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Uber ein Problem von Reiter und ein Problem von
Derighetti zur Eigenschaft P; lokalkompakter Gruppen')

Von HARALD RINDLER

Sei G eine lokalkompakte Gruppe mit linkem HaarmaB dx. Wir setzen fiir
feL'(G), x, yeG L,f(x)=f(y"'x) R f(x)=f(xy™!) 46(y™') (4 =linker Haar-
modul von G). Sei H eine abgeschlossene normale Untergruppe von G. Wir setzen
Tuf(%) =g f(xy) dys feL'(G), x =ny(x)€G/y(dy =linkes HaarmaB von H). Ty
ist eine lineare Abbildung von L' (G) auf L' (G/y), | Txll <1 (siche [3] Ch. 3, §4.4).
Den Kern der Abbildung bezeichnen wir wie iiblich mit J' (G, H). Ein Teilraum
E< L' (G)heiBt H-rechtsinvariant, wenn mit fe E und y € H auch R, feF gilt.

1. Reiter hat in [3], Ch. 8, §4.6 gezeigt, daB, falls H die Eigenschaft P, hat, das
Bild jedes abgeschlossenen H-rechtsinvarianten Teilraumes unter der Abbildung T,
ein abgeschlossener Teilraum von L'(G/y) ist. (Es wurde dort ein allgemeineres
Resultat fiir nicht notwendig normale Untergruppen bewiesen.) Ist G/4 endlich, dann
ist L' (G/g) endlichdimensional und daher jeder Teilraum abgeschlossen. Ist die
Quotientengruppe G/g unendlich kénnen wir auch die Unkehrung des obigen Resul-
tates zeigen. Fiir Spezialfélle hat dies bereits B. Johnson gezeigt [ 1]; wir konnen seine
Methode verallgemeinern.

Ich mo6chte H. Reiter, der einen ersten Entwurf dieser Arbeit kritisch gelesen hat,
fiir wertvolle Anregungen herzlich danken.

THEOREM 1. Sei G eine lokalkompakte Gruppe, H eine abgeschlossene normale
Untergruppe, G| g unendlich, dann hat H die Eigenschaft P, genau dann wenn das Bild
jedes abgeschlossenen H-rechtsinvarianten Teilraumes von L,(G) ein abgeschlossener
Teilraum von L' (G/y) ist.

Zum Beweis geniigt es folgendes zu zeigen: Hat H die FEigenschaft P, nicht, dann
gibt es einen abgeschlossenen H-rechtsinvarianten Teilraum E, sodaBl Ty E nicht ab-
geschlossen ist. Wir bendtigen zunéchst folgendes

LEMMA 1. Sei H eine abgeschlossene Untergruppe, die die Eigenschaft P, nicht
hat, dann gibt es Elemente yi, y,,... yy €H, sodap fiir alle feL'(G) mit | f=1 fiir
h,=L, f—f eine nur von f abhdingige Konstante C,> 0 existiert mit: max;||Rh; —

1) Dariiber trug der Autor bei einem mathematischen KongreB iiber das Thema ,,Analyse
Harmonique et Représentations Unitaires*‘ in Les Plans sur Bex — Schweiz am 26.3.1973 vor.

-
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— hill, = C, fiir alle Re &}

(25 ={R:R=Y Ry, c,€C, Y ¢, =0, y,eH}).

Wir fiihren den Beweis indirekt. (Die Beweismethode ist im wesentlichen dieselbe wie
in [2], Lemma.)

Angenommen fiir jede endliche Menge {y,, y,,... yy} S H gibt es zu belicbigen
¢ > 0 einen Operator R € #Z}; mit

IRR; —hill; <&, 1<i<N, h=L,f-f (1

Es gilt: R(L,x —f) = (L,,f ~f) = Ly, Rf = Rf = (Ly,f —f) = L, (Rf — f) = (Rf = f),
da R und L,, vertauschen.

Setzt mans = |Rf — f|/||Rf — f|| ;, und beachtet man, daB | Rf — f||, > | j(Rf——f)l ==
=,[(Z,c,—1)-fl =] fl =1 gilt erhdlt man wegen (1)

, 1
5s=0, jS= 1, Lys—sli= IRF = 1T, 1Ly [Rf = f1 = IRf = fll4

<IL,(Rf=f)—Rf=fly<e (1<i<N) (2)

(2) besagt nun, daB (G, H) die Eigenschaft P, (G, H) hat; daher hat H die Eigen-
schaft P, im Widerspruch zur Voraussetzung. (siche [4] §3, Definition und Proposi-
tion 1).

LEMMA 2. Die normale Untergruppe H besitze die Eigenschaft P, nicht und GH
sei unendlich. Seien hy, h,,... hy wie in Lemma 1. Dann gibt es zu jeder offene H-in-
varianten Menge X < G, die (mindestens) N verschiedenen Restklassen (mod H) enthdlt,
ein Yy eJ' (G, H) mit Try < X und infg (g0, |RY — Y|, = 1. (Try = Trdger von ).

Beweis. Wir kénnen eine offene Umgebung U von {e} mit UH = U und Elemente
a,, a,... ay€G(N wie in Lemma 1) so wéhlen, daB gilt:

a,UcsX 1<i<N aqUnaU=0 i#j

(Die Existenz von U und {a,,... ay} erkennt man unmittelbar, wenn man von der
offenen Menge 7y (X) in der Quotientengruppe ausgeht.)

Sei fe L' (G) mit Trf < U und | f=1 (dies ist moglich, da U positives MaB hat).
Es gilt Trh; =Tr(L, f—f)<Sy; TrfuTrfc HUU U= U (man beachte, daB y,;e H
und HU = UH gilt, hier geht die Normalitit von H wesentlich ein.) Sei ¢, =L, h,
und Y = X, ¢,. Es gilt dann natiirlich y eJ' (G, H), weil das fiir ; und daher auch
fiir ¢, gilt. ([3], Ch.3, §6.4, §5.3; man beachte, daB man auch hier auf die Normalitét
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von H nicht verzichten kann.) Es gilt Tro,=TrL,h;=a;"Trh;<a,U und daher
Try =, a,U < X, auBerdem gilt fiir i # j Tro,nTre; =90.

Sei Re &y, dann gilt TrRp; S a;U, da UH=U und TrRp;nTrRe;=0i#}.
Daraus folgt fiir Re £

IRy — ¥, = ”;(R(Pi — o)l = );. IRo; — @4l = max IRp; — @ill; = C, > 0.

(Beachte: |[Rp; — @ll; = |RL b, — Lo hylly = ILa,(Rh hlly = | Rh; — hyll,!)

SchlieBlich kann man o0.B.d.A. voraussetzen daB C, =1 ist (andernfalls ersetze
man ¥ durch 1/C,-y).

Wir kénnen nun Theorem 1 beweisen.

Da G/g unendlich ist gibt es offene paarweise disjunkte Mengen Y, =G/y, neZ,
die jeweils mindestens N Elemente enthalten. Sei X, = nz'(Y,), es gilt dann X, H =
= HX,=X,. Auf Grund von Lemma 2 gibt es y,(n > 1), mit

l/’ne‘]l (Gs H), Trll’n L= Xn und infReQ"H ”Rll’n - Wn”l = 1
Fiir n > 1 sei y_, gewdhlt mit:

1
Try_,cX_., und |Tgy_,l;=- 4)

S

Seif, =¥, + ¥ _,und E,der von den f, aufgespannte abgeschlossene H-rechtsinvariante
Teilraum von L' (G). Die Banachsche direkte Summe der Teilrdume E, stimmt mit
dem von allen f, aufgespannten abgeschlossenen H-rechtsinvarianten Teilraum E
iiberein.

geE g =§gn9 g.€E, und |gl,= ; Igall 1 (5)
Sei ndmlich R,, R, € #}, beliebig, n #m, n, meN, dann gilt:

TrR,f,<(Trf,) Hes X,H =X,
und daher

TrR, f,nTtR, f,c X, nX,,=0;

daraus folgt (5) unmittelbar.
Wir behaupten nun

J'(G, H)nE,= {Rf,, Re Ry}~
(AbschluB in der Normtopologie) (6)

N
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Beweis?). Die Relation ,, 2 ist unmittelbar klar. (TgRf = Z ¢, T f). Sei umgekehrt
geJ' (G, H)nE,.
Da g € E,, gibt es einen Operator R, = X ¢\ R,,, ¢, €C, mit

&

2n || full s

IR fs—glli < < g2

weiters gilt:

>Ry, =gl > I Tu(Ref — &)1 = 1 Tu (Ref — )4
2n ”fn”l
1
+ | Tuglly 2 1 TgR filly = IZ 1 Tufully = IZ ckl';z
also ist
I €
Zed <

Sei R=R; — X, ¢, R,, dann ist Re % und | Rf, — R, f,ll: <|Z ¢l llfl; <é/2 und
man erhilt |Rf, —gll, <&, Re %), und (6) ist gezeigt.

TyE~ E[[EnJ"(G, H)] ist ein Banachraum beziiglich der Quotientennorm, die
wir mit || ||" bezeichnen.

Es gilt natiirlich ||f'||' > [ f'|l1,6/,, fir alle f'eTyE. Ist TyE abgeschlossen in
L' (G/y), dann ist T4E auch beziiglich der Norm | |, ¢/, ¢in Banachraum. Bekannt-
lich gilt dann

If e = CIST (€>0).

Wir zeigen aber
d(f, EnJ'(G,H))=1 und [Tufl; =0 (n— o) N

(d(f, EnJ'(G,H)) sei der Abstand von fvon EnJ'(G, H)).
Es gilt ndmlich

d(f,, EnJ' (G, H))
=d(f, E,nJ'(G,H)) (dies folgt aus(5))
> d(,, E, 0 J*(G, H)) (TrRY, nTrRY_, S X, n X_, =0)
= inf{||RY, — ¥,ll, Re gt =1 ((3) + (6))

2) Aus der Relation En = {Afa + Rfn, R€e X%, A komplex}~folgt Relation (6) nicht unmittelbar,
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Damit ist die erste Relation in (7) gezeigt;
1
ITafully = -7 0 (n-o0),

wie bereits frither gezeigt wurde.

Es gilt daher |[Tyf,|’>1 und | Ty f,ll, 6/, —0, die Normen | |" und || ||, ¢/,
sind daher nicht vergleichbar und 7,FE ist nicht abgeschlossen, womit Theorem 1
vollstindig bewiesen ist.

2. Sei H eine abgeschlossene Untergruppe von G; £y, Zy die konvexe Hiille der
Operatoren L,, R,(y e H) resp.
Ist H eine normale P,-Untergruppe dann gilt

infLeg’H LAy = I1Tafll = infkeaﬂ RS

(siehe [4], §2, (*) (7), (8)), insbesondere sind beide Infima gleich.
Derighetti stellte in einem Brief an Reiter die Frage nach der Umkehrung. Ist H
nicht normal dann gilt noch

infpeg, ILfl; = Ty f* und infg.q, RS,
= 1Tu, of I (F*(x) = f(x1) 46 (x™ 1))

(siehe [4], §2, (4) und (6)). Weiters gilt DL (G) # Dy L' (G) ([4], §2, Proposition 1).
Daher ist J1(G, H) = Dy'L* (G) # DL (G) = J' (G, H)* ([4], §1, (33), (34)) und es
gibtein fe L' (G)mit 0 = Ty, . f # Ty, .f*; fiir dieses f stimmen die beiden Infima daher
nicht iiberein.

Wir konnen jedoch folgendes zeigen:

THEOREM 2. Eine abgeschlossene normale Untergruppe H hat die Eigenschaft
P, genau dann wenn fiir alle fe L' (G), inf, .o, || Lf ||, = infg .2, | R ||, gilt.

Beweis. Wir brauchen nur mehr eine Richtung zu zeigen und bendétigen zundchst
folgendes

LEMMA 3. Sei H eine abgeschlossene Untergruppe von G, H habe nicht die
Eigenschaft P,, dann gibt es ein feL'(G), f=L,g—g, g€L'(G), yeH, sodap.
infg ¢ a, | Rf ||, > O gilt. (Das Resultat ist eine Verallgemeinerung eines Ergebnisses in

[3], Ch. 8, §4.5.)
Wir fithren den Beweis indirekt: Angenommen es gelte:

infreq, IR(L,g —g)l; =0 firalle geL'(G), yeH. ®
Aus (8) folgt
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Seif;=L, g —g;,1<i<N, N eine beliebige natiirliche Zahl, ¢ > 0 beliebig, dann
gibt es Re Zy mit ||Rf;|; <&, 1 <i<N 9)

Beweis durch Induktion. Fir N=1 ist (9) gleichbedeutend mit (8). SchluB von
N—1 auf N: Laut Induktionsvoraussetzung gibt es R, €%, mit ||R,fill,<e
I<iSN—-1; R fy=Ry(L, 8y —8&n)=L,,(R18y) — R gy(RL, = L,R). Wegen (8)
gibt es daher ein R, mit | R, (R, fy)l, <e.

Sei R=R,R, dann ist ReZy und ||Rfill; = [R, (R fi)ll i IR fili <e 1 <i<
< N — 1, R erfiillt daher die Bedingungen in (9).

Behauptung. (9)=>P,(H).

Seig>0fg=1, yy, ¥s..- yweH, NeN, &> 0 beliebig, wegen (9) gibt es Re Zy
mit |R(L,,g—8); <e 1<i<N.

Seis= Rg, danngilt s>0,{s=1und |L,s—s|, <& 1<i<N,denn|L,s—s|,
=|L,Rg—Rgll;=R(L,g—-g)l:<e

Wir erhalten daher (8)=(9)=P,(G, H)=P,(H) ([4], §3 Proposition 1) im
Widerspruch zur Voraussetzung und Lemma 3 ist bewiesen. Damit kénnen wir nun
Theorem 2 leicht beweisen.

Hat H nicht die Eigenschaft P,, dann gibt es ein geL!(G), yeH, sodaB fiir
f=L,g—g, infg 4 IRf|l; >0. Wir zeigen inf; .o [ILf||; =0. Sei ¢>0 gegeben,
sei N eine natiirliche Zahl mit N > (2| gl|/e)1, sei L=1/N Z)2J L n, dann gilt Lf=
= 1/N 57" Lyn(L,g~8) = 1/N(Lyg —g) und |Lf+; < 1/N-(IL,x gl +lgl,) =
=2/Nlgll; <e.

Damit ist Theorem 2 gezeigt.

Bemerkung. Aus der Relation L, f* = (R,_,f)* folgt fiir jede abgeschlossene
Untergruppe H

infLe.?H ILf|l, = infg 2, ||Rf*“1

Beachtet man, daB in einer Richtung im Beweis von Theorem 2 die Normalitit
von H gar nicht eingeht erhilt man folgende leichte Verschdrfung von Theorem 2:
inf, .o |ILf|l; = infy cg, || Lf*|, fiir alle fe L' (G) dann und nur dann, wenn H normal
ist und die Eigenschaft P, hat. (Ist H nicht normal ist Lemma 3 stets richtig.)
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