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Appendice

Arrondissement des variétés à coins

par A. Douady et L. Hérault

1. Secteurs

On pose aS£ R+ xRn~*. C'est le secteur type d'indice k dans Rn. Soient U un
ouvert de S*, F un espace vectoriel réel de dimension finie,/une application de U dans
.F et xoeU. On dit que / admet AeJèf(Rw, F) pour dérivée en x0 si f(x)=f(x0)
+À(x~xo)+ri(x) pour xeU, où n{x) est o(x—x0). La dérivée, si elle existe, est

unique. On définit comme d'ordinaire les applications de classe C1, C, C00 de U
dans F.

On dit que/est analytique ou de classe Cw en un point xeU si/est induite au
voisinage de x par une application analytique d'un ouvert de R" dans F.

PROPOSITION. 1.1. SiU=S£n V, où V est un ouvert de Rw, toute application de

classe C™ de U dans R se prolonge en une application de classe C™deV dans R.

C'est un cas particulier du théorème de prolongement de Whitney ([31], [20]). On
pourrait trouver pour ce cas particulier une démonstration plus simple que celle du
cas général.

Soient U et U' des ouverts de SI et SJ!> respectivement, et / une application de U
dans U'. On dit que/est de classe C00 (resp. Cm) si elle est de classe C00 (resp. Cœ)

de U dans Rn\ On dit que/est un difféomorphisme si elle est bijective et si/et/"1
sont C00; on a alors n=n' si U=£0.

2. Variétés à coins

En prenant pour modèles les ouverts des SjJ, k^neN, et pour changements de

cartes les difféomorphismes C00 (resp. C*0), on obtient une catégorie locale qui est celle

des variétés à coins C00 (resp. C40). (On peut aussi définir une variété à coins comme

un espace annelé localement isomorphe à un modèle muni du faisceau des fonctions
C00 (resp. Cw).)

Soient A"une variété à coins et xeX. Il existe une carte cp de Xcentrée en x i.e. telle

que q>(x)-0. Si cette carte est à valeurs dans un ouvert de S£, on dit que n est la
dimension de X au voisinage de x et k est Y indice de x. On définit comme d'ordinaire
l'espace vectoriel tangent TXX. L'image réciproque de 5J dans TXX par Tx<p est le

secteur rentrant STXX (il ne dépend pas du choix de la carte); son intérieur est noté
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SfxX. On dit que teTxX est rentrant (resp. strictement rentrant, resp. sortant, resp.
strictement sortant) si teSTxX (resp. SÎXX, resp. -STXX9 resp. -SÎXX).

On note Xw l'ensemble des points de X d'indice ^ k. C'est le k-bord de X.
L'ensemble X=X-X(1) est l'intérieur de Z, Z(1) est le bord de X On dit que X est une
variété à bord lisse si Z(2) 0.

Soit F une variété (sans bord) et soit X un fermé de V. On dit que X est une pièce
à coins de F si, pour tout xoeX, il existe un voisinage U de x0 dans K et des fonctions

ul9..., wk de classe C00 (resp. C") sur U telles que dXouu..., dXQuk soient linéairement
indépendants et que Xn U soit l'ensemble des xeU tels que w^x^O,..., wfe(x)^0.

On dit qu'un champ de vecteurs 6 sur une variété à coins Z est strictement rentrant
(resp. strictement sortant) si 0(x)eSfxX(resp. 6(x)e-SfxX) pour tout xeX (il suffit
de le vérifier pour xeX(1)). Sur toute variété à coins paracompacte, il existe un champ
de vecteurs de classe C00 strictement rentrant (resp. sortant), comme on le voit avec

une partition C00 de l'unité.
Soient X une variété à coins séparée, 6 un champ de vecteurs de classe C00 sur X9

strictement rentrant. Pour xeX9 soit yx: Ix-+ X la courbe intégrale maximale de 6

d'origine x. L'intervalle Ix contient l'origine et est ouvert à droite; si xeX, l'intervalle
Ix est un voisinage de 0. Soit Qd(x) la borne supérieure de Ix. La fonction Qe: Ar-+K+
est strictement positive et semi-continue inférieurement.

3. Plongement d'une variété à coins comme pièce à coins d'une variété

PROPOSITION 3.1. Toute variété à coins paracompacte peut être plongée dans

une variété sans bord comme pièce à coins C00.

Démonstration. Soit X une variété à coins paracompacte, et choisissons sur X un
champ de vecteurs 0X de classe C °° strictement rentrant. On construit, au moyen d'une

partition de l'unité, une fonction tj:X-+R+, de classe C00, strictement inférieure à

q$1, et strictement positive sur Z(1). Posons d rjdv Le champ de vecteurs 0 est de

classe C00, strictement rentrant, et Qe> 1.

On voit alors que l'application exp0:X-+ X, qui, à xeX associe yx(l), où yx est la
courbe intégrale de 0 d'origine x, est un difféomorphisme de X sur une pièce à coins

de X, cqfd.

PROPOSITION 3.2. Toute variété à coins R-analytique paracompacte peut être

plongée dans une variété R-analytique sans bord comme pièce à coins de classe C10.

La démonstration est analogue à celle donnée par WWtney et Bruhat ([32]) pour
prouver que toute variété R-analytique paracompacte admet une complexification.

COROLLAIRE. Soient X une variété à coins R-analytique paracompacte et S? un

faisceau analytique cohérent sur X. On a Hq(X; ^)=0 pour tout q>0.
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Démonstration. Plongeons X comme pièce à coins dans une variété R-analytique
F et soit JFune complexification de F. D'après un résultat de Grauert ([15], p. 470,
1.11), tout voisinage ouvert U de X dans F admet un système fondamental de voisinages

de Stein dans W9 donc X admet dans W un système fondamental de voisinages
de Stein. On obtient alors le corollaire en appliquant un résultat de Cartan ([1],
prop. 6), cqfd.

PROPOSITION 3.3. Sur toute variété R-analytique à coinsparacompacte, il existe
un champ de vecteurs strictement rentrant de classe C°\

Démonstration. Soit X une pièce à coins d'une variété R-analytique paracompacte
F. D'après ([15], Th. 3), on peut plonger F dans R* pour k assez grand. Le fibre Tv
admet dans le fibre trivial Fx R* un supplémentaire analytique, par exemple l'orthogonal.

Il résulte alors de ([15], Prop. 8) que tout champ de vecteurs C00 sur F peut
être approché par un champ de vecteurs analytique au sens suivant: si 0 est un champ
de vecteurs C00 et e: F-»R une fonction continue strictement positive, il existe un
champ de vecteurs 0' de classe Cm sur F tel que pour tout jteFon ait \\ô'(x)-9(x)\\
<e(x). Alors, si 0 est strictement rentrant sur X, on peut choisir e de façon que ceci

entraîne que 0' est strictement rentrant sur X9 cqfd.

4. Champs de vecteurs strictement sortants

Soient X une pièce à coins d'une variété F, et 0 un champ de vecteurs de classe C00

(resp. C01) sur F, strictement sortant de X. Pour xeV9 soit yx:] — a'(#), a(*)[-» Fia
courbe intégrale maximale de 0 d'origine x dans F. S'il existe un toe~\-a'{x)9 a(x)l
tel que yx(t0)6X(i\ on voit en prenant des coordonnées locales que la courbe yx sort
de Xen tOy i.e. qu'il existe e>0 tel que yxQt0 — e, fo])czXet yx(]t0, fo+e[)c: F— X.

Il en résulte que yx(]-af(x), fo])czXet yxQt0, a(x)[)c V-X, et il existe au plus un
tel t0.

PROPOSITION 4.1. Avec ces notations, il existe un voisinage M de X(i) dans V
tel que:

(a) pour tout xeM, il existe un 6(x)e]—a'(x), #(x)[ et un seul tel que yx(b(x))

(b) l'application b :M~» R ainsi définie est continue.

Démonstration. Soit jcoeZ(1). Il existe un voisinage C/de x0 dans F, des fonctions

uu...9uk de classe C00 sur U et un nombre m>0 tels que In U= {xeU: ut(x)>
>0,...,Mk(x)>0}, wf(jco)=0 et <0(x),rf»fi|X-n! pour xelf, i==l,...,fc. Il existe

alors un voisinage U' de x0 dans U et un nombre r>0 tels que, pour tout xe U\ on ait

[-r, +r]<=]-a'(x), a{x)\_ et yx([-r, +r])cU. Soit U" l'ensemble des xeU' tels

que Ui(x)<mr pour /= 1,..., k. Pour xe U"9 on ayJC(—r)e UnXet yx(r)e U-X, donc

il existe un é(x)e]-r, +r[ tel que yx(b(x))eXil}.
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Pour xeU\ te'j-r, +r[et /=1,..., k, posonsht{x, t) ul(yx{t)\ On a dht/dt<0
et hx (x, t tend vers ux (yx (r < 0 (resp. wf (yx - r > 0) quand f tend vers r (resp. - r),
donc l'ensemble des couples (x, t) tels que ht{x, f)=0 est le graphe d'une fonction
bt: U"-»]-r, r[ de classe C°°, et ô=infj(é,) est continue. La proposition en résulte.

PROPOSITION 4.2. Avec les mêmes notations, soit M comme dans la Prop. 4.1 ;

l'application (p'>xv-+{yx(b (x)), b (x)) est un homéomorphisme de M sur un voisinage Wde
X(î) x {0} dans X(1) x R.

Démonstration. Il est clair que q> est continue. Son image est l'ensemble des

(xl9 r)e!(1)xR tels que — te^—a'^), a(xt)l et (pXl(—t)eM. Cet ensemble est un
voisinage de Z(1) x {0} et l'application (xu t)\-*yXl( — t) de Wdans M est continue.
Or cette application est ç'1, d'où la proposition.

PROPOSITION 4.3. Avec les mêmes notations, supposons V séparée et M ouvert.
La relation R{x9y}:3t tel que y yx(t) est une relation d'équivalence entre éléments de

M et le quotient M/R admet une structure de variété C00 (resp. C™) et une seule telle

que l'application canonique X-M-+M/R soit une submersion. Cette application induit

un homéomorphisme de XiX) sur M/R.
Démonstration. U est clair que R est une relation d'équivalence. L'ensemble

QcMxR des couples (x, t) tels que /e]-a'(x), a(x)l et yx(t)eM est ouvert dans

MxR et <P:(x, t)t-*(x, yx{t)) de Q dans Mx M est une immersion dont l'image est

le graphe de R. Il suffit de voir que <P est un homéomorphisme de Q sur un fermé de

MxM, la première assertion résultera alors de ([9], 5.9.5). Le graphe de R est

ç'1 (Q x x(i)Q), donc est fermé, et l'inverse de 0 est

{q>"l{xu t), <p-l{xu OWp'H*!* 0, t - 0»

qui est continue, d'où la première assertion.

L'application xJX^ est continue, et son inverse est l'application déduite de

xv-*yx{b(x)\ donc est continue.

5. Fonctions tapissantes

DÉFINITION. Soient U un voisinage de 0 dans 5k" et h une fonction £/-? R. On

dit que h est tapissante en 0 si A se met au voisinage de 0 sous la forme h{x)
ssf(x)-x1... xk, où/est C00 et >0.

Remarque. Dans cette définition, si h est analytique, il en est de même de/.

PROPOSITION 5.1. Soient U et Ur deux ouverts de S% contenant 0 et ç un dif-
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féomorphisme de U sur Uf tel que (p (0)=0. Si h est une fonction sur U tapissante en 0,

la fonction (p#(h) ho(p~1 sur U' est tapissante en 0.

Démonstration. Soit ut la fonction jch**,-. L'application <p permute les faces de Sk

au voisinage de 0 suivant une permutation aeQk. La fonction ^*(w,) est nulle sur la
0-(/)-ème face au voisinage de 0, et a une dérivée normale >0, donc est au voisinage
de 0 de la formegiUa(i), oùgf est C00 et >0. Alors (?*(/0 <P*(/)#£i... gkux...uk au
voisinage de 0.

DÉFINITION. Soient X une variété à coins, et h une fonction sur X. On dit que
h est tapissante en un point x de X s'il existe une carte centrée en x telle que l'expression

de h dans cette carte soit tapissante en 0.

Remarques
5.2. Si h est tapissante en x pour une carte, elle l'est pour toutes d'après la prop. 5.1.

5.3. Si h est tapissante en x, elle l'est au voisinage de x.

5.4. Si xeX, h est tapissante en xoh est C00 au voisinage de x et h(x)>0. Si x
est d'indice k^ 1, et si h est tapissante en x, on peut trouver une carte centrée en x telle

que l'expression de h soit ux... uk.

5.5. Un barycentre de fonctions tapissantes est tapissante. Sur toute variété à coins

paracompacte, il existe une fonction tapissante de classe C00.

PROPOSITION 5.6. Sur toute variété à coins R-analytique paracompacte, il existe

une fonction tapissante de classe C™.

Démonstration. Soient X une variété à coins R-analytique paracompacte, (Ut) un
recouvrement de X par des domaines de cartes, et pour tout /, ht une fonction tapissante

analytique sur Ut. La fonction gitj=Log(hj/hi) se prolonge en une fonction
analytique sur Utn UJ9 et on a gi,k=gitj+gj,k sur UinUj-nUk. D'après le Cor. de

la Prop. 3.2, il existe des fonctions analytiques c^f/^R telles que giij=cj—ci.
Les fonctions e~Ciht se recollent alors en une fonction analytique tapissante sur X,
cqfd.

PROPOSITION 5.7. Soient X une variété à coins, h une fonction tapissante sur X
et 0 un champ de vecteurs strictement sortant sur X. Il existe un voisinage N de X{1) dans

X tel que on ait <0(x), dxh}<0pour tout xeN-X{2\
Démonstration. Soit x0 un point de X(1) et soit (ul9..., un) un système de coordonnées

centré en x0 tel que h=u1...uk. Soient 0l5..., 0n les coordonnées de 9 dans ce

système, i.e. 0f=<0, duty. On a 0u...90k<O au voisinage de x0, d'où <jB,dli)
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YéUi~-ûf>. Wjt^i^O, et <0, dh}<0 en tout point où un au plus des u( s'annule, car
alors la somme possède un terme non nul.

6. Arrondissement des coins

PROPOSITION 6.1. Soient X une variété à coins paracompacte et h une fonction
tapissante sur X. Supposons que X soit une pièce à coins d'une variété V et soit 6 un

champ de vecteurs C™ sur V strictement sortant de X. Soit M un voisinage ouvert de

X(i) dans V répondant aux conditions de la Prop. 4.1. Alors, il existe un voisinage N
de Z(1) dans MnX tel que l'application \jj'.xv-*{x(x), h(x)) soit un homéomorphisme
de N sur un voisinage de M/R x {0} dans M/R x R+.

Démonstration. Avec les notations de la proposition 4.2, soit/une fonction continue
strictement positive sur Ar(1) telle que l'ensemble Nt {(x9 t):0^t^f(x)} soit contenu
dans W. Posons N=cp~1(N1). L'ensemble Nest un voisinage de X(1) dans MnX, et,
quitte à diminuer/, on peut supposer qu'il répond à la condition de la Prop. 5.7. On

a alors le diagramme commutatif

£M/R
où 7i est propre, Xi est un homéomorphisme et, pour tout xeX(i\ la fonction
ti-^h((p~1(x, t)) est strictement croissante sur [0,/(x)] car sa dérivée est >0 pour
f >0. La proposition en résulte.

THÉORÈME ET DÉFINITION 6.2. Soient X une variété à coins paracompacte
de classe C00 (resp. C"), h une fonction tapissante de classe C00 (resp. C*) et 6 un

champ de vecteurs strictement sortant de classe C °° (resp. Cm) sur X. Soit N un voisinage

ouvert de X(1) dans X répondant aux conditions de la Prop. 6.1.// existe alors une variété

à bord lisse X de classe C00 (resp. C™) et une seule, ayant même espace topologique

sous-jacent que X, telle que les structures de X et X coïncident sur X— X(2), et que \j/

soit un dijféomorphisme (resp. un difféomorphisme C™) de N muni de la structure induite

par X sur un ouvert de M/R x R+. On dit que X est la variété obtenue en arrondissant

X au moyen de h et 6.

Démonstration. Il reste à voir que \j/ induit un difféomorphisme (resp. un
difféomorphisme R-analytique) de JV-X(2) sur un ouvert de M/RxR+, mais cela résulte

du théorème d'inversion locale, cqfd.
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