
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 48 (1973)

Artikel: Corners and Arithmetic Groups

Autor: Borel, A. / Serre, J-P.

DOI: https://doi.org/10.5169/seals-37166

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-37166
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


436

Corners and Arithmetic Groups
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Introduction

Let F be a torsion-free arithmetic subgroup of a semi-simple Q-group G, It opérâtes

properly and freely on the symmetric space X of maximal compact subgroups of
the group G(R) of real points of G and the quotient X/F is a manifold. If the Q-rank

rQ (G) °f & *s not zero> %IF *s not compact and the main purpose of this paper is to
provide a suitable compactification Jf/F for it. Topologically X/F is a compact manifold

with interior X/F, whose boundary has the homotopy type of the quotient by F
of the Tits building of parabolic Q-subgroups of G. However, from the differential-

geometric point of view, X/F cornes naturally equipped with a structure of (real ana-

lytic) manifold "with corners" (with boundary if rQ(G)= 1), which is of interest in its

own right, and which we shall therefore not smooth out to a boundary in the gênerai

case. As the notation suggests, we shall in fact first enlarge X to a space X, whose

construction involves the Q-structure of G, but not F. It is a manifold with (countably
many) corners, on which G(Q) opérâtes so that the action is proper for any arithmetic
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subgroup of G(Q). In the classical case where G=SL29 Fc:SL2(Z) and Zis the open
unit dise, our X is the union of X with countably many lines, one for each cusp point
on the unit circle, and X/F is a compact surface whose boundary consists of finitely
many circles, one for each F-equivalence class of parabolic points. Thus, the cusp
points, which are classically added to X> are hère blown-up to lines, and this allows

us to get a space on which F still acts properly. In this case, and more generally if
G SLB, our construction is équivalent to one of C. L. Siegel [27; §§1, 12].

The space X is set-theoretically the union of X and of euclidean spaces e(P), one
for each proper parabolic Q-subgroup P of G (the codimension of e(P) being equal
to the parabolic rank park(P) of P). For a given P, the set of e(ô)'s (gz>P) is

organized into a corner X(P), isomorphic to R* x R"~fc, where R+ is the closed half-
line of positive real numbers, n dimX and & park(P). By définition, the X(P)'s
form an open cover of X. Now we wish to consider the closure e(P) of e(P) in X as

a space obtained from e(P) by a similar construction, using the parabolic Q-subgroups
of P. However e(P) is a homogeneous space under the group P(R), which is not
semi-simple and the isotropy groups of P(R) are bigger than the maximal compact
subgroups of P(R). This led us to enlarge our framework, drop the assumption that
G is semi-simple, or even reductive, and replace X by a suitable generalization of the

above symmetric space, which we call a space of type S or S—Q. Our construction
has then a hereditary character well-suited for proofs by induction on dim G, besides

allowing us to handle directly a gênerai arithmetic group. The price to pay is the

appearance of some technical complications, mainly in §§ 1,2,3 ; in first approximation,
it may be best for the reader not to dwell too much on them, and to keep in mind the

case of a semi-simple G.

The properties of X and X\F are applied to the cohomology of F. It is shown that
H1 (F, Z[r])=0 except in dimension m dimX— rQ(G), where it is a free module /,
and that we hâve an isomorphism

Hl(F; A) Hm.t(F; IQA), (ieZ), (1)

for any F-module A. In particular, the cohomological dimension of F is m. If X/F is

compact, then /^Z and (1) is just Poincaré duality. If X/F is not compact, then the

rank of/is infinité and /is in a natural way a G(Q)-module which is a direct analogue

of the Steinberg module of a finite Chevalley group.

We now give some more détails on the contents of the various paragraphe Let G

be an affine algebraic group over a subfield k of R. § 1 is technical. It introduces a

normal &-subgroup °G of G which is more or less a supplément to a maximal &-split
torus of the radical of G, and discusses Cartan involutions of reductive groups. In
particular, it is shown that if C? is semi-simple, Ka, maximal compact subgroup of G (R),
andP a parabolic R-subgroup of G, then P (R) has a unique Levi subgroup stable under
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the Cartan involution 0K associated to K (see 1.9 for a more gênerai statement).
§2 is devoted to spaces of type S-k, or more generally of type S, but in this

introduction we limit ourselves to the former. The homogeneous space X of G(R) is of
type S—k if: (i) the isotropy groups Hx(xeX) are of the form K-S(R)9 where S is a

maximal fc-split torus of the radical R (G) of G and K a maximal compact subgroup of
G(R) normalizing 5(R); (ii) there is given a map x\-+Lx of X to Levi subgroups of
(j(R) such that Lxg=g^-Lx-g and Lx=>Hx(xeX; geG(R)). Condition (i)
détermines completely the homogeneous space structure of X (see 2.1), but there is a choice
involved in (ii) (unless G is reductive). If P is a parabolic &-subgroup of G, then X is

canonically of type S—k under P(R), the choice of the Levi subgroups being given

by Corollary 1.9 mentioned above.

§3 introduces the notion of géodésie action on a space of type S. For simplicity,
assume hère G to be connected and semi-simple. Let P be a parabolic R-subgroup of
G, and Z the center of the quotient P/RUP of P by its unipotent radical. For xeX,
dénote by Z(R)X the unique lifting of Z(R) in the Levi subgroup of P associated to x
as above. There is then an action of Z(R) on X, which commutes with P(R), and is

given by xoz=x-zx (zeZ(R), xeX). The orbits of Z(R) are totally géodésie flat
submanifolds of X. If A is the identity component of the group of real points of the

biggest R-split torus of Z, then X becomes a principal ^4-bundle under this action.
For a simple example, see 3.5.

§4 reviews some facts on parabolic &-subgroups. IfP is such a group, let AP be the

identity component of the group of real points of the greatest &-split torus of the

center of PjRuP. There is a canonical isomorphism AP-^(R%)di where d=dimAP,
which is provided by a suitable set of simple &-roots. We let ÂP be the closure of AP

in Rd. It is therefore isomorphic to the positive quadrant (R+)d. In §§4.3, 4.5 we dis-

cuss various décompositions of AP or ÂP.

§5 defines the corner X(P) associated to P. Take the simplest case, where k=R
and P is minimal. We hâve then the familiar Iwasawa décomposition G(R)=K-A 'N,
where A is the identity component of the group of real points of a maximal R-split
torus of G stable under the Cartan involution 0K. Then RUP(R)=N9 P(R) is the nor-
malizer of A 'N in G(R), and the projection P-*PjRuP maps A isomorphically onto
AP. There is then a canonical isomorphism X-* AxN and X(P is defined to be Â x N.
More intrinsically, in the gênerai case, X(P) is the associated bundle XxApÂP with
typical fibre ÂP associated to X9 viewed as a principal v4P-bundle under the géodésie

action of AP. The stratification of ÂP in orbits of AP yields a stratification of X(P)
into locally closed subspaces. In particular, XxAp{o}=X/AP is the face e(P)
associated to P. If Q is a fc-parabolic subgroup of G containing P9 then X(Q) may be

identified to an open submanifold of X(P). In §6, it is shown that if G is reductive
and P minimal, the Siegel sets in X, with respect to P [3, § 12] allow one to describe

the topology of X(P) around e(P). More precisely any point yee(P) has a funda-
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mental set of neighborhoods which are the closures of a suitable family of Siegel sets

(6.2). The space Xy and hence also X(P), is a trivial bundle, and to any xeA"is asso-
ciated a trivialization of X(P), whose cross-sections are orbits of the group °P(R).

§7 defines JT, and shows that it is a Hausdorff manifold with corners, which is

paracompact if fc is countable (7.8). The main point is the Hausdorff property, which
is derived from 6.5, itself an immédiate conséquence of a known property of Siegel
sets [3, Prop. 12.6]. It is also shown that the closure ofe(P) in Xcan be identified to

the space e(P) associated by this construction to e(P), viewed as a space of type S—k
under P (7.3).

§8 describes the homotopy type of Wand the cohomology with compact supports
ofJT.

In the last three paragraphs, A: Q, and F is an arithmetic subgroup of G. It is

shown that F acts properly on X and that JP/r is compact (9.3). The proof is mainly
an appeal to the main theorems of réduction theory [3, §§13, 15]. In turn, the proper-
ties of X and XjF yield various strengthenings and generalizations of some results of
réduction theory, in particular with regard to the "Siegel property" and related facts,
which are discussed in § 10. Finally § 11 gives the applications to the cohomology of F
already mentioned.

In what follows, the notion of "manifold with corners" is taken for granted. Al-
though this notion has already occurred at various places, there was a lack of founda-
tional material on it, and we are grateful to A. Douady and L. Hérault, who hâve been

willing to supply it; their paper is included hère as an appendix.
The main results of this work hâve been announced in a Comptes Rendus Note [7].
The first named author gave a set of lectures on this topic at the University of

Utrecht, in the Spring of 1971. We thank very much Mr. van der Hout, who wrote
them up and whose Notes were helpful to us in the préparation of the présent paper.

§0. Notation and Conventions

0.1. Let G be a group. If L is a subgroup of G, then^G(L)={geG | g-x-g"1
=x(xeL)} is the centralizer of L in G and c/KG(L)= {geG | g-L'g"1=L} the nor-
malizer of L in G. The center &G(G) of G is denoted ^(G). If xeG and AczG, then

xA=X'A'x"1 and Ax=x~lmA-x. Let N, M be subgroups of G. Then N^aG means

that N is normal in G, and G=MxN that N is normal in G and G is the semi-direct

product of M and N.

0.2. Algebraic groups will be affine and defined over fields of characteristic zéro

(mostly subfields of R); we follow the notation and conventions of [4]. If G is an

R-group, then G(R), endowed with the topology associated to the one of R, is a real

Lie group. The symbol L( will dénote the Lie algebra both for algebraic groups and
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real Lie groups, as the case may be. Similarly, G0 will dénote the connectée! component
of the identity in the Zariski topology if G is an algebraic group or in the ordinary
topology if G is a real Lie group.

By définition, a parabolic subgroup of an algebraic group G is one of G0, i.e. a
closed subgroup P of G0 such that G°/P is a projective variety [4]. If G is defined over
R, and H is an open subgroup of G(R), then a parabolic subgroup of H is by définition

the intersection of H with a parabolic subgroup of G defined over R.

0.3. As usual, the radical (resp. unipotent radical) of a connected fc-group G is

denoted RG (resp. RUG). Then the greatest connected fc-split subgroup ([4], §15) of
RG is normal in G (because G(k) is Zariski dense in G, [4], § 18) and is the semi-direct

product of RUG by any maximal fc-split subtorus of RG. It will be denoted RdG and
called the split or ksplit radical of G.

If G is not connected, then, by définition, its radical, unipotent radical and split
radical are those of G0; they are also denoted RG, RUG and Rfi respectively.

0.4. Let A: be a field of characteristic zéro. A fc-group H is said to be reductive if
H° is so, i.e. if RUH= {e}. Let G be a fc-group. Any reductive fc-subgroup of G is

contained in a maximal one. The maximal ones are called the Levi fc-subgroups of G

and are conjugate under RuG(k). If L is one of them, then G=LxRuG ([22], [6]).

Sometimes, the set of ^-points of a Levi &-subgroup of G will be called a Levi
subgroup of G(k).

Recall that if fc=R, every compact subgroup of G(R) is the group of real points
of a reductive fc-group; hence every compact subgroup is contained in a Levi R-sub-

group.

0.5. If G is a Q-group, an arithmetic subgroup F o/G is a subgroup of G(Q) which
is commensurable with q(G) n GLB (Z) for any injective Q-morphism q : G -> GLn ([3],
§7).

In thispaper, k is a subfield ofR, G a k-group, U the unipotent radical ofG and ty or
the set ofparabolic k-subgroups of G. From §9 on, we assume k Q.

h CARTAN DEVOLUTIONS. GEODESIC ACTION.
PARABOLIC SUBGROUPS

§1. The Group °G. Cartan Involutions

1.1. Assume G to be connected, defined over k. We put

(1)



Corners and Arithmetic Groups 441

where, as usual, X{G)k is the group of &-morphisms of G into GLX. The group °G is
normal in G, defined over k. If aeX(G)k9 its restriction to °G is of order <2, hence
is trivial on (°G)°, therefore

(2)

Any character is trivial on U, hence

°G °LxU (3)

for any Levi fc-subgroup L of G.

1.2. PROPOSITION. Assume G to be connected. Let S be a maximal k-split torus

of RG and A S(R)°. Then G(R) Ax°G(R). The group °G(R) contains every compact

subgroup of G(R) and also, ifk Q9 every arithmetic subgroup of G.

Let aeX(G)k and let M be a compact subgroup of G(R). Then a (M) is a compact
subgroup of R*, hence contained in {± 1}. Similarly a (M)c {± 1} if k Q and M is

arithmetic. In both cases Mckera2, which yields the second assertion.

To prove the first one we may assume, by 1.1 (3), that G is reductive. The group G

is the almost direct product of S and of (°G)°, as follows from 1.1 (2) and ([3], Prop.
10.7), hence G(R)°c:A-0G(R). Moreover An°G(R) is finite, hence reduced to {e}
since A is torsion-free. On the other hand, G(R) has finitely many connected compo-
nents, hence is generated by G(R)° and a compact subgroup H [21]; since Hcz°G(R)
by the above, this gives G(R) — A'°G(R), whence the proposition.

We shall on occasion use a slight variant of 1.2:

1.2'. PROPOSITION. We keep the previous notation. Let S", S" be k-tori in RG
such that Sf is k-split, S' *S" is a torus and S'nS" is finite. There exists then a normal

k-subgroup N of G containing S" and °G such that G(R) S'(R)°xN(R).
Dividing out by U reduces us to the case where G is reductive. The tori 5' and S"

belong to the center of G. Using the décomposition of a torus T in anisotropic and

split factors Ta and Td ([4], §8), we can write #(G)°= V-Sf where V^^{Gfa-Sf; and

Vn S'is finite. Let Y be the set of éléments in X{G)k which are trivial on V9 and let

Let S=V(G)°d. It follows from ([3], 10.7) that the restriction map X(G)k-*X(S) is

injective, with finite cokernel, and that X(G)-> X(S') maps Finjectively onto a

subgroup of finite index. From this we see that N=>°G, G=N'S' and NnS' is finite;
therefore G!(R)o 5"(R)oxiV(R)0. Since N(R) contains °(r(R), it meets every
connected component of G(R) by 1.2, hence G(R)=S'(R)°xiV(R).
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1.3. LEMMA. Let L9 L' be two Levi k-subgroups ofG, and N a normal k-subgroup
of G containing U. Then LnN is a Levi k-subgroup of N. The groups L and U are
conjugate by an élément of U(k) n &G (L n L').

We hâve G=LxU, hence N=(Nr\L)xU. Moreover UczRuN9 and since N is

normal, RuNc U, whence RUN= U, and the first assertion.
Let ueU{k) be such that ttL=Z/ (0.4) and let xeLnL'. Then u-x-u'^x-v for

some ve U. Since wx-u"1 and x belong to Z/, we hâve veL'n U= {e}9 hence u cen-
tralizes LnL'.

1.4. We recall now a few standard facts about maximal compact subgroups or
conséquences thereof.

Let H be a real Lie group with finitely many connected components. Then any
compact subgroup of H is contained in a maximal one. If K is a maximal one, then
H is diffeomorphic to the direct product of K with a euclidean space. Moreover
K/K°~H/H°. Any two maximal compact subgroups are conjugate by an élément of
H° [21].

If N is a closed normal subgroup of H9 with finitely many connected components,
then the maximal compact subgroups of iVare the intersections ofNwith the maximal
compact subgroups of H. If M is a closed subgroup of H with finitely many connected

components such that ail maximal compact subgroups of /Jare conjugate by éléments

of M (e.g. if H=K-M), then similarly the maximal compact subgroups of M are the
intersections of M with the maximal compact subgroups of H. (In both cases, by
taking a maximal compact subgroup K of H containing a maximal one of M, we see

that Mr\ K is compact maximal in M for at least one K. It is then so for ail maximal
compact subgroups of H by conjugacy.)

Let H-+H' be a surjective morphism of Lie groups whose kernel N has finitely
many connected components. Then the maximal compact subgroups of H' are the

images of the maximal compact subgroups of H, (This is well-known if H and N are
connected and the réduction to that case is immédiate.)

1.5. PROPOSITION. Let P be a parabolic k-subgroup ofG, S a maximal k-split
torus of RdG and A~S(R)°. Let K be a maximal compact subgroup of G(R). Then

KnP is a maximal compact subgroup ofP(R) and G(R)=K-P(R) K-A-°P(R). If
K-a-°P(R)~K-a'-0P(R) (a, a'eA% then a~a'. Themap which assigns togeG(R) the

élément a=a(g)eA such that g€K-a-°P(R) is real analytic.
The equality G(R)=^-P(R) is well-known and follows from the Iwasawa

décomposition (see e.g. [8], 14.7). We hâve then G(R)~K-A -°P(R) by 1.2 applied to P. The

group KnP is a maximal compact subgroup ofP(R) by 1.4 and is contained in °P(R)
by 1.2, hence we can identify (KnP)\P(R) and A x (tfnP)\°P(R). Composing the
obvious maps
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G(R) - K\G(R) ^ (K n P)\P(R) ^ A x (K n P)\°P(R)^ A,

we get a real analytic map/: G (R) -» ^4. It is clear that/(A;tf/>) a (keK, aeA,pe°P(R))f
which proves the uniqueness and analyticity of a.

1.6. PROPOSITION. Let G be reductive and let Kbea maximal compact subgroup

ofG(R). There exists one andonly one involutive automorphism 9K ofG(R) whosefixed
point set is K and which is "algebraic," Le. the restriction to G(R) of an involutive

automorphism ofalgebraic groups ofthe ZariskUclosure ofG(R) in G. Let p be the (— 1)-

eigenspace of 0K in L(G(R)). Then L(G(R))=L(K)®p and (k, X)*->K-expX is an

isomorphism of analytic manifolds ofKxp onto G(R). Let N be a normal R-subgroup

ofG. Then 9K(N(R)) N(R).
By a resuit of G. D. Mostow [22] (see also [5], § 1), we may arrange that Gc GLrt,

KcO(n, R), and G(R) is stable under 0:gH»g=fg~1, and then the latter automorphism

has ail the properties required from 0K. There remains to prove the uniqueness.
Let then 0' be an involutive automorphism of G(R) whose fixed point set is K and

which is algebraic in the above sensé. Since K meets every connected component of
G(R), it suffices to show that 6 and 6' coincide on G(R)°, and hence that they define
the same automorphism of L(G(R)). For this, it is enough to prove that the (— 1)-

eigenspaces p and p' of 9 and 9' are equal, and we may also assume G to be connected.

The group G is then the almost direct product of its derived group G\ which is

semi-simple, and of the identity component S of its center, which is a torus. Both
G'(R) and 5(R) are stable under 0', 9 hence

p' L(G')np' 0 L(S)np'9 p L(G')np 0 L(S)np.

The group Gr r\K is a maximal compact subgroup of G'(R) (1.4), hence L(G')np'
and L{G') n p are both equal to the orthogonal complément ofL(Kr\ G') mL(Gr (R))
with respect to the Killing form. The group S is the almost direct product of its

greatest R-anisotropic torus Sa and its greatest R-split torus Sd and Sa(R)° is the

greatest connected compact subgroup of S(R) ([3], 10.8). We hâve then, using 1.4,

L(S(R)) L(K n S)@L(Sd(R)).

But 0,0' are the restriction to G(R) of an R-automorphism of G, hence they must leave

both Sa(R) and Sd(R) stable, whence

L(S) n p L(S) n p' L(Sd(R)).

Let now N be a normal R-subgroup of G. It is then also reductive. By [22] (see also

[5]) there exists a maximal compact subgroup K[ of G(R) such that the associated
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involution 9't leaves N(R) stable. There exists geCr(R) such that gK=Kl. But then
9\ is conjugate to 9K under Intg, whence the last assertion.

1.7. DEFINITION. The automorphism 9K in 1.6 will be called the Carton involution

of G(R) with respect to K.

If G is semi-simple, then 9K is the usual Cartan involution, and the uniqueness is
obvious.

1.8. PROPOSITION. Let H be a R-subgroup of G containing U. Assume that ail
maximal compact subgroups ofG(R) are conjugate under H(R). Let K be a maximal
compact subgroup of G(R) and L a Levi subgroup ofG(R) containing K. Let 9K be the

Cartan involution ofL with respect to K and Lx (H n L) r\9K(Hn L). Then Lt is the

unique Levi subgroup ofH(R) contained in L and stable under 9K.

The group Lx is stable under 6K, hence is reductive ([5], 1.5), and contains every
subgroup of H' HnL stable under 9K, whence the uniqueness assertion. Let now
L' be a Levi subgroup of H', Since H{R) H' • U(R), the group L'is a Levi subgroup
of H(R). By a resuit of Mostow ([22], see also 1.9 in [5]), L admits a Cartan involution
9' leaving V stable. Let K' be its fixed point set. In view of the assumption on H there
exists heH(R) such that K=hK'. Since hK'czLnhL, there exists by 1.3 an élément

ueH(R)n &H{K) such that uhL=L. We hâve therefore K=uhK' and, by the uniqueness

of Cartan involutions (1.6),

0K o Int u/i (Int wA) o 0'.

As a conséquence uhL' is a Levi subgroup oî H{R) stable under 9K, hence contained
in Li9 hence equal to Lt since Lx is reductive; thus Lt has ail the required properties.

1.9. COROLLARY. Let P be a parabolic R-subgroup ofG,Ka maximal compact
subgroup of G (R) and L a Levi subgroup of G (R) containing K. Then Lr\P contains one

and only one Levi subgroup ofP(R) stable under 9K.

Since G(R)=i£-P(R) by 1.5, this is a spécial case of 1.8.

§2. Homogeneous Spaces of Type S

2.1. LEMMA. Let Rbea solvable connected normal R-subgroup ofG containing U.

(i) Let Kbe a maximal compact subgroup ofG(R). Then R has a maximal R-torus
normalized by K,

(ii) IfS is a maximal R-torus of R, then ^g(S) contains a maximal compact

subgroup of G (R).
(iii) The subgroups ofG(R) oftheform K*S(R), where S is a maximal torus of R
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defined over R and K a maximal compact subgroup of G (R) n JTq (S form one con-

jugacy class ofsubgroups ofG(R). Let H=K-S(R) be one ofthem and H the Zariski
closure of H. Then H is reductive, #=//(R), S=Rnffand S(R) RnH.

(iv) Let L be a Levi R-subgroup ofG containing H, and 0K the Carton involution of
L(R) with respect to K. Then LnR S and 9K leaves H(R) and S(R) stable.

(i) Let L be a Levi R-subgroup of G containing K. Then R=(RnL)txU, and
R n L is a maximal torus of R which is normalized by L, hence by K.

(ii) In view of (i) this assertion is true for at least one maximal R-torus ofR. Since

such tori are conjugate under R(R) ([8], 11.4), it is then true for ail of them.

(iii) The first assertion follows from the conjugacy of maximal R-tori of R and of
maximal compact subgroups (1.4).

The Zariski-closure R of K is reductive and normalizes S, hence R° centralizes S.

We hâve H= R-S, H° R°S, hence H°, and therefore Ë9 is reductive. Moreover,
Â'-S'(R) contains /f(R)°; but K is a maximal compact subgroup of G(R), hence a

fortiori of H(R)9 and consequently intersects every connected component of ff(R);
therefore B(R) K-H(R)° H. We hâve 5(R)czRnH, hence SaRnB. The group
Rn H is normal in H, hence reductive. Since S is maximal reductive in R, it follows
that S=Rr\H, whence also

S(R) czRnHc:(RnH)(R) S(R)i

which ends the proof of (iii).
(iv) Any subspace of the Lie algebra of L(R) which contains L(K) is stable under

6K, hence L(H(R)) and if (R)° are stable under 0K. Since H(R) is generated by Kand
H(R)° (1.4), it is also stable under 0K. The group L nR is a normal R-subgroup of L,
hence its group of real points is stable under 0K by 1.6. It is reductive, contains

R n H= S, hence is equal to S.

2.2. Remark. Notation being as above, assume G to be connected. Then L is

also connected, hence centralizes the torus LnR. It follows that, in 2.2 (iii), Kcen-
tralizes S and K is the unique maximal compact subgroup of K'S(R).

2.3. DEFINITION. A space oftype Sfor G or G(R) is a pair consisting of a right
homogeneous space X under G(R) and of a family (Lx)xeX of Levi subgroups of G(R)
satisfying the two following conditions:

SI. There exists a connected normal solvable R-subgroup Rx of G containing U,

such that the isotropy groups Hx(xeX) of G(R) in X are of the form K- 5(R), where

S is a maximal R-torus of Rx and K is a maximal compact subgroup of G(R) nor-
malizing S (cf. 2.1).

SU. We hâve HxczLx and Lx.g~(Lx)g for ail xeX and geG(R).
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We shall often say simply that Xis a homogeneous space of type S under G(R).
Note that, by 2.1, Rx is completely determined by the action of G(R) on X. From §4

on, we shall be concerned only with the case where Rx=RdG is the £-split radical of
G, in which case we shall say that X is of type S-k. If moreover G=°G9 then the
isotropy subgroups are just the maximal compact subgroups of G(R). As explained
in the introduction, this is our main case of interest.

2.4. Remarks. (1) The condition SI of 2.3 implies that X is diffeomorphic to
a euclidean space, G (R)° is transitive on Zand the isotropy groups are conjugate under

(2) Let Ibea homogeneous space under G(R) for which the isotropy groups
Hx(xeX) are reductive. Then it is always possible to find a family {Lx}xeX satisfying
SU. Indeed, choose yeX9 a Levi subgroup Lz>Hy, and put Lrg=Lg for geG(R).
Since Lg=L for geH9 the group Lg dépends only on y g, and SU is then satisfied.

2.5. EXAMPLES. (1) Let G be semi-simple. Then Rx={e}9 and the isotropy
groups are the maximal compact subgroups of G(R). Since they are equal to their
normalizers, X may be identified with the symmetric space of maximal compact
subgroups of G(R).

(2) Let G be reductive and let C=#(G0)0 be its radical. The group Rx is an R-sub-

torus of G, normal in G. The isotropy groups are then the subgroups K- Rx (R), where

K runs through the maximal compact subgroups of G (R). The group Kn RG is maximal

compact in RG(R). By standard facts on tori, there exists an R-split subtorus D
of RG normal in G, such that RG(R) (K-Rx(R)nRG)xA, with A=D(R)°. The

group A opérâtes properly and freely on X. On X/A9 the isotropy groups of G(R) are
the groups K*RG(R)9 (K maximal compact), hence X/A may be identified with the

space ofmaximal compact subgroups of @G° (R). If G is connected, then A is central.
Note that when G is reductive, SU is vacuously fulfilled since we must hâve Lx=G(R)
for ail xsX.

2.6. LEMMA. Let X be a homogeneous space of type S under G(R) and

^={Hx}xbX the set of isotropy groups ofG(R) on X. Let G' be an R-subgroup of G

containing U such that G'(R) is transitive on X. Then Xsatisfies SI under G', the cor-
responding solvable group Rx being equal to {G' r\Rx)°'RuG'.

Let K be a maximal compact subgroup of G such that Kn G' is maximal compact
in G'(R) and let xeX be such that KcHx; thus Hx=HxnG' contains a maximal

compact subgroup of G'(R); by conjugacy, this is then true for ail xeX. The group
R/ss(GfnRx)°*RuG/ is a normal connected solvable R-subgroup of G' and
RUR'~RUG'. Let S be a maximal R-torus of Rx. Then Rx=SxU9 hcnceRxr\G'

(5nG/>x£/, and R' =S'xRuG\ where S' (SnG')° is a maximal R-torus of R'9
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and we hâve S' (SnR')°. Choose xeA'such that S(R)cHx. Then

5(R) nGf S(R) nHxnG' S(R)n HX9

which shows that

S'(R)<fl;, S'(R) c S(R) n Hrx, 5'(R)° (S(R) n fl;)°. (1)

Let K' be a maximal compact subgroup of Hx. We hâve already seen that it is

maximal compact in (/'(R); by (1), it normalizes »S"(R). We wish to show that
HX=K'-Sf (R), which will prove the lemma. For this, it is enough, by the last assertion
of 1.4, to prove that HX/S'(R) is compact.

Let H be the Zariski-closure of Hx in G. The group S being normal in ff, the set

M= (ffnG')-S is an R-subgroup of G. Since Hx ff(R) by 2.1, HX-S(R) is an open
subgroup of finite index in M (R). In particular, it is a closed subgroup of G(R). As
a conséquence, HX-S(R)/S(R) may be identified with a closed subgroup of HJS(R).
Since the latter is compact, so is the former. But Hx/(HxnS(R)) is isomorphic (as a
Lie group) to HX-S(R)/S(R), hence is compact, too. By (1), Hx/(HxnS(R)) and

HX/S'(R) hâve a common finite covering, hence HX/S'(R) is compact.

2.7. Restriction to subgroups. Examples. Let Zand G'be as in 2.6. Then Zsatisfies
SI with respect to G'(R), and, by 2.4(2), there is then at least one way to make X of
type S under G'. We shall now indicate some cases in which this can be done in a
canonical manner. In the sequel, it will always be understood that X will be viewed
of type S under G' with the choice of the Levi subgroups of G' (R) given below. Thèse

will often be denoted LXtG>{xeX).
(1) G' is normal in G. We define LxG> as G' c\Lx. This applies in particular to G0.

(2) G is connected. By 2.2, Hx has a unique maximal compact subgroup, say Kx.
Since G' (R) opérâtes transitively on X, it follows that ail maximal compact subgroups
ofG(R) are conjugate under G' (R). We then define LXt G. as the unique Levi subgroup
of G' nLx which is stable under the Cartan involution of Lx with respect to Kx (cf.
Prop. 1.8).

(3) G'=P is parabolic. We apply (1) to G0 and (2) to Pc G0.

Remark. Assume G' to satisfy one of the above three conditions. Let geG(R) and
qh^.q'% xhen G" satisfies the same condition, and we hâve

Lx.g,G- (Lx,G,y (xeX). (4)

2.8. Let X be a space of type S under G. It is the total space of a principal fibration
with structure group U(R), where U(R) opérâtes as a subgroup of G(R). Let F be a

(necessarily connected) R-subgroup of U normal in G. Let n:G-+G'~GIV and



448 A. BOREL AND J-P. SERRE

' X/V(R) be the natural projections. Let x,yeXbe such that a(x) a(y).
Then xey V(R), hence Ly Lvx for some veV(R) and n(Lx) n(Ly). It is then
immédiate that X' is of type S under G\ with Rx> n(Rx), and L(r(JC) 7r(LJC) for ail
xeX. Assume V to be defined over k. Then n(RdG) RdG\ therefore Xf is of type
S—k if Xis so.

§3. Géodésie Action

/« this section, X is a space oftype S under G(R);for xeX, Hx is the isotropy sub-

group of x and Lx the Levi subgroup of G{R) associated to x.

3.1. LEMMA. Let P be a parabolie R-subgroup ofG, Z the center ofPIRuP and

n:P-*R/RuP the canonicalprojection. Let Ybe thegreatest compact subgroup ofZ(R).
Then, for xeXf Z0 Znn(HxnP) is gênerated by n(Rx(R)) and by Y. In particular
it is independent of xeX.

We hâve RxnRuP= U, therefore n defines an injective homomorphism of RxjU
into P/RUP, whose image is a torus which is normal, hence central; we hâve thus

n(Rx)c:Z. We hâve n(Rx) n(S) where S is any maximal torus of RXi hence, by 2.1,

n (Rx) (R) n(Hxn Rx) for any x e X.

On the other hand, Hx=K(HxnRx)9 where Kis a suitable maximal compact
subgroup of (j(R), hence

HxnP (Kn P)-(HX n Rx)

Z0 Zn n(Hx n P) (n(K n P) n Z)-n{Hx n Rx).

The group KnP is maximal compact in P(R) 0.5), hence n(KnP) is maximal compact

in (P/RUP) (R) (1.4), and then n (KnP) n Z is maximal compact in Z(R) (1.4).
Therefore n(Kc\P)r\Z= Y, whence the lemma.

Remark. Let Sx be the R-torus of Z which is generated by the greatest R-aniso-

tropic torus of Z and by the image of Rx. We hâve then St (R)° (Zo)°. Let S2 be an
R-torus in Z such that Z° is the almost direct product of St and S2. Then S2 (R)°n
nZQ {e} and S2(R)° maps isomorphically onto Z(R)/Z0 under the natural projection.

The torus S2 splits over R, and it follows from 1.2' that there exists a normal
R-subgroup N ofP containing Rx and ail compact subgroups of P(R) and such that

S2(R)°ixiVr(R).

3.2. Définition of the géodésie action. Let P, Z, Zo be as before. We shall define
hère an action of Z(R) on X which commutes with P(R), is trivial for Zo and defines

a proper and free action of Z(R)/Z0.
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By 2.7(3), Zis canonically of type S under P. For xeX, let L'x be the Levi subgroup
ofP(R) associated to x; it is contained in Lx. Let ZX=^(LX). It follows from 1.8 and
the définition of Lx (2.7) that Zx is the unique lifting of Z(R) in P(R) which is stable
under the Cartan involution of Lx with respect to a maximal compact subgroup of
Hx. Given zeZ(R), let z* be its lifting in Zx. Fix xeX. Let jeJT and geP(R) be such

that y=x-g. Let us put

yoxz x-zx-g. (1)

Let g'eP(R) be such that x•g' y. Then g'= h-g for some AeHxnP<= L'x; the élément
/z then commutes with zX9 hence x-zx'g' x-zx-g. This shows that the right hand side

of (1) dépends only on x, y, z and justifies the notation of the left hand side.

LEMMA. Wehave

(i) ypoxz (yoxz)'p9 (x, yeX; peP(R), zeZ(R)).
(ii) j;oxz ^ox»z, (x, x\ yeX; zeZ(R)).

Let geP(R) be such that y x-g. For peP(R)9 we hâve yp X'g-p, hence

(yp) oxz x-zx-g-p (yox z\p, (2)

which gives (i).
Let now heG(R) and set P' =Ph. Then IntA induces an R-isomorphism of Z onto

Zf=^(Pr/RuPr). Let us also dénote by zh the image ofzeZ under this map. It is clear,

by "transport de structure," that we hâve

(yox z)-h yhox.k zh (x, yeX; zeZ(R)). (3)

Let x'eXy and choose heP(R) such that x-h=x'. By (3), applied to yh"1, we

hâve, taking (i) into account:

y ox z (y h'1 ox z)-h y <v z*;

but, since /jgP(R), we hâve zh=z, whence (ii).

In particular, this shows that the actions ox and ox, are the same. We may therefore

omit the référence point, and get an action

y:(x, z)hxoz (xeX; zeZ(R))

of Z(R) on X. By (1), with g=e:

xoz xzx, (xeZ;zeZ(R)), (4)
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which shows that

(xoz)oz' xo(rz;) (xeX;z, z'eZ(R)).

We can now write (3) in the form

(xo z\h xho z\ (xeX, zeZ(R), /ieG(R)), (5)

where o refers to the géodésie action of Z(R) on the left-hand side and of hZ(R) on
the right-hand side.

3.3. DEFINITION. The action y defined above is called the géodésie action of
Z(R) on X.

The reader will note that this action dépends only on the structure of type S of X
under P. If P is reductive, then Z is a subgroup of P, and the géodésie action is just
the ordinary action.

3.4. PROPOSITION. The géodésie action commutes with P(R). The group Zo
opérâtes trivially and Z(R)/Z0 opérâtes freely.

(In fact, the action of Z(R)/Z0 is a principal bundle action, see 3.6.)
The first assertion follows from 3.2(i). If zeZ0 then, by 3.1, zxeHx for ail xeX,

hence z acts trivially by 3.2(4).

It also follows from 3.1 that if zeZ(R), z$Z0, then zx$Hx for any xeX, hence

Z(R)/Z0 acts freely on X.
Remark. The group Zo contains the maximal compact subgroup of Z(R). We may

therefore write Z(R)=Z0 x A, where A is the identity component of the group of real
points of an R-split torus of Z. By 3.4, and 3.2(4), the orbit x o Z(R) of xeZmay be

identified with x*Ax, i.e. with the orbit of x under the ordinary action of the identity
component of the group of real points of an R-split torus. If G is reductive, and hence

X is a symmetric space with négative curvature, then x*Ax is a totally géodésie flat
submanifold, isometric to a euclidean space, and the orbits of 1-dimensional subgroups
of Ax are geodesics, whence the terminology.

3.5. EXAMPLE. Let G=SL2 and ifbe the upper half-plane. Let G (R) act on Xby

Let P be the group of upper triangular matrices in G. The group Zo has two éléments

± 1. Let A=Z(R)/Z0. The stability group of i is SO (2, R) and the Cartan involution
associated to it is gH+'g"1. For x—i9 LX=ZX is the group of diagonal matrices in
(?(R). For aeA, let a (a) be the square of the upper left entry of the lifting of a in At.
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Then, for z=x+iy, we hâve

z o a x + ici (a)-y.

Hence the orbits of A are the vertical Unes and on each such line, identifiée to R*
by the y coordinate, zv-+z o a is the multiplication by a (a).

If we take as model of X the open unit dise, then the choice of a parabolic R-sub-

group P of G corresponds to that of the fixed point Po of P(R) on the unit circle.
The orbits of Z(R)/Z0 under the géodésie action are then the geodesics abutting to Po.

3,6. Bundles defined by the géodésie action. Let P, Z, Zo be as before. Let T be an
R-split torus in ^(PjRuP) whose intersection with Zo is finite and A be the image of
r(R)° into Z(R)/Z0. By 1.2', there exists a normal A>subgroup M of P containing
Rx and ail maximal compact subgroups of P(R), such that P(R) r(R)°xM(R).
Since P(R) commutes with A, the latter operating by géodésie action, we hâve an
action of A x M (R) onto X defined by

xh (xoa)-m, (aeA, meM(R); xeX).

3.7. PROPOSITION. 7%e above action ofA x Af (R) on X is transitive. For xeX,
HxnPcM(R) and the isotropy group ofx in A x M (R) is {e} x (HxnP).

Let xeX. Then (* o A)-M(R)=X'AX-M(R)=x-P(R) X, which proves the first
assertion. The space X is of type S under P(R) (2.7) and in particular the isotropy

group HxnP of x under P(R) is generated by a maximal compact subgroup K'x of
P(R) and a subgroup of l*x(R). Since both of thèse groups are contained in M (R),
we hâve HxnPczM(R) for ail xeX. Let now aeA and meM(R) be such that

{xoa)'m—x. We then hâve ax-meHxnP hence ax-meM(R) and tfx=e, whence the

proposition.

3.8. COROLLARY. Let xeX. The map {a-m)*->(xoà)-m (aeA; meM(R)) in-
duces an isomorphism fix:Ax (HxnP)\M(R)^Xof(AxM(R))-homogeneous spaces.

The space X is a trivialprincipal A-bundle, and the orbits ofM(R) are cross-sections of
this fibration.

By 3.7, jjlx is an analytic bijective map of (A x M(R))-spaces. Since thèse are ho-

mogeneous spaces, it is then an isomorphism. This proves the first assertion; the

second one is an obvious conséquence.
Remark. Since Zo contains the greatest compact subgroup of Z(R), we may in

particular, in 3.6, choose Tsuch that ^4=Z(R)/Z0; hence 3.8 applies to the géodésie

action of Z(R)/Z0 on X.

3.9. Structure of type S for X/A. We keep the previous notation and let a\X~*
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-» X'=X/A be the canonical projection. In view of 3.4, P(R) commutes with a, whence

a transitive action of P(R) on X'. For xeX, the fibre Fx^a~1(<r(x)) is x-Ax (3.2),
hence the isotropy group of a(x) is (HxnP)-Ax. The condition SI is then fulfilled,
with respect to P, if we let Rx> be the subgroup of P generated by Rx and the inverse

image of T. In particular if Rx RdG and T is the greatest A>split torus of # (P/RUP),
then Rx=RdP.

For xeX, let LxP be the Levi subgroup of P assigned to x by the condition SU. If
yeFX9 then Ly is conjugate to Lx by an élément ae^. But AxczLX9 hence Lx=Ly and

therefore, by construction (2.7), LyP LXtP. Thus xt->LxP is constant along the fibres
of a, and SU is clearly satisfied for the action of P(R) on X' if we put Lx, LxP for
any xea~ 1 (x'). This choice will be understood in the sequel. Therefore X' is canonically
of type S under P; by the end remark of the previous paragraph, it is also of type S—k
if X is so under G.

The group Z(R) is commutative, therefore the géodésie action of Z(R) goes over
to an action on X\ trivial on A, and commuting with P(R). In view of the définition
of Lx, {x'eX'\ it is clearly the géodésie action of Z(R) on X\ for the structure of
space of type S under P just defined.

3.10. Assume G to be connected, and let G' be as in 2.6. Then, by 2.7(2), X is

canonically of type S under G' and for xeX the Levi subgroup Lx of G' (R) associated

to x is contained in Lx. The group fé7 (G/U) is reductive, therefore the canonical homo-
morphism G'jU-^G'IRjG' maps ^(G/U)n(G'IU) isomorphically onto an R-sub-

group of & (G'/RUG'). Let xeX. Since LxcLxy an élément ze<tf(G/U) (R)n(G'/U)
and its image in ^(Gf/RuGf) hâve the same lifting associated to x. Consequently, the

géodésie actions of z on X, with respect to the structures of type S under G and G\ are
the same.

If G' is parabolic, then G'/U is parabolic in G/U9 hence contains ^(G/U), which
is then identified to a subgroup of<^(Gr/RuGf), and this identification is compatible
with the géodésie actions on Z under G and G'. Returning to the situation of 3.2, we

may in particular apply this to two R-parabolic subgroups Pc g of G, which play the
rôle of G' and G in the preceding discussion, and get:

3.11. PROPOSITION. Let PcQ be two parabolic R-subgroups of G. Then

*$ (Q/RUQ) may be canonically identified with a subgroup of% (P/RUP and the géodésie

action of^{QIRuQ) (R) onXis the restriction ofthe géodésie action of<£(P/RuP) (R)
onX.
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H. CORNERS

§4. Parabolic A-Subgroups

4.1. In this section, we review some standard facts on parabolic subgroups and fix
some notation. We recall that if H is a fc-group, *$ (H) is the set of parabolic
^-subgroups of H. Let R be a connected normal solvable &-subgroup of G and n:G-+ G/R
the canonical projection. Then P\-^n(P) induces a bijection of ty(G) onto ty(G/R)
whose inverse map is given by Q^-^n~1(Q). Assume now R to be A>split [4, §15],
which is automatically the case if R is unipotent. Then n (k) : G(fc) -? (G/R) (k) is sur-
jective, hence the bijection ^ (G) -> ^ (G/R) préserves conjugacy classes over k. In
particular the classification of parabolic A>subgroups up to conjugacy over k is "the
same" in G, G/U or G/RdG; this reduces us to the case of reductive groups. Let S be

a maximal Â:-split torus of G°/U, k<P &(S, G/U) the set of A>roots of G°/U with
respect to S, and A a basis of k$ ([8], §5). By [8, §5], the conjugacy classes in ty(G)
with respect to G°(k) are in 1 — 1 correspondence with the subsets of A. The class

corresponding to Je A is represented by the standard parabolic subgroup Pji the

image Pj/U oîPj in G/U is the semi-direct product of its unipotent radical Uj by the

centralizer Z(SS) of Sj, where Sj (Hae/ kera)0, and its split radical is Sj- Uj. Given
Pe ty9 the only / such that P is conjugate to Pt under G0(k) will be denoted I(P) and
called the type of P.

4.2. Let Pe ^ (G). The quotient SP RdP/(RuP • RdG) is a Ar-split torus, and is also

the greatest Ar-split torus in CP=&(P/(RuP-RdG)). We let AP be the identity compo-
nent of SP(R). Let P'e $ (G) be conjugate to P under G0, and let xeG° be such that
*/>' =jp. Then lntx induces an isomorphism of CP> onto CP. IfPty=P withj^eG0, then,
since P' is its own normalizer in G0, yex-P\ Clearly, Inip'(p'eP') induces the trivial
automorphism of CP>, hence Inty induces the same isomorphism of CP> onto CP as

Intx. Since we may take yeG°(k), this isomorphism is defined over k, hence defines

a canonical isomorphism

oP>,p:$P> ^ SP. (1)

Let in particular P' =Pj be standard. Then SP> Sj/SA. The éléments of A — / de-

fine a basis of Z*(5//5tJ)®Q, where Z*( dénotes the group of rational characters

[4], which is carried over onto a basis of X*(SP)®Q, to be denoted in the same way.
We thus hâve a canonical isomorphism:

AP^(RtY~I. (2)

4.3. Let g be a parabolic A>subgroup containing P and let J=I(Q). The inclusion
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RdQ<zRdP induces an injective morphism of SQ into SP which maps SQ onto
kera)0. Let APtQ (Ç)aeÂ__j ker<x)nAP. Then the product décomposition

AP APtQxAQ (3)

corresponds to the factorization

(Riy-1 (R*+)J-J x (R*+)^ ; (4)

The group AP associated to P, viewed as subgroup of Q9 is AP/AQ, i.e. is the isomorphic
image of APQ under the canonical projection. Thus, our AP above can be written
APGo9 and then (3) takes the form

AP$ g° -™Pt q x ^Qt go (5)

For a subset L of A — /, let

AP (D (fl« e l ker a) n ^P, (6)

where P(L) is the parabolic subgroup of type IkjL containing P. In particular

AP, APiA_t) ^Go {e}.

4.4. The isomorphism 4.2(2) yields an open embedding of AP into R^"~J. The
closure of AP is R+"~J and will be denoted ÂP (or ÂPG if we wish to emphasize the
ambient group). The éléments of A —/ are then coordinates on ÂP, taking ail positive
values (zéro included), and they identify ÂP to the positive quadrant in RJ~J. The
action of AP on itself by means of translations extends to one on ÂP, given by coor-
dinate-wise multiplication.

4.5. For every Le A — /, let oL be the point with coordinates

O oiiL
aeL.

In particular:

oe (0,0 0), oA_t (1, 1,..., 1) e.

Then AP-oL=ÂP(L) is the face of ÂP given by

ÂP(L) - {xe^p | a(x) 0(a#L), a(x) # O(aeL)}. (1)

In particular:

^•oe - ÂP(Ç>) {oa}, ^Tp(J - /) AP-oA_I S ^p,
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and we hâve the orbit space décomposition:

Âp Ujl=a-iML)- (2)

The isotropy group of oL is AP(L); we hâve

AP-oL APtP(LyoL s APtP(L) (Lcj-/), (3)

and the orbit map a\->a-oL extends to a diffeomorphism:

ÂPtPiL)*Cl(ÂP(L)). (4)

In this formula, the right-hand side is the closure of ÀP{L) in ÂP and the left-hand side
is defined as in 4.3, but with G replaced by P(L).

§5. The Corner X{P) associated to a Parabolic Subgroup

5.0. From now on, X is a homogeneous space of type S—k for G (2.3). Thus we
hâve Rx=RdG. This latter condition détermines uniquely the isotropy groups Hx (xeX)
of G(R) on X; it involves the ^-structure of G, as the case of a torus already shows.

Note that X is also of type S- k under G0 or under the group °(G°) of 1.1. If G0 0((?0),
the isotropy groups in X are the maximal compact subgroups of G(R). By 2.1 and

2.4(2), G always has a homogeneous space of type S—k.

5.1. We keep the previous notation. By 3.8 and the définition of AP (4.2), A'is a

principal >4F-bundle under the géodésie action. By définition, the corner X(P) asso-
ciated to P is the total space of the associated bundle with typical fibre ÂP:

X(P) XxApÂP. (1)

Thus X(P) is the quotient of XxÂP under the équivalence relation: (x9 z)~(x'9 z')
if and only if there exists aeAP such that x=jc' o a and z'=a-z. The space X(P) is

endowed with a natural (real analytic) structure ofmanifold with corners coming from
that of the fibres (the components of the boundary being the e(Q) described below).

In view of 4.5(2), we hâve

(U), (2)

where

X(P,L) XxApAP-oL. (3)

By 4.5(3)

X(P, L) X\Ar(V) xAp-PWAPtPW a XfAPW, (4)
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in particular

X(P, 0) X/AP, X(P,A-I) X. (5)

Let us put

in particular e(G0) X. By 3.9, e(Q) is canonically of type S—A: under Q. The equality
(2) can be written

e (6)

We hâve a principal fibration

X -+ e(Q) with structural group ^4Q. (7)

Let J be a subset of L. Then P(J)cP(L) Q. Replacing X, G, P by e(Q)9 g, P(/),
we then hâve also a principal fibration

Vp (j), q : e (Q) -> e (F J)) with structural group v4P (J)> Q. (8)

We hâve the factorization ^4p(J)=^4p(j)jQ x ylQ. The group AP(J) opérâtes by géodésie
action on the fibration (7), and the action induced one((?)is the géodésie action of
APijhQ which underlies (8).

The group ^(R) opérâtes on X, and commutes with AP. The action ofP(R) extends
then to X(P), leaving the faces e(Q) stable. Since AP is commutative, its action on X
also extends to X{P)> leaving each e(Q) stable, and it still commutes with P(R).
Moreover, P(R) opérâtes on the fibrations (7), (8).

5.2. Let F be a normal unipotent fc-subgroup of G, and n:G-+G' G/V the
canonical projection. The group F(R) opérâtes properly and freely on X, and

X'=X/V(R) is canonically of type S-k under G' (2.8). Moreover, iîa\X->X' is the
canonical projection, then Lff(x) n(Lx) (xeX). If PeS$ and P' n(P), then AP. is

canonically identified with AP and one checks that the géodésie actions of AP on X
and X' commute with a. As a conséquence, X(P) is a principal F(R)-bundle over
JT(jP'), and the projection x:X(P)-+Xf(P') extends a. For every QzdP9 QeS$ the
restriction of x to ex (Q) is the projection of a principal F(R)-fibration with base

5.3. PROPOSITION. Let Pc: Q be two parabolic k-subgroups of G andlo=I(Q)-
—I(P). The inclusion X(Q)c*X(P)is an isomorphism ofmanifolds with corners ofX(Q)
onto an open subset of X(P). We hâve ClX{P)e(Q)=UQ=lR^PtReV e(R)=e(Q) (P),
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where e(Q) is viewedas a space oftype S-k under Q (5.1), ande(Q) (P) is the corner
°f e (Q) associated to the parabolic k-subgroup P of g.

The canonical factorization (4.3(3))

Ap AP q x Aq

yields an embedding

ApQ x Aq —» Ap (1)

which, for every Lez A — I(Q), induces a homeomorphism

APQ x ÂQ(L) * ÂP(LuI0), (La A - /(fi)). (2)

We hâve clearly

X xA^ÂQ X xApQ*AQ(APQ x ÂQ), (3)

X x A<*ÂQ (L) Xx A*<>x A° (APQ x ÂQ (L)). (4)

In view of (1), (2), this yields

AÂ (5)

(6)

The inclusion X(Q)c+X(P) is then defined by the inclusion (1) of the typical fibres in
the right-hand sides of (5) and 5.1(1). By (2) and (6), its restriction to X(Q9 L) is an
isomorphism of X(Q,L) onto X(P, Lu/0). Taking 5.1(4) into account, we get
canonical isomorphisms

e (Q (L)) X/AQiL) *X(Q9L)-+e(P(LuI (Q)) s X/A p(Lulo)

(Le 4-7(0). (7)

Thus X(Q, L) is endowed with structures of space oftype S under both Q and P (5.1).

It is immédiate from the définitions that the latter structure can also be associated to P
viewed as a subgroup of Q, hence the inclusion commutes with the géodésie action

of .4p.

Let /cJ-/(P). The closure of ÂP(J) is the set of points of ÂP on which the

éléments of A -/(P)-/ are zéro. Therefore

{{)) \[LcJAp(L). (8)

But

Cl(e(P(J))) XxA* Cl(Àp(J)) (9)
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whence

Cl(e(P(J)) IJloj X(P, L) Up(J)*r p,r*v e(R). (10)

Let now /=70, i.e. P (J) g. We hâve ^4P=^PQ x AQ and ^4Q acts trivially on Cl(ÂP (/))
whence

Cl(e(Q)) (*MQ) x^ Cl(ÀP(I0)). (11)

In view of 4.5(4), this can be written

Cl(e(Q)) (XIAQ)xA^J^Q (12)

or, taking 4.3 into account

Cl{e(Q)) e{Q){P). (13)

Together with (10) and 4.3, this proves the second assertion of 5.3.

5.4. Canonical cross-sections. Let JcL be subsets of A— I(P). Put Ô=P(/),
R~P(L) and consider the fibration 5.1(8) with structural group AQR

vQtR:X(P9L)->X(P9J) (1)

which can also be written

(2)

The space X(P9 L) is of type S under Q, associated to RdR9 hence it is of type S under

°g(R), and the isotropy groups in °Q(R) are its maximal compact subgroups.
Let yeX(P9L) and M its isotropy group in °Q(R). By 3.6, the map AQtRx

x °Q(R)-+X(P9 L) defined by (a, q)i-*(y oa)-q induces an isomorphism

Ai/. AQi R x X (P, J) * X (P, L), (3)

which commutes with °Q (R) acting in the usual way on X{P9 L) and X(P9 J). The

images of the sets {a} x X(P9 J) are the orbits of °Q (R) and will be called the canonical

or standard cross-sections of the fibration (1).
Let now xeX. For Q^>P9 dénote xQ its projection on e(Q). The trivialization

lix:APxe(P)*X (4)

induces one of the associated bundle X(P)

fix:ÂPxe(P)*X(P) (5)
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which commutes with AP and °P(R). It is immédiate from the définitions that, on the
face e(Q), this trivialization coincides with the trivialization given by (3) v/ithy=xQ,
and /=0. If we replace G by g, we get similarly an isomorphism

lix:ÂPtQxe(P) - ClxiP) e(Q)*e(Q) (P) (6)

(cf. 5.3). We hâve then X(P)^ÂPtQ x ÂQ xe(P), whence also an isomorphism

tix:ÂQxe(Q)(P)*X(P) (7)

which commutes with AQ and °P(R), acting in the obvious way. It is immédiate from
the définitions that the diagram

1,1 (6)
ÂPxe(P) Â X(P)9

where the vertical arrows are the canonical injections, is commutative, and that ail
maps commute with the natural actions of °P(R) and AP.

Together with 5.3, this shows the commutativity of the following diagram, where
the vertical arrows are inclusions:

ÂRxe(R)(P)*X(P)

5.5. PROPOSITION. Let Q, Rety be such that QnRety. Then the géodésie
action ofAQ on X extends to a géodésie action on e(R).

LetP—QnR. Then e(Q) and e (R) may be canonically identified to faces of X(P
(5.3) and AQ9 ARto subgroups of AP. The action of AQ is then defined by the extended

géodésie action of AP on X{P).
Remark. Let P'ety, P'aP. The canonical inclusions X(P)c+X(P') and AQc>AP

being compatible with the extended géodésie actions, it is clear that the above action
of AQ on e{R) can also be defined using the corner X(P').

5.6. Let geG(k\ Pe% P'=P* and /=/(P)=/(JP/)- Then ^tg'1 induces an
isomorphism vl\Ap^>Ap> compatible with the identifications of both groups with
(R* Y"1 (4.2), hence it extends to an isomorphism ofÂP onto ÂP> also denoted av-*a*.
We hâve

x-p-g {x-g)-p* (x o a)-g - (x-g) o a* (aeAP, xeX, peP(R)) (1)
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cf. 3.2(5); therefore x\->x-g extends to an isomorphism of X(P) onto X(P'\ also
denoted x\-+xg, which also satisfies (1) with xeX(P). Let Qety, Q=>P and Q' Qg.
Then xt~»xg induces an isomorphism e(Q)-~+e(Qg) which is induced by passage to
the quotient from the translation xh^x-g. Translation by g also gives rise to a com-
mutative diagram of trivializations :

l** lu*-* (2)
X(P) -+ X{P')

The map fix (resp. nxg) commutes with AQ x °JP(R) (resp. AQ, x °Pf (R)) (5.4). In par-
ticular, if geQ, then Q Q\ ag=a (aeAQ), and ail maps in (2) commute with AQ.

§6. Topologyof X(P) and Siegel Sets

6.1. Let Pe% and /=/(P). For t>0, we put

APt

Let xelA Siegel set in X, with respect to P, x, is a set

S S((û) (xoiP> (2)

where œ is a relatively compact subset of °P(R).
Let xP be the canonical projection of x on e (P Then, if \ix : ^P x e (P -> X is the

canonical isomorphism of 5.5, we hâve

^(Si.J^P.r X Xp-CO. (3)

In particular, every point yeX has a neighborhood of this form. If P=G°, then

AP={e}, and the Siegel sets with respect to P are just relatively compact subsets.

Let S' be a maximal torus of RdP stable under the Cartan involution of Lx with
respect to a maximal compact subgroup ofHx. LetAf S' (R)°. ThenP (R)=A'x°P (R)
and there is a canonical projection a: A' -*AP. LetyeX. There exists/?eP(R) such that

y=x-p. Write p=a'-q with tf'6^4' and ge°P(R). Then y=(xo a (a'))-q9 and

p>f)-a} (xoa(a')'APtt)'q'CO.

From this it is clear that any Siegel set with respect to x, P is contained into one with
respect to y, P and conversely. Thus the choice of the origin matters little.

6.2. PROPOSITION. For Qz>P, Qe% let JczA-Isuch that Q=P(J) andxQ be
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the canonical projection ofx onto X(P9J). Let yee(P) and pe°P(R) be such that

y — Xp'p. Let Q <5tt(ù be a Siegel set with respect to P, x.

(i) The closure S of<5 in X{P) is compact. We hâve

where AptQtt=ApiQnApyt. In particular, the left-hand side is a Siegel set in X(P9 J)t
with respect to P and xQ, and any such Siegel set can be obtained in this way.

(ii) Let ti-+0 and cûi be a fundamental decreasing séquence of relatively compact
neighborhoods ofe in °P(R), (/= 1, 2,...). The closures in X(P) ofthe sets (x o APtt)*
•p'COiform a fundamental System of neighborhoods ofy.

The canonical isomorphism ixx extends to ÂPxe(P)^X(P) and 6.1(3) implies

tx'1(S) ÂPtt x xp-œ9 (1)

which proves (ii) and the first part of (i). The second part of (i) foliows from (1) and
5.4(6).

6.3. It is clear from the définitions and the equalities

G (R) K • G0 (R), G0 (R) (G0 n Hx) • ° (G0) (R)

(1.2, 1.4) that Siegel sets do not change if we replace G by G0 or °(G°). Similarly, let
F be a normal fc-subgroup of RdG and let Ar/ Ar/F(R), viewed as usual as a space
of type S-k for G' G/F(2.8). Then the image of a Siegel set in Jfunder the canonical

projection is a Siegel set in X\ and any such set can be obtained in this way. In
particular, in discussing properties of Siegel sets in X, we may always assume G to
be connected, reductive and even to hâve no non-trivial central fc-split torus. The

most important ones will be deduced from réduction theory. For this, we hâve to
relate the présent Siegel sets to those considered in [3], which are subsets of reductive

groups.

6.4. Assume then G to be reductive. Let P be a minimal parabolic &-subgroup of
G and Ka maximal compact subgroup of G(R). Let LP be the Levi subgroup ofP(R)
stable under the Cartan involution 9K (1.9), S'P=LPnRd(P) and Ap (Sp)°. The
éléments of A define a surjective homomorphism Ap^(R%Y which goes over to the

canonical isomorphism AP^(R%Y under the natural projection AP-*AP and whose

kernel is A'pntf (G).
We now want to prove:

(Hx n RdG)° (Hx n AP)°, (xeX fixed under K). (1)

The group Hxr\RdG is contained in P, stable under 0K (2.1(iv)), hence contained in
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LP (1.9), and we hâve

(Hx n RdG)° c (Hx n LP n RdP)° (Hx n A'P)° c (Hx n RdP)°. (2)

The group HxnRdG is contained in RdP9 and Hx=K(HxnRdG)9 hence

Hx n RdP (K n RdP)'(Hx n RdG),

(Hx n RdP)° (Kn RdP(R)°)°-(Hx n RdG)°.

But RdP(R)° is the semi-direct product of AP and RUP(R)9 hence is contractible, and
has no compact subgroup # {e}. Therefore

(Hx n RdP)° (Hx n ,RdG)0

which, together with (2), proves (1).

Define A'Ptt in the same way as APtV A Siegel set of G(R) (with respect to K, P, S')
is then a set of the form

e' su x-4>,r-«>, (3)

where co is a relatively compact subset of °P(R). This is the définition of a standard
normal Siegel set in [3, §12], except that we do not require S'to be defined over k,
and (o to be a neighborhood ofe. The maximal tori defined over R ofRdP are conjugate
under P(R). Therefore, given P, we may always choose x so that S'is defined and split
over k.

Let xeX be such that Àc/^. Then

X'SU (xo4,r)'û) SM (4)

is a Siegel set ofX, with respect to P, x, as defined in 6.1. By définition (see 2.3 and (1)),

Hx=:K-(HxnRdG)0=K'(HxnAP)0. Since HxnAP is the intersection of the kernels

of the éléments of A, we hâve

Hx-S' S', S' ttJ1 (x-S')> (5)

where ^^(R)-^^ is the orbital map gi~-*x'g. Thus the Siegel sets in G(R)9 with
respect to K, P are the inverse images of the Siegel sets in Xwith respect to P, x, where

x is fixed under K

6.5. PROPOSITION. JLe* G be reductive. Let P be a parabolic k-subgroup of G,

Po be a minimal parabolic k-subgroup ofG contained in P, andgeG°(k). Let xee(P),
{xn} (n l, 2,...) a séquence ofpoints of X which tends to x in X(P0) and such that

{xn*g}n%iis relatively compact in X(P0). Then geP(fc).
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Fix a point xoeX. By 6.2, there exists a Siegel set <5=S,|£0 in X, with respect to
x09 Po, which contains xn and xn-g for ail «'s. Let then 0nev4P>r andpneœ be such that
xw (*0o «,,)•/>„> (« 1,2,...). Let/be such that P=P0/. Then e(P) Z(P0, /). The
isomorphism

of 5.4 maps APotP xe(P0) onto <?(P). Thus, if we write ju"1 (x) (a, 6) with tf eip0,
Z>ee(P0), we hâve oe(tf) 0 for aeA — /. As a conséquence

lima(aII) 0 (ae^-I). (1)

We now fix a maximal compact subgroup K of the stability group of xOi let tt:
Cr(R)-»Xbe the orbital map gH->;co-g and S^tt"1 (S). Then S'is a Siegel set in
(?(R), with respect to K9 Po (6.4), and we hâve &=K-A'Pyœ, in the notation of 6.4.

Let then a'n be an élément of APt which maps onto an under the natural projection.
Our assumptions and (1) imply

We hâve then geP by Prop. 12.6 of [3].

§7. The Manifold with Corners Jf

7.1. We shall dénote by J or X(G) the disjoint union of the sets e(P) (Pe$)
(where, by définition, e(G°)=X). For Pe^P, we identify Z(P) with Ug=>p ^(6) (see

5.1(6)). We hâve then

X{P) n Z(6) X(R), (P, 6e$), (1)

where jR is the smallest parabolic fc-subgroup of G containing P and Q. By 5.3, the

inclusion map X(P') -» A"(P) (PcP'eSJJ) is an isomorphism, of manifolds with
corners, of X{Pf) onto an open submanifold of X{P). There exists therefore one and

only one structure of manifold with corners on Jf such that the X(P)'$ are open sub-

manifolds with corners of X. The space 2 will always be endowed with that structure.
For every Pe^P, the subspace e(P) has an open neighborhood which meets only

finitely many e(Q)9$ (Qe^J), namely X(P). Consequently the e(P)'s (Pe$), or their
closures in X,form a locally finite cover ofX.

By définition, we hâve

(2)
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and the X(P) (Pe ty) form an open cover of JF. For Qe ty, we let

Y(Q)=\JFm,mX{P). 0)
We hâve then also

U«Q.*e(*)- (4)

7.2. (i) The space X is canonicalïy of type S under G0, and ty(G) ty(G°) by
définition. Therefore X(G) X(G°).

(ii) Assume G to be reductive. Then RdG (R) opérâtes trivially on X9 and A"is of type
S under G/RdG, and also under G°/RdG. Since ^(G) ^(G/RdG) ^(G°/RdG), we
also hâve natural identifications

X(G) X(GjRdG) X(G°/RdG).

(iii) Let F be a connected unipotent normal &-subgroup of G and n:G-+G' G/V9

a:X-*X' X/V(R) the canonical projections; the latter is the projection map of a

principal fibration with structural group F(R). By 5.2, for every Pe ^ (G), this fibra-
tion extends to a principal fibration

X(P -? X' {PI V) with structural group V(R)

commuting with APy which is therefore also compatible with the inclusions

X(Q)c+X(P) (g^P; ge^P). It follows that thèse principal fibrations match to give
one for X over X'.

7.3. PROPOSITION, (i) The embedding e(P)-+X (Pe^}) extends to an isomor-

phism ofmanifolds with corners ofe(P) onto the closure ofe(P) in Jf.

(ii) For Qety, the space Y(Q)={JPe^(Q) X(P) is an open neighborhoodof e(Q).
For xeX, the isomorphism fxx:AQxe(Q)^X (see 5.4) extends to an isomorphism of
ÂQxe(Q) onto Y{Q), which commutes with ÂQ> acting on ÂQxe(Q) via its natural
action on ÂQ, and on each e(Qr), (g'e^3(g)), by géodésie action (5.5).

(In (i), e(P) means the manifold with corners extending e(P)9 where e(P) is

endowed with its canonical structure of space of type S—k under P (5.1).)
(i) Let Z be the closure of e (Q) in JT. Let Pe S$. Since X(P is open, Z meets e (P

only ifX(P)ne(Q)^99 i.e. ifPc g. Therefore Zis the union of the spaces X(P)nZ
for Pe^î, Pc g. By 5.3, ZnX(P) may be canonicalïy identified with e(Q)(P),
whence (i).

(ii) Since the JT(P)'s are open in X, the space Y(Q) is an open neighborhood of
e(Q). For Pe^J(g), we hâve, by the above and (6), (7) of 5.4, an isomorphism

(1)
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which commutes with AQ, °P(R) and with the inclusions

e(Q)(P)->e(Q)(P') and X(P)->X(P') (Pf c P; P, P'e^(Q)).

This proves that the maps fix, for Pe^3(g), match and define an isomorphism

/jLx:ÂQxe(Q)^ Y(Q) commuting with AQ, whence (ii). From now on, we identify
e(P) with the closure ofe(P) in X(Pe^3).

7.4. COROLLARY. Let P9Qe^. Then e(P)ne(Q) is equal to e(PnQ) if
and is empty otherwise. In particular e(P) e (Q) ifand only ifP~Q.

This foliows from 7.3(i) and the définition.

7.5. COROLLARY. Let P9 Qety. Then e(P)ne(Q)ï0oe(P)c:e(Q)oPczQ.
This follows again from the fact that, by 7.3(i), e{Q) is the union of the e(Q')

with ô'

7.6. PROPOSITION. The action ofG(k) • RUG (R) on X extends to one on 1, which

préserves the structure of manifold with corners of X, and in particular permutes the

faces e{P) (Pety). For geG(k)-RuG(R) andPe^, we hâve e(P)-g=e(Pg).
This is clear from 5.6, in particular 5.6(1) and 7.2, or by "transport de structure."

7.7. COROLLARY. LetP, Qety.
(1) {geG(k)\P* Q} {geG(k)\e(P)'gne(Q)*<!>}

{geG(k)\e(P)-g=e(Q)}_(2) {geG(k)\P'nQey}={geG(k)\e(P)-gne(Q)*Q}.
(3) Q(k)={g6G°(k)\e(Qygne(Q)*0}.
(1) and (2) follow from 7.4, 7.6. By (2) the right-hand side of (3) is {geG°(k) |

Qgn Qe ^J}, which is known to be Q(k).

7.8. THEOREM. The manifold with corners JT is Hausdorff. Ifk is countable, then

2 is countable at infinity.
To prove the first assertion, we proceed by induction on dimG. If dim(/=0, then

JT is reduced to a point, so we assume our assertion to be true for every fc-group G'
of dimension <dimG.

Let y, y'eX and let {Vn} (resp. {FB'}) (« 1, 2,...) be a fundamental séquence of
neighborhoods of y (resp. y') such that Vnn KnV0 for ail n. We hâve to prove that

y=y'. Since a corner X(P) (Pe^3) is open, by définition, and Hausdorff, it suffices

to show that y and y' belong to one. Assume first U=RuG^{e}. Let X'=X/U(R).



466 A. BOREL AND J-P. SERRE

By 7.2, the projection X-+ X' extends to one a of X onto X', and we hâve

Since Jf ' is Hausdorff by induction, we hâve a{y)-a{y')eXt(P/U) for some Pety,

This reduces us to the case where G is reductive. Let P,P'ety be the parabolic
&-subgroups such that yee(P) and /ee(P'). By 7.1(1), X(P)nX(P') is the union
of the e(Q% with ge^, QzzP,P'. Since thèse are finite in number, there exists Qety
such that e (Q) r\VnnV^Q for ail w's. The points y and/ then belong to the closure

ofe (g), which may be identified with e (Q) by 7.3. If Q ^ G0, the induction assumption,

applied to Q and e{Q\ shows that j=/. So assume g G;0, Le. Fnn V'nc\Xjz§ for
ail «'s, and let xne Fn n V'n nZ (« 1, 2,...). Thus both j> and y' are limit points of the

séquence {xn}. Let Po be a minimal parabolic A>subgroup of G contained in P, and

geG°(k) be such that PoczP'g. We hâve then

xn -> yee(P) c Z(P0), xB-g - y-gee(P") cz X(P0).

We may assume xB, xll#g€lr(P0) for ail n's. The xn-g then form a relatively compact
subset of X(P0), and we hâve geP by 6.5. The relation P'gnPz>P0 then yields

P' nP^iP^nPf'^Pl'1
whence e(P'), e(P)czX(Pl~i); this shows that y and y' are contained in one corner,
and finally that y=y' since, as remarked above, each corner is Hausdorff.

Assume now A: to be countable. Then so is G(k), and also ty, since the latter is the
union of finitely many orbits of G°(k). Since each e(P) is a countable union of compact

subsets, the second assertion follows.

7.9. COROLLARY. Let Pety andxeX. Then the closure in 2 of a Siegel set S
with respect to xf P is contained in X(P) and is compact.

The closure A ClX(py (S) of ® in X(P) is compact by 6.2. Since X is Hausdorff,
this implies that A is compact and closed in X, hence A Clj (S).

§8. HomotopyTypeofdJf

8.1. Retracts
We recall some basic facts about absolute retracts (AR) and absolute neighborhood

retracts (ANR) in the category ofmetric spaces. Proofs can be found in [24], [16], [17]
and [19], App. II.
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A metric space X is an AR if and only if the following équivalent conditions are
satisfied:

(ARJ A' is a retract of any metric space which contains it as a closed subspace.
(AR2) For any continuous map/: A -» X, where A is a closed subspace of a metric

space F, there exists a continuous map F: Y-*X which extends/.
Similarly, the fact that Xh an ANR can be characterized by the équivalent conditions

:

(ANRi) For any embedding of X as a closed subspace of a metric space Z, there
is a neighborhood of X in Z of which X is a retract.

(ANR2) For any continuous map/r^-^Z, where A is a closed subspace of a
metric space F, there is a neighborhood £/ of A in F, and a continuous map F.U-+X,
such that F extends/.

The property of being ANR is local ([24], p. 8); every metrizable manifold (with
boundary) is an ANR ([24], p. 3).

If X and F are ANR's, every weak homotopy équivalence/: X-+ Fis a homotopy
équivalence ([24], th. 15).

If Zis an ANR, then (cf. [24], p. 5):
JHs an ARoZis contractible o ail nt(X) arc 0.

8.1.1. LEMMA. Let Ybe a metric space, X a closed subspace of Y andf: X-+Z a
continuousmap ofX into a topologicalspace Z. Assume X is an ANR andZ is contractible.
Thenf can be extended to a continuous map F: Y-+ Z.

By (ANRi) we can choose a neighborhood U of X in F of which X is a retract.
The map/can be extended to a continuous map/': £/->Z; since Z is contractible,

/' is homotopic to a constant map. Since a constant map can be extended to F, the

same is true for/, by the "homotopy extension theorem," cf. [12], p. 1-05.

8.2. Nerves
We need a variant of Weil's theorem ([30], p. 141) comparing a space with the

nerve of one of its covers.
Let Fbe a space, and (Yt)i6l a locally finite cover of Fby closed non-empty subsets.

Let T be the nerve of that cover; it is a simplicial complex, whose set of vertices

is /; a sûnplex s of T is a finite subset of / such that Fs= C]ies Yt is non-empty. We

dénote by S the set of simplices of T9 and by | T\ (resp. by \s\, for se S) the geometrical
realization of T (resp. s); we put on | T\ the weak topology: a subset U of | T\ is open
if and only if Un \s\ is open in |^| for any seS ([19], p. 41). We make the following
assumptions:

(1) Thas finite dimension, i.e. there exists an integer N such that Card(s)<N for
ail se S.

(2) AU the Fs, seS, are absolute retracts, cf. 8.1.
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8.2.1. THEOREM. The spaces Y and \ T\ hâve the same homotopy type.
We prove a more précise statement. Identify | T\ as usual with the subspace of R(I)

made of those (jc,)iej with 0^x£< 1, £ xt 1, and {/1 xt>0}eS. If iel, call | Tt\ the
subspace of \T\ made of those (jtf) such that x^Xj for ail je/. If seS, we put
I ^Hsl Plies I Ti\ ; it is the star of the barycenter of s in the first barycentric subdivision
\TX\ of |T|, see below; it is contractible. The refined form of th. 8.2.1. is

8.2.2. THEOREM. (i) There exist continuons mapsf: Y-+ \ T\ and g: \ T\ -> Y such

thatf(Yi)cz\Ti\ and g(\Tt\)cz Ytfor every iel; they are unique, up to homotopy.
(ii) Iff and g are chosen as in (ï),fog and gof are homotopic to the identity.
ProofofQ).
(ii) Construction off: Y-*\T\.
If«>0, call S(n) the set ofseSwith Card(.î)^«, and put Yn {JseS(n) Ys. We hâve

We use decreasing induction on n to construct a continuous map

A-.rm-*\T\

suchthat/n(7s)cz|rs|forall^e5(n).Toget/n fromfH-l9 wehave to define/w>s: Ys-+

-* | Ts\ for every s with Card ($) «, and/ns is known on ail Yt with t=>s, t^s. Using
assumption (2) together with Lemma 3.2 of [24], one sees that the union of those Yt
is an ANR, which is closed in Ys; the existence of/nj s then foliows from Lemma 8.1.1

since | Ts\ is contractible. This complètes the induction process, hence the construction

of/i-/
The uniqueness of/(up to homotopy) is proved in a similar way; one uses the fact

that, if Z is an AR (resp. an ANR), the same is true for Z x [0, 1].
(i2) Construction ofg:\T\->Y.
Let T1 be the first barycentric subdivision of T. The set of vertices of T1 is S. A

subset a of S is a simplex of T1 if and only if it is totally ordered by inclusion; we then
dénote by s (a) (resp. t (a)) its smallest (resp. biggest) élément. We identify the topolog-
ical spaces | Tx\ and | T\ in the usual way; a vertex s of | T1] corresponds to the
barycenter of the simplex |^| of |7*|; moreover, \s\ is the union of the simplices \<r\ with
t(a)cs. The star of s in \T*\ is | Ts| f)ies \Tt\ Us(<r)=s kl-

If a is a simplex of T1, put yff=rs(<r). One checks easily that the condition
g(\Tt\)cz Yt for ail iel is équivalent to g(\<r\)<= Ya for ail o-'s. Since the F/s are
contractible, the existence of g follows from the "aspherical carrier theorem" ([19],
p. 75-76); the same argument proves the uniqueness of g, up to homotopy.

Proofof (ii).
(iit) The maps go/, Idy:F-> Y are homotopic.
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The proof is analogous to (ij. Using decreasing induction on «, one constructs
homotopies

between go/ and Idy, such that Fn(Ysx [0, l])c Ys for ail seS(n). To get Fn from
Fn+l,v/Q hâve to define Fns: Ysx [0, 1] -> Ys for every s with Card(^)=w, and Fn>s is
known on the union of Ys x {0}, 7S x {1} and ail Yt x [0, 1] with t-=>sy t^s; since Ys

is an AR, the corresponding extension problem is solvable by (AR2).
(ii2) The mapsfog, Id|Tj : | T\ -> | T\ are homotopic.
Both maps send each simplex \g\ of | jT1! | jT| into | TS((T)\, which is contractible.

We then apply the aspherical carrier theorem, as above.

8.3. Thee(Pys.
We go back to the hypothèses and notation of §7; we assume moreover that the

ground field k is countable. The manifold with corners X is Hausdorff and countable

at infinity (th. 7.8), hence metrizable ([24], th. 1); the e(P)\ for Pe^5, make up a

locally finite closed cover of X (7.1, 7.3).

8.3.1. LEMMA. For every PeS$,e(P) is an absolute retract.
Note first that, from the topological point of view, "corners" and "boundaries"

are the same thing, hence e{P) is a metrizable manifold with boundary; by 8.1, it is

an ANR. Moreover, it is known that a metrizable manifold with boundary has the

same homotopy type as its "interior" (this foliows for instance from the collar theorem

of M. Brown [10] - in the présent case, we may also use the differentiable structure

of e{P) to get a differentiable collar, cf. the Appendix to the présent paper).

By 3.9, the interior e(P) of e(P) is a homogeneous space of type S-k under P(R),
hence is homeomorphic to some euclidean space. This shows that e(P) is contractible;
by 8.1, it isan AR.

8.3.2. Remark. Instead of the (global) collar theorem, one may use a local
déformation argument to prove that

is surjective for ail i, hence that ail ni(e{P)) are 0. The fact that e(P) is an AR then

follows from 8.1.

8.4. Comparison between d% and the Tits building of G.

Recall that G0 is the biggest élément of % and that X=e(G°); ail other e(P)9s

are contained in the boundary 5Jf of Jf. We dénote by / the set of maximal éléments
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of ^J- {G0} ; by abuse of language, an élément of/ is called a maximalparabolic sub-

group of G.

8.4.1. THEOREM. The e(P)9s, for Pel, make up a locally finite cïosed cover

of dX. This cover has properties (1) and (2) of 8.2. Its nerve is the Tits building TofG.
(Recall cf. [29], that the Tits building of G is the simplicial complex whose set of

vertices is /, and whose simplices are the non-exnpty subsets s of / such thatPs=
f)pesP is a parabolic subgroup of G. It is canonically isomorphic to the building

attached to the Tits System of G°(k)/RG(k) constructed in [8], cf. Bourbaki, LIE IV,
§2, exerc. 10.)

The cover of ôX given by the e(P) is locally finite (7.1). If s is a finite non-empty
subset of/, we know (cf. 7.4) that f]Pes e(P) is non-empty if and only ifPs= f]Pes P
is parabolic, i.e. if and only if s is a simplex of the Tits building T. If this is the case,

we hâve Card(^)</, where /is the rank of the corresponding BN-pair (i.e. the fc-rank
of the semi-simple group G°/RG, or equivalently the semi-simple k-rahk of G°/RUG,

cf. [8], def. 4.23); moreover, by 7.4, the intersection of the e(P), for Pes, is e(Ps),
which is an AR by 8.3.1. Ail the assertions of 8.4.1 are now obvious.

8.4.2. COROLLARY. The spaces dX and \ T\ hâve the same homotopy type.
This follows from 8.2. More precisely, 8.2.2 gives homotopy équivalences

f:dX-+\T\ and g:\T\-+dX

which are canonical and inverse to each other, up to homotop), and allow us to iden-

tify the homology groups

and Ht(T9Z) 0 0,1,...)

of 3X and T. By transport de structure, this identification is compatible with the action
of G(k) on both groups.

8.4.3. Remark. For each xeX, the géodésie action (3.2) allows one to construct
an explicit homotopy équivalence gx: \ T\ -> dJPof the type required in 8.2.2. We sketch
the construction:

Let T1 be the first barycentric subdivision of T and a a simplex of T1; let t be a

point of |<x|. Ifs is a vertex of a (hence a simplex of T)9 we dénote by ts the ^-coordinate
of t. Choose now a maximal simplex s0 of T containing ail the se a, so that P=PS0 is

a minimal parabolic subgroup of G, contained in ail Ps for sea. If A is the corresponding

basis of the fc-roots (cf. 4.1), the éléments s of a may be identified with subsets of
A. For every eue A, put
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where the sum extends to those sea which do not contain a. We hâve aa(f)e[0, 1],
and one of them at least is 0. Let a(t) be the élément of ÂP whose coordinates are
aa(t), cf. 4.3. Using the natural map XxÂP-»X, we get a point x-a(t) of JP, which
belongs to dX and does not dépend on the choice oî sQ. We now define gXttr on |oi by
the formula

One checks that the gXt<T are compatible with each other, and define a continuous map
gx: | T\ -?dXhaving the required property (there is also a natural extension of gx to a

map £x: C(| r|)->X, where C(|T\) is the cône on | T|).
It would be interesting to hâve a similar explicit construction for one of the maps

8.5. Homotopy type of\T\.
We keep the notations of 8.3 and 8.4. In particular, / dénotes the &-rank of the

semi-simple group G°/RG; the dimension of the Tits building ris /— 1. The following
resuit is known (cf. [28], [14]):

8.5.1. THEOREM. The space \T\ has the homotopy type of a bouquet of(l-1)-
dimensional sphères with the weak topology.

(When 1=0, this means that Tis empty.)
We just outline the proof.
Assume /> 1, and choose an (/— l)-dimensional simplex s of T. Let I be the set of

"apartments" of Tcontaining^ (see, e.g., Bourbaki LIE IV, §2, exerc. 10). It is known
that any apartment A is isomorphic to the Coxeter complex of the Weyl group W of
G, hence is a subdivision of an (/- l)-sphere. This allows us to identify \A\ with the

sphère S/_i. Now, form the bouquet

Bos= VAmS\A\,

of the sphères \A\9 with Ael, choosing for base-point a point of \s\. The inclusion

maps \A\ -> | T\ define a continuous map

and the refined form of th. 8.5.1 is:

8.5.2. THEOREM. The map i:Bos-+\ T\ is a homotopy équivalence.

This is proved by remarking first that each apartment A contains a unique (/-1)-
simplex sA which is opposite to s (the corresponding notion for parabolic subgroups

being the one defined in [8], n° 4.8). Moreover, the (/- l)-simplices which are not
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opposite to s make up a contractible subcomplex 7" of T, and T' contains ail the faces

of the sA9s. Pinching | T'\ to a point, one thus gets a map

which is a homotopy inverse of / (for more détails, see [14]).

8.5.3. Remark. Note that Bol9 i and j ail dépend on the choice of s, i.e. of the
choice of a minimal parabolic subgroup P of G. Hence, one can only assert that the

homotopy équivalences / andj between | T\ and Boz are compatible (up to homotopy)
with the action ofP(k) on both spaces. Note also that I can be identified with the set

of maximal A>split tori in P/RUG; in particular, P(k) acts transitively on I. When
moreover G is reductive, I may be identified with P(k)/Z(S) (k), where S is a maximal

fc-split torus of P, and Z(S) its centralizer in G0; in particular, writing P as a
semi-direct product Z(S)-RUP, one sees that RU(P) (k) acts transitively andfreely on
Z; if l> 1, this implies that Card(i;) K0.

8.6. Homology and cohomology of Xand dX.

Putting 8.4 and 8.5 together we get:

8.6.1. THEOREM. The boundary dXofXis empty if7=0. Ifl^ 1, it has the homotopy

type of a bouquet of an infinité number of (/— Y)-spheres.

For /= 1, this means that dX has an infinité number of components, and that each

component is contractible.

8.6.2. COROLLARY. Thespace dlis (l-2)-connected, i.e. 7ri(aX)=0/or/=/-2.
In particular, d% is connected if /^2 and simply connected if /^3. When /=2,

is a free (non-abelian) group with an infinité basis.

Dénote by ff((ôX) the reduced homology groups of ôX, defined by:
Ëi (dX) Ht (dX9 Z) if *> 1

Ë0(dX) Ker:H0(dX9 Z) -> Z.
Th. 8.6.1 implies:

8.6.3. COROLLARY. Ifl>\, the only non-zero H^dX) is ff^dX); it is free
abelian of infinité rank.

On the other hand, Lemma 8.3.1, applied to P=G°, gives:

8.6.4. LEMMA. The space X is contractible. We hâve

H0(X)~H°(X) Z and Ht(X) H1 (X) 0 for i#0.
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Dénote now by Hlc(X) the i-th cohomology group ofX with compact carriers [13],
the coefficient group being Z.

8.6.5. THEOREM. The groups Hlc(X) are 0 for i^d-l, where d=dimX. The

group H*~\X) isfree abelian; its rank is 1 if 1=0 andtt0 ifl^l.
Let QX H*(X) be the orientation group of X; it is a free abelian group of rank 1

whose bases correspond to the two orientations of X. If /=0, X is equal to X, hence

is an orientable manifold, and Poincaré duality gives a canonical isomorphism

whence the required resuit since Hj(X) 0 forjX) and H0(X) Z.
Assume now /^ 1. Since X is contractible, the homology exact séquence yields an

isomorphism between Hj(dX) and the relative homology group HJ+1 (X, dX). On the

other hand, Poincaré duality for manifolds with boundary (see below) gives isomor-

phisms

Hic(X) Hd,i(X,ôX)®Qx.

By 8.6.3, this gives Hic(X) 0 for i^d-I, and

(8.6.6)

which is free abelian of infinité rank, see above.

8.6.7. Remark. Poincaré duality for non-compact manifolds with boundary is

well-known, but not easy to find in the literature. One can for instance prove it by

the sheaf-theoretic method of Cartan's seminar ([13], p. 20-04 and 20-05). Another

possibility is to apply Poincaré duality to the manifolds (with empty boundary) Xand

ôX and to use the exact séquence

- ^ WC{X) -, H[{X) - H'c(dX) -> Hlc+i(X) -> -
The détails may be left to the reader.

8.6.8. Remark. The isomorphism

Hdc~l(X) Ël_1 (T) ® Qx, valid for / > 1, (8.6.6)

is canonical, hence compatible with the natural action of G(k) on both groups. Using

8.5.3, this gives information on the action ofP(k) on Hdc~l{X\ wherePis a minimal

parabolic subgroup of G. Let us assume for simplicity that G is reductive, and put

B=P(k\ H=Z(S) (k), where 5 is a maximal A>split torus of P. One then finds that



474 A. BOREL AND J-P. SERRE

the Z[B~]-module H*~l(X) is isomorphic to the induced module Z[5]®z[fl]0x. In
particular, if we write B as a semi-direct product B=HxU, we see that the Z [£/]-
module Hç~l{X) isfree ofrank 1 ; this is analogous to what happens in the Steinberg
représentation of a finite group endowed with a BN-pair, cf. [28].

ffl. THE QUOTIENT OF JT BY AN ARTTHMETIC SUBGROUP

From now on k — Q and F is an arithmetic subgroup ofG(Q) (0.5).

§9. The quotient X/F

9.1. LEMMA. Let Y be a locally compact space, Z a closed subspace with empty
interior, L a discrète group which opérâtes continuously on Y and leaves Z stable.
Assume the following condition to befulfilled:

For any compact subsets C, D ofY
{geL | Cg n D n (F- Z) # 0} is finite.

Then L opérâtes properly on Y.

Let C", D' be compact subsets of F and C, D compact neighborhoods in 7of C"
and D ' respectively. Let geL be such that C ' -g n D V0. Then C-g n D is a neighbor-
hood of some point in F, hence it meets Y~-Z, and we hâve

E {geL | Cg n D' * 0} c {geL | C-g n D n (F - Z) * 0}.

Therefore 2s is finite by (*), which proves the lemma.

9.2. In this section, we consider the following situation: Fis a real Lie group, T
a locally compact principal F-bundle, L a discrète group operating continuously on T.

Let H be the group of homeomorphisms of T, a.L -» H the natural homomorphism
and identify V with a subgroup of H. Assume that cr(L) normalizes V and that a is

injective on JV^ a"" * (a (L) n V). We identify N with a subgroup of F. Let n : T -» r'
7/F be the natural projection. It follows from our assumptions that L commutes

with n and that the action ofL on 71 induces one of V L/N on T' by passage to the

quotient.

LEMMA. We keep the previous notation and assumptions.

(i) Assume V to act properly on T" and N to be discrète in F. Then L acts properly
on T.

(ii) Assume moreover V/N and T'jL' to be compact. Then T/L is compact.
(i) Let C, D be compact subsets of T, and £= {geL \ C-gnD#0}. Then n{E) is
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finite, hence £consists of finitely many subsets of the form N-gnE, with geE. But,
for geL:

N-g n E {n-g | neN and C-n n D-g'1 ^ 0},

and the latter set is finite since F acts properly on T and iV is discrète in F.

(ii) Our assumptions imply the existence of compact subsets CcT and DczN such
that T' n(C)'L' and V=DN. We hâve then

with CD= Udep (C*d) compact since both C and D are.

We now prove one of the main results of this paper :

9.3. THEOREM. The group F opérâtes properly on X. The quotient XjF is compact.
Let F' be a subgroup of finite index of T. If our assertions are true for F\ then they

are true for F. We may therefore replace F by Fr\G°. Moreover, X is canonically of
type S-Q under G0, and X(G)=X(G°) (7.2). Thus we may (and do) assume G to be

connected.
We prove the theorem by induction on dimG. Assume first that V=RuP^{e}. Let

a:G-+G'=zG/V and n:X-+X' X/V(R) be the canonical projections. The group
F' o(F) is arithmetic in G' [2],Fn Fis arithmetic in F, V(R)/(Fn F(R)) is compact
[3; 8.4], X' is canonically of type S-Q under G' (2.8). The space X is a principal
F(R)-bundle and X/F(R) X' (7.2(iii)). By induction assumption F' opérâtes properly

on X' and X'/F' is compact. Our conclusion then follows from 9.2. This reduces us

to the case where G is connected and reductive.

We now prove that F acts properly. In view of 9.1, applied to F=X, Z=dX and

L=r, it suffices to show that if C, D are compact subsets of X, then

-y r\DnX^0} isfinite. (1)

Fix xeX and let Pe $. The closure Cl^ (S) in X of a Siegel set S with respect to P, x
is compact (7.9) and every point in the corner X(P) has a neighborhood of this form
(6.2). Since the corners X(P), where P runs through the set ^30 of minimal parabolic
fc-subgroups of G, form an open cover of JT(7.1), it suffices to consider the case where

C=C/*(S), D Clx((5f)9 where S (resp. Q') is a Siegel set with respect to x and a

minimal parabolic ^-subgroup P (resp. P')- There exists geG(k) such that P'=P*
(4.1). Then S'-^"1 is a Siegel set with respect to P, x. Since any two Siegel sets are
contained in a bigger one (see 6.1), we may assume that S' S-g. We may also

assume the set œ occurring in the définition of © in 6.1 to be compact. Then Q is closed

in X, hence equal to Clj (S) n X. Under those conditions, (1) may therefore be written

-ynS-g#0} isfinite. (2)
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Let n:G(R)->Xbe the mapgh-»;rg, andlet S^tT^S). By 6.4, S tc(®') and S'
is a Siegel set in G(R), with respect to a maximal compact subgroup K of Hx, P and

a suitable maximal torus S" of RdP. We hâve then E {y eF | S'y n S'-g ^ 0}.
It follows from the end remark in 6.1 that we may change at will the origin x used to
define the Siegel sets. In particular (6.4), we may assume x to be such that S ' is defined
and split over k. Then ©' is a Siegel set in the sensé of [3, § 12], and the finiteness of E
follows from Theorem 15.4 in [3].

In view of the relation between Siegel sets in X and in C7(R) (6.3). and of Theorem
13.1 in [3], there exists a Siegel set S in X (with respect to some minimal parabolic
Q-subgroup P) and a finite subset C of G (Q), such that X= <5 • C • F. By 7.9, the closure

M of © • C in X is compact. Since F acts properly on X, the family of sets M- y (y eF)
is locally finite in X, hence is closed in X. On the other hand, it contains X, which is

dense in X. Therefore M-F=X and M is mapped onto X/F under the natural projection.

Hence X/F is compact.

9.4. PROPOSITION. Let n\X-*2\T be the natural projection. For Pety, let

rP JrG{P)r\r ande'(P) n(e(P)). Let D be a set of représentatives for
(i) We hâve e'(P) e(P)/rP and, for

such that Py Q. (1)

The set D is finite andX/r ]JpeD e'(P).

(ii) Clx/r(e'(P)) n(e(P)). (2)

If F czG°, then FP FnP and

(3)

in particular e' (Q) is in the closure of e' (P) ifand only if Q is conjugate under F to a

subgroup ofP.
(i) The first equality and (1) follow from 7.7 and imply the last equality of (i).

Since the e (P)'s (Pe S$) are permuted by F and form a locally finite family in X (7.1),

it follows that the e1 (P) form a locally finite family in X/F, parametrized by D. Since

JP/F is compact, this shows that D is finite. (The finiteness of ^3/F also follows from
[3; 15.6].)

(ii) Wehavee(P)-y=e(y"1-P-y)(yeF), therefore (7.1) the e(P)--y(yeF)form
a locally finite family in X, and e (P • F is closed in JT. It is the inverse image of n (e (P
hence the latter is closed, and contains the closure of e'{P). On the other hand, e(P)
is dense in e{P)> hence e'{P) is dense in n(e(P))9 which proves (2). The first equality

in (3) follows from 7.7, and the second one from (i), applied toe(P) and FP.
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9.5. Clearly, any compact subgroup of <7(R) has a fixed point in X. Since F acts

properly (9.3), it acts freely if and only if it is torsion-free. Assume this to be the case.
Then n'.X-^XjF is a local homeomorphism and X/F inherits the structure of mani-
fold with corners of X. Letyee(P), y' n (y) and U' a sufficiently small neighborhood
of y'. Then U' is isomorphic under rc, as a manifold with corners, with a suitable
neighborhood U of yeX(P). In particular the faces of the corner are the e'(Q)n

§ 10. Strong Séparation Properties

10.1. Distinguished neighborhoods ofe(P). We keep the notation of §9. For xeX,
Pe $ and t>0, we put

UXtPtt (xoAP>ty°P(R). (1)

Since x is fixed under a maximal compact subgroup of °P(R), we also hâve

Ux,P,t (xoAPJi°P(R))°. (2)

In the notation of 5.4, (1) may be written

(3)

and UxPt is closed in X; in view of 7.3, we hâve therefore

ÛXtP,t lix{ÂP,t x e(P% UXtPtt OXfP>t nX9 (4)

and ÛXtPtt is a neighborhood of e(P) in X. Any neighborhood of e(P) containing
some ÛxPt will be called distinguished.

10.2. LEMMA. 77h? neighborhood OXtPtt is stable under APA x °P(Q), where the

semi-group AP> t acts by géodésie action and °P (Q) by ordinary action, and /ix commutes

with AP1 x °P(Q). IfVisa neighborhcod ofe(P) stable under FnP, then V is

distinguished.

We hâve clearly APtt-APti=APtt hence also ÂPft'APti=ÂPtt. Together with 7.3

and 7.6 this implies the first assertion.

Let Fbe a neighborhood ofe(P). Let C be a compact subset ofe(P). As / varies,

the sets fix (ÂPt ,xC) form a family of compact sets whose intersection is C. Therefore

V contains one of them. By 9.3, we may choose C so that e(P) C*(FnP). If
V-(FnP)= F, we hâve then for a suitable t, taking 7.3 into account:

V=V-(FnP)^ nx(ÂPtt x C)-(F nP) fix(ÂPtt x C-(F n P)) OXtPft.
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10.3. PROPOSITION. We keep thepreviousnotation. Letn:X^>XjF be the natu-
ralprojection and assume G to be connected. There exists t>0 such that the équivalence
relations defined on ÛxPt by F and F nP are the same. For any such t, the isomorphism

fix induces an isomorphism

fifx:ÂPtt x e(P)l(F n P) *n(OXtPtt)9 (1)

such that thefollowing diagram

ÂPttxe(P) 4 ÛXtPtt

"•**! r (2)

is commutative. The géodésie action ofAP1 on ÛxPt commutes with n and induces an
action on Tt(OXtp,t)- Ail the maps in (2) commute with APl.

By 9.4, the équivalence relations defined on e(P) by F and F nP are the same, and

n(e(P)) e(P)l(FnP). By 9.3, there exists a compact subset C of e(P) such that

C'(FnP). Since F opérâtes properly (9.3), there is a neighborhood Uof C in
X such that, for any yeF, U-yn £/#0 implies C-yr\ CV0, and hence yeFnP. Since

C is compact, there exists t > 0 such that fix (ÂPt ,xC)c[/. We wish to show that any
such t satisfies our conditions.

Let a9 be 0xPt t and yeF be such that a'y=b. Since F nP commutes with fix (10.2),
there exist a', b'eixx(ÂPttxC) and er, xeFnP such that a=a'-a, b=b'"c. We hâve

then bf af'(T'yT~1, hence c*yT~1ernP and yeFnP.
This proves the first assertion. The other assertions then follow immediately from

7.3 and 10.2.

10.4. PROPOSITION. Let P,Qe%x9yeX and geG(Q). Then thefollowingfour
conditions are équivalent:

0) UXtPtt-gnUytQttïQ forallt>0.
(ii) C^p^gr^Q.t^ forallt>0.
(iii) 7F7
(iv) PgnQ=Ris parabolie.

Ifthey are fulfilled, the sets VXtPt t-gn ÛytQtt (t>0)form a basis of°R(Q)-invariant
neighborhoods ofe{R).

It follows from 10.2 that we may assume jc=jy. Moreover, replacing P by P*9 we

may take g=e.
The équivalence of (iii) and (iv) follows from 7.7. Clearly, (iii)=>(ii). By 9.3, there

exist compact subsets Cce(P) and C'cze(Q) such that

and C'*(F n Q) e(Q).
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For *>0, let

Dt fix(ÂP>t x C), D't txx(ÂQtt x C). (1)

We hâve then

ÛXtPtt Dr(r n P), DXtQft d;-(F n S). (2)

The Z>, (resp. D't) are compact and their intersection is C (resp. C). Since T acts

properly on X(9.3), there exists t>0 such that

{yeF | Dty n D; 0} {yer | C-y nC'^O} (3)

and the set of such /s is finite. Let in particular {yf}i^^m be those yer which satisfy
(3) and are contained in (rnP)-(rnQ); for each of them choose a décomposition

y.^actî1 ((Ti6fnP;Ti6rnÔ;i l,...Jfn). (4)

If now aeFnP and xeFnQ are such that Dt*ar\D't*x^$, then, for some i^m, we
hâve cr-T~1 (Tj'Tf1 and hence

n P n Q.

This implies readily

Ûx,Ptt n DXtQtt Ui^«(A-^i n />,''T£)-(r n P n Q). (5)

Assume now (ii). Then there exists i(l£i£m) such that Dt'atr\D't-x^O for ail t>0,
hence such that C- o-j n C • rf #0. This proves that (iii) holds. Clearly, (i) => (ii). Assume

again (ii) to hold. Then, (iii) holds and OXtptt'gnÛytQtt is a neighborhood in Xof
any point in e(P)-gne(Q). Therefore

by 10.1(4) this is condition (i).

Assume R to be parabolic. Then e(P)ne(Q)=e(R) by 7.4, and the left-hand side

of (5) is a closed neighborhood of7{R), which is stable under °R (Q) c °P (Q) n °Q (Q),
hence distinguished (10.2). For each /(l ^/^w) we hâve

IJr>o *V*i n A'-^i C'fft n C'xt,

hence, given 5>0, there exists ^>0 such that

Dt-at n D't'Xl c ÛXtRtSt (l^i^m);
(S) then shows that the left-hand side of (5) is contained in OXfRtS, whence the last

assertion.
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10.5. COROLLARY. There exists t>0 such thatfor any P,Qety, we hâve

0XtPttnÛytQtt^9 ifandonlyif e(P)ne(Q)*Q.
This follows from 10.4 and the finiteness of

10.6. PROPOSITION. LetP, Qe^, x,yeX. For t>0, let

(i) Et is the union offinitely many double cosets modulo (FnP) and (FnQ).
(ii) For t small enough,

Et {yeF\e(P)-yne(Q)^0} {yeF\PynQ isparabolic}.

(i) Let Dt and D't be as in 10.4(1). Then Et (Fr\P)-Ft-(FnQ), where

and Ft is finite since Dt and D't are compact and F acts properly on JT (9.3).
(ii) Since Ft is finite and decreasing as t -> 0, it is independent of t for t small enough.

Our assertion then follows from 10.4.

10.7. Let PeS$. Let S' be a maximal split torus of RdP and A' the identity com-
ponent of S ' (R). Then P (R) A 'x°P (R), and there is a natural projection a:A'-+AP.
We let for t>0

P(t) a-1(AP>ty°P(R). (1)

In the notation of 6.1, we can also write this P(t)=APttt0P(R)9 and (1) shows that
P(t) does not dépend on the choice of A\

10.8. PROPOSITION. Let P,Qety and K9 Kr be maximal compact subgroups of
G(R).

(i) Let geG(Q) and assume that K-P(t)-gnK'-Q(t)^® for ail t>0. Then

Pg r\Q is parabolic.
(ii) Given t>0, the set ofyeFfor which K-P(t)-ynK'-Q(t)^(fr is the union of

finitely many double cosets modulo {FnP) and (FnQ).
(iii) There exists t>0 such that K-P(t)-FnK'-Q(t) 0 unlessPyr\Q isparabolic

forsome yeF.
Letx(resp. j>)beapointofZfixedunder^resp. Kf). Then^-P(r)(resp. K'-Q{t))

is the inverse image of UxPt (resp. UytQtt) under the orbital map gt-+x-g (resp.

gt-+yg). Therefore (i) follows from 10.4, (ii) from 10.6 and (iii) from 10.4, 10.6.

10.9. COROLLARY. Assume G to be connectedandK-P(t)-gnK'-P(t)^0for
ail t>0. Then geP(Q).
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Indeed, PgnP is parabolic by 10.8. But in a connected algebraic group, two con-

jugate parabolic subgroups whose intersection is parabolic are identical. Hence g nor-
malizes P, and then geP.

10.10. Remark. In §10, the ground field k is the field of rational numbers. How-
ever, the définitions in 10.1, 10.7 and the statements 10.4, 10.5, 10.8(i), (ii) and 10.9

make sensé in the context of §§6, 7 where k is any subfield of R. For P, Q minimal
thèse assertions can be proved using représentative functions as in [3, §§14, 15], but

we do not know whether they are true in gênerai.

§11. Cohomology of Arithmetic Groups

We keep the hypothèses and notations of §9 : k Q and F is an arithmetic subgroup

of G(Q). Moreover, we assume that F is torsion-free.

11.1. Qualitative results

By 9.3 and 9.5, X/F is a compact C°°-manifold with corners, hence is homeomor-

phic to a compact C°°-manifold with boundary (cf. Appendix), and can be triangu-
lated ([23], §10). Moreover, X'\s contractible (8.3.1), hence is a universal covering of
X/F. Thèse properties imply:

a) The group F is isomorphic to the fundamental group of X/F, hence is finitely
presented.

b) The space X/F is a K(F, \)-space. Its cohomology (or homology) is isomorphic
to the one of F. More precisely, if A is a T-module, and Â the corresponding local

System on X/F9 there are canonical isomorphisms

Hq(r9A)*Hq(Xir,Â) and Hq(F,A) « Hq(X/F, Â)

for any q.

c) The group F is of type (FL) in the sensé of [26], p. 84. Indeed, a triangulation
of X/F lifts to a T-invariant triangulation of X and the corresponding complex of
simplicial chains

0 -? Cd -> C,,.-! -> > Co -? Z -> 0 (d dimZ)

gives a Z [r]-free resolution of finite type of the Z [r]-module Z.

Remark. The above results dépend only on the existence of a compactification of

X/F as a manifold with boundary (or even as a finite complex), and not on the structure

of the compactification; in the semi-simple case, they are due to Raghunathan

[25].

11.2. Comparison between X/F and its boundary ôX/F
Let / be the Q-rank of G/RG.
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PROPOSITION. The inclusion map dX/F -» X/F is an (/- 2)-homotopy équivalence.
(This means that the natural maps ni(dX/r)->ni(X/F) are bijective for /</-2.)
Since ni(X/F)=r and ^f(X/r)=0 for i#l, we hâve to prove that nx{dXir)-*F

is an isomorphism if /^ 3, and that nt (dX/F)=0 for / < /- 2, j ,* 1. This in turn follows
from the fact that dX has the homotopy type of a bouquet of (/— l)-spheres (8.5.1),
hence is simply connected if/^3, and ni(ôX)=0 for *'</—2.

11.3. Euler-Poincaré characterisiics

If Fis a finite complex, we dénote by #(7) its Euler-Poinearé characteristic; we

put z(r)=x(*/r), cf. [26], p. 91, prop. 9.

PROPOSITION, (a)
(b) /f rf=dimZ w odtf, or ifRuG* {e}, we hâve %(F)=0.
Assume first F to be "net" [3, §17], hence contained in G0, let V=RUG{R\ The

space X has a natural structure of principal F-bundle, cf. 7.2, (iii). By [3, 17.3],

F/(FnV) is torsion-free, hence acts freely on X/V. This implies that X/F has a

fibering with typical fiber N= V/(rn V). If dim K> 1, it is well-known that ^(7V) 0,
hence x(r)=x(X/r) 0 which proves the second assertion of (b).

Now, ifPe ^J is distinct from G0, its unipotent radical is non-trivial. Hence, by the

above, applied to P, we see that the image e'(P) e(P)/rP of e(P) in Jf/r (cf. 9.4)

is such that x(^'(P))=O. But the e'(P) make up a finite cover of dX/F, and their

intersections are either empty or of the form e'(Q) for some Q^G0, hence hâve

zéro Euler-Poincaré characteristic. By an easy combinatorial argument, this implies

If dimZ is odd, the duality of manifolds with boundary implies that
=ix(ô£/r)> which is 0 by (a). This concludes the proof when F is net; the gênerai
case follows by a covering argument, using [3, 17.4].

Remark. The fact that x(F)=0 when d is odd can also be proved by the method
ofHarder [18].

11.4. Duality theorem

We keep the above notation. In particular d—AimXand / is the Q-rank of G/RG.

11.4.1. THEOREM. We hâve H^F, Z[F])=0 for i^d-l and the group
I=Hd~l(r, Z[r]) isfree abelian ofrank 1 if7=0 and of infinité rank ifl>\.

This follows from theorem 8.6.5 together with the elementary fact that H * (F, Z [F]
~Hi(X, Z) for ail i (cf. for instance [1], n° 6.3).

Note that the right action of F on Z [F] defines on Hd~l(F9 Z [F]) a structure of
F-module. This F-module is the dualizing module of F:

11.4.2. THEOREM. There is a homology class eeH^^F, I) such that, for every
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T-module A, and for every integer q, the cap-product by e defines an isomorphism

Hq{F9A)^Hd.l.q(F9I®A).
This follows from theorem 4.5 of [1], combinée! with theorem 11.4.1 and 11.1.

Remark. In the language of [1], F is a duality group. It is a "Poincaré duality
group" if lis isomorphic to Z, i.e. if /=0, or, equivalently, if ÔJF=0.

11.4.3. COROLLARY. We hâve cd(F) d-l.
(Recall that cd{F) is the cohomological dimension of T, cf. [26], p. 84.)
This is clear from theorem 11.4.2.

11.4.4. THEOREM. Let A be any arithmetic subgroup ofG(Q) (which may hâve

torsion). Then A is of type (WFL), vcd{A) d-U H\A9 Z[J])=0 for i±d-l and

Hd~l(A9 Z[J]) is isomorphic to I.
(For the définitions of "type (WFL)" and "va/," see [26], n° 1.8.)

This follows from 11.1,11.4.1,11.4.3 applied to the torsion-free subgroups of finite
index of A. (Notice that H1 (A, Z [A]) is isomorphic to H1 (F, Z [r]) if F is of finite
index in A9 cf. [1], prop. 3.1.)

EXAMPLES. vo/(SL3(Z)) 5-2 3; vo/(Sp4(Z)) 6-2=4.

11.5. Duality in cohomology
Let R be a commutative ring and Q an injective i*-module. If V is any iÊ-module,

we define V as Hom*(F, Q). We also define J' as Homz(J, Q).

11.5.1. THEOREM. For every R\F\module V and every integer qf Hq(F, V)' is

naturally isomorphic to Hd"l~q(F9 HomK(F, /')).
This follows from the isomorphisms

Hq(r, V)' s Hd.t.q(F, V ® iy (theorem 11.4.2)

Hd_t.q(r9 V®I)r s Hd'l~q{F9(V®î)f) (elementary)

(V ® I)f s Homfc (V9 V) (linear algebra).

EXAMPLES, a) R is a field, Q=R9 and V is the dual vector space of V.

b) ,R=

6. Remark. If AT is a number field, L an affine iT-group, and A an arithmetic

subgroup of L(K), the above results can be applied to A, viewed as an arithmetic

subgroup of the Q-group G=RK/QL, cf. [3], n° 7.16. We leave the détails to the reader;

he will notice, in particular, that the Q-rank / of G/RG is equal to the Â-rank ofL/RL
[8; 6.21].
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