01

which is of degree +1 on any fibre of L(q)— S'. As every map L(g)—S' is null
homotopic, this is impossible. Therefore the bundle 7' — S? is trivial. Now we can
apply Theorem 2.1. As cok(n,S0, - n,G,)=0, n is equivalent to the trivial bundle
§%x 82"~ 1 over S2. This proves that jinduces a surjective map 7, 0,/1,0, - 7, D, (0)/
noD,(0). As the total spaces of two different linear equivariant S2"~! bundles over
S? have different principal orbit bundles, n,0,/n,0, = 1, D,(0)/n,D,(0O) is injective.
Then j,: 7,0, - n; D,(0) is an isomorphism because 7,0, =7,D,(0)=Z,.

So far we have shown that j is a weak homotopy equivalence. But O, and D,(O)
have the homotopy type of CW complexes (Lemma 4.2). Hence j is a homotopy
equivalence [18, p. 405].

COROLLARY 4.4. Any O, equivariant S*"~' bundle with fibre action 0,®0,,
n>=3, is a linear bundle.

THEOREM 4.5. Let A, be the group U, or Sp,, n=3. Let k23. If T is a A, mani-
fold over S*x D**1 corresponding to a non-zero element of cok(m,SO;41— mGyysy)
in the classification of Theorem 2.1, then n:T—S* is a non-linear A, equivariant
S24m=1 bundle with fibre action g,®¢,.

n:T— S* is of course the composition of the orbit map with the projection on the
first factor. Note that in the orthogonal case, the above cokernel is always zero.

Proof. If n:T— S* is a linear bundle, it is equivariantly trivial. This follows from
Corollary 3.3 and the isomorphism t,:7, A, = m, ;S0 . But then, by Remark 2
of section 2, T corresponds to zero in cok (7SO0, 1 — m,G441). So we only have to
make sure that 7:T— S* is a bundle, i.e. locally trivial. If B=S*-point, n"'Bis a 4,
manifold over B x D%*!. The reduction of a structure group occuring in the classifi-
cation by the Hsiangs and Jénich, is a map B— G,., so is homotopic to a constant
map. As homotopic reductions yield equivariantly equivalent 4, manifolds [9, p. 23],
n~1B s equivariantly diffeomorphic over Bto Bx S>4"~1,

COROLLARY 4.6. If cok(mSOy41—mGyi1)#0 for some k=3, then
cok (7, _ 1Ay = m,_ D"(A)) #0 for everyn>3.
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Proof. By Theorem 4.5, there is a bundle over S* with structure group D, (A4)
which is non-linear, i.e. the structure group of which cannot be reduced to A4,. So the
corresponding element of w, _; D, (A) is not in the image of 7, _, 4,.

COROLLARY 4.7. Neither of the inclusions U, < D,(U), Sp, < D, (Sp) is a homo-
topy equivalence.
Proof. This follows from cok (73503 — n3G3)~Z, and cok (nsSOs »nsGs)=Z,.

THEOREM 4.8. For any n>3, D,(U)=Diff(U,, S**~'), the group of all self-
diffeomorphisms of S*"~1 which are equivariant with respect to the action 9,®o, of U,,
does not have the homotopy type of a finite CW complex.

Proof. As m3(Gs, SO;3)=cok(n3SO; —»n3G3)=Z,, n,D,(U) is non-zero. But
according to [3, Theorem 6.11], a topological group of the homotopy type of a finite
CW complex, has zero 2-dimensional homotopy group.

Remark. We do not know whether or not D,(Sp) has the homotopy type of a
finite CW complex. The above method does not work in the symplectic case since
cok (13805 — 113G5)=0.

§5. Classifying the Total Spaces

In view of the exact homotopy sequence
0
oo S04t = MGyiy = M (Gaa1 SOy 1) = My 1SOy4q =+,

cok (7,804, = m,Gy+1) is isomorphic to kerd =, (G444, SO,4,). This kernel can be
calculated to be non-zero in many cases, giving many examples of non-linear bundles
by Theorem 4.5. It turns out, however, that the total spaces of these bundles in most
cases are equivariantly diffeomorphic to a product of a homotopy sphere and S29" 1,
Before going into this question, we prove a rather technical lemma.

LEMMA 5.1. Let X* be a homotopy k-sphere, k=5, F:S*x D?*1  X¥x D4+t
a diffeomorphism. Then F is strongly diffeotopic to a diffeomorphism G such that
G| AxD**': Ax D**' > A’ x D*** has the form G (x, y)=(g(x), y), where 4, A’ are
k-disks in S*, Z*, respectively, and g: A — A’ is a diffeomorphism.

Proof. If peS*, p’eX*, then the map F':p x (D*!, §%) - Z* x (D?*1, §9), defined
by restricting F, is homotopic to a map F":p x (D?*!, §) - Z*¥ x (D?*!, §7) such that
imF”=p’x (D%*!, $%) and =, F"=id. This homotopy may be assumed to be com-
posed by two homotopies, the first one moving a neighborhood of the boundary close
to the boundary and leaving the complement of a neighborhood of the boundary
fixed, the second one moving only the complement of a neighborhood of the boundary
in the complement of a neighborhood of the boundary.
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As F"|pxS*pxS?>2*xS? is (k—1)-connected, we can replace the first
homotopy by a strong diffeotopy of Z* x D4*1 which is the identity outside a neigh-
borhood of the boundary. This is done using [8, p. 47] and the product structure of
small neighborhoods of the boundary. To replace the second homotopy by a strong
diffeotopy leaving a neighborhood of the boundary fixed, one has to extend Haefliger’s
existence theorem for diffeotopies [8, p. 47] to relative homotopies not affecting a
neighborhood of the boundaries. Using the composition of the two diffeotopies, we
have realized the homotopy between F’ and F” by a strong diffeotopy of Z* x D4*1,
Now if 4, A’ are k-disks, pe Ac S*, p’e A’ Z*, g: 4— A’ a diffeomorphism such that
g(p)=p’,then F" | Ax D**! and gxid: Ax D**' - A’ x D**! are tubular maps for
p'xD**! in £¥x D**!, (To be precise, we can give 4 and A4’ linear structures such
that pis the origin in 4 and g is a linear isomorphism.) As D?*! is contractible, there
is another strong diffeotopy of Z* x D**! carrying F | 4 x D**! to g xid. Combining
all the diffeotopies yields G.

Levine [13] constructed a homomorphism «;:@**4*1 k5 n (Gyyy, SO44q).
(@™ * is the group of k-dimensional knots which are homotopy spheres in S™, k> 5.)
@, () is the obstruction for a knot x to bound a framed manifold in $****1. w,(x)e
ekerd if and only if » has trivial normal bundle.

THEOREM 5.2. Let 2* be a homotopy k-sphere, k>5. Let T be a U, or Sp, mani-
fold over S*x D**1, corresponding to an element xekerdcm(Gy4y, SOy441). Then T
is equivariantly diffeomorphic to £* x §**"~! if and only if there is a knot x diffeomorphic
to Z* with w; (%)= —x.

We first prove the following auxiliary

PROPOSITION 5.3. Let x be a knot diffeomorphic to X*, of codimension d+1,
with trivial normal bundle, and T the U, or Sp, manifold over Z* x D**? corresponding
10 w5 (x)ekerd cm, (Gay 1> SOy+1). Then T is equivariantly diffeomorphic to S* x §24"~1.

Proof. Recall how w;(x) is defined if » has trivial normal bundle [13, 3.1]. Let
h:X¥% x D41 _, X be a tubular map for x. S**¢** —int X is diffecomorphic to D**! x §¢
by a diffeomorphism g: D**! x §¢—S*+4*1 —int X such that g | $*x §¢:8*x §—dX
extends to a diffeomorphism hy:S*x D4*! - X [17, Theorem 4.1]. If =, is the pro-
jection on the second factor, then m,g~ *h:Z* x S% —» S defines an element of 7,G,.,
whose image in 7, (Gy 41, SOy+1) is 03 (%).

By the diffeomorphism A~ 'hy:S*x D*! - EZ*¥x D**!, T can be lifted to a 4,
manifold T’ over S* x D*1, which can be detected by an element yen, (G444, SO4+1)
according to the classification in Theorem 2.1. As T’ was obtained by lifting from 7,
y is represented by the composition (.8~ 'h)e(h™'ho)=m,. So T’ is equivariantly
diffeomorphic to S* x §29"~1. But T is equivariantly diffeomorphic to 7"".

Proof of Theorem 5.2. First assume the existence of x diffeomorphic to Z* such
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that w; (x)= —x. By Proposition 5.3, the A, manifold T’ over (—2*)x D?*! corre-
sponding to xe 7, (G4, SO441), is equivariantly diffeomorphic to S* x $29"~ !, Hence
there is a commutative diagram

Sk x SZdn_l _E) Tl

SkiDd'f-l _i(__zk)de‘l'l

where the equivariant diffecomorphism E induces a diffeomorphism F of the orbit
spaces. Let S*=D* |, D*, D" k-disks, matching the boundaries by the identity of
S¥=1 _ k= p* (), D* matching the boundaries by an autodiffeomorphism s of $*~1.
Applying Lemma 5.1, F may be assumed to map D x D?*! onto D% x D?*! by the
identity. This means that the fibre homotopy trivialization (—ZXZ*)x §¢— S$¢ repre-
senting x (and defining the A, manifold 7"') is just the second projection when restrict-
ed to D* x S% Now we cut our 4, manifolds $*x $2%"~1 and 7" in two pieces, ac-
cording to the decomposition of S* and — X * in two hemispheres. The two pieces are
glued together after inserting a twist defined by the map s ! on $*~!. This defines a
diagram

-1 E
Zk X SZdn 1 > Tn

l

FI
ZkXDd+1 —-)Sk)(Dd+1

where E' is again an equivariant diffeomorphism. As the fibre homotopy trivializa-
tions that define the new A, manifolds over Z*x D?*! and S* x D?*!still are equal to
the second projection when restricted to D¥ x §¢, we did not change the correspond-
ing elements in m, (G4, SO;41)- So we really have the product £* x §29"~! on the
left hand side (corresponding to Oem, (G444, SO;41)), and a A, manifold correspond-
ing to x on the right hand side (i. e. T'). Therefore T is equivariantly diffeomorphic
to T, which is equivariantly diffeomorphic to Z*x §24"~1 by E".

Conversely, let T be equivariantly diffeomorphic to Z* x §29"~1, As before, in the
diagram

T _’f)zkxszdn—1
Sk X Dd+1 _izk X Dd+1

we may assume that F[ D% x D*1 is the identity (with respect to a decomposition
Z*=D* |J, D*). Inserting an appropriate twist as above, we obtain a diagram

E’ -
Tr -’Sk X Sldn 1

(~ Zk)lx pit1 K gk i pi+t
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where T’ is still a A, manifold corresponding to xen, (G4, SO44,). Because of the
above diagram, x is representable by m,o F' | (—Z*) x $%. On the other hand, accord-
ing to our remark at the beginning of this proof, for the knot —x given by F’((—Z*) x
x0)c §* x D1 §** 4+ g, (—x) is also represented by m,oF' | (—Z*)x S Thus
w3 (%)= —x. This completes the proof of Theorem 5.2.

By Theorem 5.2, the problem of deciding whether the total spaces of the bundles
constructed in Theorem 4.5 are equivariantly diffeomorphic to Z*x §24*~ 1 is largely
reduced to homotopy theory. As cok(m, SO —m,G5)=0 for k=3,4, there are no such
non-linear symplectic bundles in these dimensions. We do not know whether our non-
linear unitary bundles have familiar total spaces for k=3,4. Now assume k>5. We
have Levine’s exact sequence [13]

k+d+1,k @3 k+d, k-1
O = M (Gyr1, S0441) = P> O .

According to Theorem 5.2, the total spaces of all bundles constructed in Theorem
4.5 are equivariantly diffeomorphic to some Z* x $24"~1 if and only if ker (0: 7, (Gy 41,
SOy41) > Mp-150441)=cok(m SO, = mGyyyq) is contained in imw;. As 7, (Gyyy,
SO, ) is finite for all k=5, d=2, 4, w; is certainly surjective unless k=2 mod4. In
the latter case, P,=Z,, and w; is an epimorphism if and only if a codimension 2 knot
in S**! with Arf invariant 1 remains non-trivial after (d— 1)-fold suspension. (Exactly
then P, » @**%:*~1 5 injective.) As the Kervaire sphere is not diffeomorphic to the
standard sphere in dimensions different from 2"—3 [4, Corollary 2], w; is surjective
for all k#2"—2. For k=6, 14, using [20], w5 can be computed to be surjective in the
unitary case (d=2). For k=6, d=4 (symplectic action), @****~! is zero for dimen-
sional reasons [13]. As kerd= n¢(Gs, SOs)=1Z,, w; is not surjective in this case, and
we have spotted a non-linear symplectic S®"~* bundle over S°® whose total space is not
equivariantly diffeomorphic to S x § 8"~ 1. We summarize:

PROPOSITION 5.4. If k=5, k#2"—2, then the total spaces of the nonlinear
equivariant S**"~1 bundles over S*, constructed in Theorem 4.5, are equivariantly
diffeomorphic to a product of a homotopy k-sphere with trivial action and S***~1. This is
also true for k=6, 14 in the unitary case. For k=6, there is a non-linear symplectic
S8=1 pbundle over S® whose total space is not equivariantly diffeomorphic to a product
of a homotopy sphere with trivial action and S%"~*.
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thesis "k +2"—2" in the unitary case.
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