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Appendice

Arrondissement des variétés a coins

par A. DOUADY et L. HERAULT

1. Secteurs

On pose SF=R"% xR""*, C’est le secteur type d’indice k dans R". Soient U un
ouvert de Sy, F un espace vectoriel réel de dimension finie, f une application de U dans
F et x,eU. On dit que f admet 1eZ(R", F) pour dérivée en x, si f(x)=r(x,)
+A(x—x0)+n(x) pour xeU, ol n(x) est o(x—x,). La dérivée, si elle existe, est
unique. On définit comme d’ordinaire les applications de classe C!, C', C* de U
dans F.

On dit que f est analytique ou de classe C” en un point xe U si f est induite au
voisinage de x par une application analytique d’un ouvert de R" dans F.

PROPOSITION. 1.1. Si U=SgnV, o V est un ouvert de R", toute application de
classe C® de U dans R se prolonge en une application de classe C* de V dans R.

C’est un cas particulier du théoréme de prolongement de Whitney ([31], [20]). On
pourrait trouver pour ce cas particulier une démonstration plus simple que celle du
cas général.

Soient U et U’ des ouverts de S; et S respectivement, et f une application de U
dans U’. On dit que fest de classe C*® (resp. C“) si elle est de classe C* (resp. C*)
de U dans R™. On dit que f est un difféomorphisme si elle est bijective et si fet f 1
sont C®; on a alors n=n" si U#0.

2. Variétés a coins

En prenant pour modeles les ouverts des Si, k<neN, et pour changements de
cartes les difféomorphismes C * (resp. C”), on obtient une catégorie locale qui est celle
des variétés a coins C* (resp. C*). (On peut aussi définir une variété a coins comme
un espace annelé localement isomorphe & un modéle muni du faisceau des fonctions
C* (resp. C®).)

Soient X une variété a coins et xe X. Il existe une carte ¢ de X centrée en x i.e. telle
que ¢ (x)=0. Si cette carte est 4 valeurs dans un ouvert de Sy, on dit que » est la
dimension de X au voisinage de x et k est I'indice de x. On définit comme d’ordinaire
I’espace vectoriel tangent 7, X. L’image réciproque de S; dans T, X par T,¢ est le
secteur rentrant ST, X (il ne dépend pas du choix de la carte); son intérieur est noté
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ST.X. On dit que teT, X est rentrant (resp. strictement rentrant, resp. sortant, resp.
strictement sortant) si 1€ ST, X (resp. ST, X, resp. — ST, X, resp. —ST.X).

On note X ™ I’ensemble des points de X d’indice >k. C’est le k-bord de X. L’en-
semble X=X—XU est lintérieur de X, X est le bord de X. On dit que X est une
variété a bord lisse si X® =0.

Soit ¥ une variété (sans bord) et soit X un fermé de V. On dit que X est une piéce
a coins de V'si, pour tout x4 €, il existe un voisinage U de x, dans V et des fonctions
Uy, ..., uy de classe C* (resp. C) sur U telles que d, u,, ..., d, u, soient linéairement
indépendants et que X n U soit I'ensemble des xe U tels que u, (x)>0,..., 4, (x)=>0.

On dit qu’un champ de vecteurs 6 sur une variété a coins X est strictement rentrant
(resp. strictement sortant) si 0 (x)e ST, X (resp. 0(x)e — ST, X) pour tout xe X (il suffit
de le vérifier pour xe X)), Sur toute variété a coins paracompacte, il existe un champ
de vecteurs de classe C® strictement rentrant (resp. sortant), comme on le voit avec
une partition C* de I'unité.

Soient X une variété & coins séparée, 6 un champ de vecteurs de classe C® sur X,
strictement rentrant. Pour xeX, soit y.: I, —» X la courbe intégrale maximale de @
d’origine x. L’intervalle I, contient I’origine et est ouvert 3 droite; si xe X, I'intervalle
I est un voisinage de 0. Soit go(x) la borne supérieure de I,. La fonction go: X >R,
est strictement positive et semi-continue inférieurement.

3. Plongement d’une variété a coins comme piéce a coins d’une variété

PROPOSITION 3.1. Toute variété a coins paracompacte peut étre plongée dans
une variété sans bord comme piéce a coins C®.

Démonstration. Soit X une variété 4 coins paracompacte, et choisissons sur X un
champ de vecteurs 6, de classe C® strictement rentrant. On construit, au moyen d’une
partition de I'unité, une fonction :X - R, de classe C®, strictement inférieure a
0, €t strictement positive sur X M), Posons 9=nb,. Le champ de vecteurs @ est de
classe C*®, strictement rentrant, et gg>1.

On voit alors que I’application exp8: X — X, qui, & xe X associe y,(1), ol y, est la
courbe intégrale de 6 d’origine x, est un difféomorphisme de X sur une piece a coins
de X, cqfd.

PROPOSITION 3.2. Toute variété @ coins R-analytique paracompacte peut étre
plongée dans une variété R-analytique sans bord comme piéce a coins de classe C @,

La démonstration est analogue i celle donnée par Whitney et Bruhat ([32]) pour
prouver que toute variété R-analytique paracompacte admet une complexification.

COROLLAIRE. Soient X une variété a coins R-analytique paracompacte et & un
faisceau analytique cohérent sur X. On a H*(X; F)=0 paur tout 4>0.
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Démonstration. Plongeons X comme piéce a coins dans une variété R-analytique
V et soit W une complexification de V. D’aprés un résultat de Grauert ([15], p. 470,
1.11), tout voisinage ouvert U de X dans ¥V admet un systéme fondamental de voisina-
ges de Stein dans W, donc X admet dans W un systéme fondamental de voisinages
de Stein. On obtient alors le corollaire en appliquant un résultat de Cartan ([1],
prop. 6), cqfd.

PROPOSITION 3.3. Sur toute variété R-analytique a coins paracompacte, il existe
un champ de vecteurs strictement rentrant de classe C°.

Démonstration. Soit X une piéce a coins d’une variété R-analytique paracompacte
V. D’aprés ([15], Th. 3), on peut plonger ¥ dans R* pour k assez grand. Le fibré T},
admet dans le fibré trivial ¥ x R* un supplémentaire analytique, par exemple I’ortho-
gonal. Il résulte alors de ([15], Prop. 8) que tout champ de vecteurs C* sur ¥ peut
étre approché par un champ de vecteurs analytique au sens suivant: si  est un champ
de vecteurs C® et ¢: ¥V — R une fonction continue strictement positive, il existe un
champ de vecteurs 0’ de classe C® sur V tel que pour tout xe ¥ on ait |6 (x)—0(x)|
<é&(x). Alors, si 6 est strictement rentrant sur X, on peut choisir ¢ de fagon que ceci
entraine que 0’ est strictement rentrant sur X, cqfd.

4. Champs de vecteurs strictement sortants

Soient X une piéce & coins d’une variété ¥V, et 0 un champ de vecteurs de classe C*®
(resp. C®) sur V, strictement sortant de X. Pour xeV, soit y,: | —a’(x), a(x)[> V la
courbe intégrale maximale de 6 d’origine x dans V. S’il existe un toe]—a’(x), a(x)[
tel que 7,(2o)e X", on voit en prenant des coordonnées locales que la courbe ¥, sort
de X en t,, i.e. qu’il existe ¢>0 tel que y,(Jto—¢, to])=X et y,(Jto, 1o +e[) = V—X.
Il en résulte que 7, (]—a’' (x), to]) =X et y,(Jto, a(x)[) = V—1X, et il existe au plus un
tel ¢,.

PROPOSITION 4.1. Avec ces notations, il existe un voisinage M de X dans V
tel que:

(a) pour tout xeM, il existe un b(x)e]—a’(x), a(x)[ et un seul tel que y,(b(x))
€ X(”;

(b) Papplication b:M— R ainsi définie est continue.

Démonstration. Soit x,e X, 1l existe un voisinage U de x, dans ¥, des fonctions
Uy, ..., uy de classe C® sur U et un nombre m>0 tels que XN U={xeU: u;(x) >
20,..., 4 (x) =0}, u;(x0)=0 et <0(x), dyu;)< —m pour xeU, i=1,..., k. Il existe
alors un voisinage U’ de x, dans U et un nombre r> 0 tels que, pour tout xe U’, on ait ~
[=r, +r]e]—a’(x), a(x)[ et y.([—r, +r])=U. Soit U” ’ensemble des xe U’ tels
que u;(x)<mrpouri=1,..., k. Pour xeU",onay,(—r)eUnXety,(r)eU~X, donc
il existe un b(x)e]—r, +r[ tel que y,(b(x))eX®.
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Pour xeU", te]—r, +r[eti=1,..., k, posons h;(x, t)=u;(7,(¢)). On a dh,/0t <0
et h;(x, t) tend vers u; (y, (r)) <0 (resp. u;(y.(—7))>0) quand ¢ tend vers r (resp. —r),
donc I’ensemble des couples (x, t) tels que 4,(x, ¢)=0 est le graphe d’une fonction
b;:U" > ]—r, r[ de classe C®, et b=inf;(b,) est continue. La proposition en résulte.

PROPOSITION 4.2. Avec les mémes notations, soit M comme dans la Prop. 4.1;
I'application @ : x> (7, (b(x)), b(x)) est un homéomorphisme de M sur un voisinage W de
XM x {0} dans X x R.

Démonstration. 11 est clair que ¢ est continue. Son image est I’ensemble des
(%1, 1)e XV xR tels que —re]—a’(x,), a(x;)[ et @,,(—t)eM. Cet ensemble est un
voisinage de X! x {0} et I’application (x;, t)>y,,(—t) de W dans M est continue.
Or cette application est ¢ ™1, d’ol la proposition.

PROPOSITION 4.3. Avec les mémes notations, supposons V séparée et M ouvert.
La relation R {x, y}:3t tel que y=y,(t) est une relation d’équivalence entre éléments de
M et le quotient M/R admet une structure de variété C* (resp. C®) et une seule telle
que l'application canonique y: M — MR soit une submersion. Cette application induit
un homéomorphisme de X sur M|R.

Démonstration. 11 est clair que R est une relation d’équivalence. L’ensemble
Q< M xR des couples (x, t) tels que te]—a’(x), a(x)[ et y,(¢)eM est ouvert dans
MxRet @:(x,t)—(x, y,(t)) de Q dans M x M est une immersion dont I'image est
le graphe de R. 11 suffit de voir que @ est un homéomorphisme de £ sur un fermé de
M x M, la premiére assertion résultera alors de ([9], 5.9.5). Le graphe de R est
@1 (Q x x1»Q), donc est fermé, et 'inverse de @ est

(07 (%, 1), 07 (x1, 1)) (07 (%15 1), t = 1),

qui est continue, d’oll la premiére assertion.
L’application y/X‘" est continue, et son inverse est 'application déduite de

x> 7,(b(x)), donc est continue.

5. Fonctions tapissantes

DEFINITION. Soient U un voisinage de 0 dans Sy et 4 une fonction U— R. On
dit que 4 est tapissante en O si 4 se met au voisinage de 0 sous la forme A(x)
=f(x)"x;... x;, ol fest C® et >0.

Remarque. Dans cette définition, si A est analytique, il en est de méme de f.

PROPOSITION 5.1. Soient U et U’ deux ouverts de S; contenant 0 et ¢ un dif-
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féomorphisme de U sur U’ tel que ¢ (0)=0. Si h est une fonction sur U tapissante en 0,
la fonction @4 (h)=ho@ ™! sur U’ est tapissante en 0.

Démonstration. Soit u; la fonction x— x;. L’application ¢ permute les faces de Sy
au voisinage de 0 suivant une permutation c€S,. La fonction ¢, (u;) est nulle sur la
o (i )-¢me face au voisinage de 0, et a une dérivée normale >0, donc est au voisinage
de 0 de la forme g;u,, (;), ot g; est C® et >0. Alors @, (h) =@« (f) 81 ... & Uy ... Uy AU
voisinage de 0.

DEFINITION. Soient X une variété a coins, et /4 une fonction sur X. On dit que
h est tapissante en un point x de X s’il existe une carte centrée en x telle que I’expres-
sion de 4 dans cette carte soit tapissante en 0.

Remarques

5.2. Si hest tapissante en x pour une carte, elle I’est pour toutes d’aprés la prop. 5.1.

5.3. Si h est tapissante en x, elle I’est au voisinage de x.

5.4. Si xeX, h est tapissante en x<>h est C*® au voisinage de x et h(x)>0. Si x
est d’indice k> 1, et si A est tapissante en x, on peut trouver une carte centrée en x telle
que l’expression de A soit u, ... u,.

5.5. Un barycentre de fonctions tapissantes est tapissante. Sur toute variété a coins
paracompacte, il existe une fonction tapissante de classe C®.

PROPOSITION 5.6. Sur toute variété a coins R-analytique paracompacte, il existe
une fonction tapissante de classe C°.

Démonstration. Soient X une variété a coins R-analytique paracompacte, (U;) un
recouvrement de X par des domaines de cartes, et pour tout #, 4; une fonction tapis-
sante analytique sur U;. La fonction g; ;=Log(h;/h;) se prolonge en une fonction
analytique sur U;n U, eton a g; ,=g; j+&; , sur U,nU;n U,. D’aprés le Cor. de
la Prop. 3.2, il existe des fonctions analytiques c¢;: U;—R telles que g; ;=c;—c;.
Les fonctions e~ “‘h; se recollent alors en une fonction analytique tapissante sur X,
cqfd.

PROPOSITION 5.7. Soient X une variété a coins, h une fonction tapissante sur X
et 0 un champ de vecteurs strictement sortant sur X. Il existe un voisinage N de X’ dans
X tel que on ait {0(x), d;h) <0 pour tout xe N— X2,

Démonstration. Soit x, un point de X*) et soit (uy, ..., u,) un systtme de coordon-
nées centré en x, tel que A=u, ...u;. Soient 6,,..., 0, les coordonnées de 6 dans ce
systéme, ie. 0,=<0,du;>. On a 6,,...,0,<0 au voisinage de x,, d’ou {0, dh)
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=Y ... 4;... u;0;<0, et {0, dh) <0 en tout point ot un au plus des u; s’annule, car
alors la somme possede un terme non nul.

6. Arrondissement des coins

PROPOSITION 6.1. Soient X une variété da coins paracompacte et h une fonction
tapissante sur X. Supposons que X soit une piéce a coins d’une variété V et soit 0 un
champ de vecteurs C® sur V strictement sortant de X. Soit M un voisinage ouvert de
XY dans V répondant aux conditions de la Prop. 4.1. Alors, il existe un voisinage N
de XU dans M X tel que I'application : x> (x(x), h(x)) soit un homéomorphisme
de N sur un voisinage de M/R x {0} dans M/RxR.,.

Démonstration. Avecles notations dela proposition 4.2, soit fune fonction continue
strictement positive sur XV telle que ’ensemble N, = {(x, ¢):0< < f(x)} soit contenu
dans W. Posons N=¢ ! (N,). L’ensemble N est un voisinage de X*> dans M N X, et,
quitte a diminuer f, on peut supposer qu’il répond a la condition de la Prop. 5.7. On
a alors le diagramme commutatif

¥=(x, h)

N, LN " M/R x R,
I= !
x® & > MR

ol 7 est propre, y; est un homéomorphisme et, pour tout xeX®), la fonction
t—h(p~1(x,t)) est strictement croissante sur [0, f(x)] car sa dérivée est >0 pour
t>0. La proposition en résulte.

THEOREME ET DEFINITION 6.2. Soient X une variété a coins paracompacte
de classe C® (resp. C®), h une fonction tapissante de classe C® (resp. C®) et 0 un
champ de vecteurs strictement sortant de classe C*® (resp. C®) sur X. Soit N un voisinage
ouvert de XV dans X répondant aux conditions de la Prop. 6.1. Il existe alors une variété
a bord lisse X de classe C*® (resp. C®) et une seule, ayant méme espace topologique
sous-jacent que X, telle que les structures de X et X coincident sur X—X?), et que y
soit un difféomorphisme (resp. un difféomorphisme C“) de N muni de la structure induite
par X sur un ouvert de M/R xR . On dit que X est la variété obtenue en arrondissant

X au moyen de h et 0.

Démonstration. 1l reste 3 voir que Y induit un difféomorphisme (resp. un diffé-
omorphisme R-analytique) de N— X sur un ouvert de M/R xR, mais cela résulte

du théoréme d’inversion locale, cqfd.
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