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Q-Siitze fiir gewisse multiplikative arithmetische Funktionen?)

von H. Joris

Kiirzlich bewies ich in dieser Zeitschrift das folgende Ergebnis ([9]): Es sei K ein
algebraischer Zahlkorper vom Grade n, 4 das Residuum der Zetafunktion {y von K,
wobei fiir Res>1 gilt:

o]

(e (s) = Z abm)

m

m=1
Ferner sei Rg(x)=) <, a(m) fiir x>0. Dann gilt fiir x — c0:

(log log x )"~ 1/2n ))

(log log log x)"* 1)/2

Rg(x) — Ax = Q, (x“'"”/z" exp (c 1)
wo ¢>0 nur von K abhéngt.

In dieser Arbeit werden gleichartige Resultate fiir L-Funktionen mit Idealklassen-
charakteren bewiesen. Sei y ein solcher Charakter, eigentlich oder uneigentlich, und

L(s, x)= Z Jfliz))s: Z’% fiir Res>1, (2)

az0 n=1

wo a alle ganzen nichttrivialen Ideale durchlduft. Sei A das Residuum von L (s, ) bei
s=1 (A=0 falls y nicht ein Hauptcharakter ist). Dann gilt:

(log log x)™~1/2n ))

(log log log x)** /2"

Re Y x(a)—Aix=Q, (x(”““/z" exp (c (3)

N (a)<x

Unter einer natiirlichen Bedingung gilt dasselbe fiir Im anstelle von Re. Nimmt man
anstelle des Klassencharakters y einen Heckeschen Grossencharakter A, erhilt man
das schwichere Resultat:

Re Y A(a)=Q,(x" Y/?"]ogloglogx), 4)

N (a)<x

und dasselbe mit Im anstelle von Re, falls eine entsprechende Bedingung erfiillt ist.

1) Diese Arbeit wurde 1972 Dank eines Stipendiums des Schweizerischen Nationalfonds zur
Forderung der Wissenschaften ausgefiihrt.
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Dieses Resultat entspricht folgender in [9] bewiesener Abschéitzung fiir Ramanujans
7-Funktion

Y 1(n) = Q. (x***log log log x). %)

n<x
(3) und (4) sind Verschiarfungen der Ergebnisse, welche K. Chandrasekharan und
R. Narasimhan in [1] bewiesen haben. In ihrer Arbeit wurde dieses Problem behandelt
im weiteren Rahmen der Abschitzung der Koeffizientensummen von Dirichletreihen,
welche eine Funktionalgleichung mit mehreren Gammafaktoren erfiillen. Eine dhn-
liche Verallgemeinerung wird hier betrachtet. (3) und (4) folgen dann als Spezialfille.

Es seien ¢ (s)=) a,4, °, Y (s)=), b,u, * Dirichletreihen, welche die Funktional-
gleichung

V(5—5) 46 —5)=0(s) A(s) ©)

im Sinne von [1, 2] erfiillen, wobei

4(s) = in I (a,s+B,).

Satz 3 dieser Arbeit, welcher (4) und, mit einer leichten Abdnderung des Beweises,
(3) als Spezialfille enthilt, wird bewiesen unter der Bedingung (6) mit den zusitzlichen
Annahmen:

[t,,=A1n, n=1,2,..., A1>0; bn=b'b(n),

wo b konstant und b(n) eine multiplikative arithmetische Funktion ist; 2-A=2 ) a,
soll eine natiirliche Zahl M >2 sein.

Der Beweis beruht zum ersten auf einer grundlegenden Identitit, welche K.
Chandrasekharan und R. Narasimhan fiir die Riesz-Summen der Koeffizienten von
Dirichletreihen mit einer Funktionalgleichung (6) aufstellten [1, 2]. Zum zweiten be-
trachtet man eine Laplacetransformation der Funktion, deren Verhalten untersucht
wird; man erhilt eine Identitit, welche im speziellen Fall 4(s)=I"(s) von K. Chan-
drasekharan und R. Narasimhan [3] im gleichen Zusammenhang bewiesen und ver-
wendet wurde. Diese Identitit ist verkniipft mit einer Klasse von Identitdten, welche
zu Gleichung (6) aequivalent sind. (s. K. Chandrasekharan und H. Joris [4]). Schliess-
lich wird der Beweis mit der gleichen Methode durchgefiihrt, mit der in [9] die Ab-
schitzungen (1) und (5) bewiesen wurden.

Zum Beweis von Satz 3 werden zwei Resultate benétigt, welche fiir sich allein ein
gewisses Interesse haben. Satz 1 setzt nur die Gleichung (6) voraus. Er gibt eine Ab-
schitzung fiir das Restglied der Summenfunktion der Koeffizienten a, in einem Inter-
vall mit beliebigem Anfangspunkt y und geniigend grosser, von y abhiingiger Linge.
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Aus diesem Satz folgt sofort Satz 3.2 in [1] fiir Riesz-Summen der Ordnung o=0
(d.h. gewohnliche Partialsummen). Er liesse sich aber fiir beliebige ¢ >0 ebenso be-
weisen, was dann fiir geniigend grosse ¢ die genaue Grossenordnung der Restglieder
wie im Satz 3.2., [1], ergibt. Der Einfachheit halber beschrinke ich mich auf ¢=0. Es
besteht auch ein Zusammenhang zwischen Satz 1 und einem Satz von J. Steinig [13]
iiber die Mindestzahl von Zeichenwechseln der Restgliedfunktion. Satz 2 gibt eine
untere Abschitzung fiir die Partialsummen der absoluten Betrige der Koeffizienten
von Dirichletreihen mit Funktionalgleichung (6), was von Interesse ist, falls diese
Koeffizienten nicht konstantes Vorzeichen haben.

Ich méchte an dieser Stelle Prof. K. Chandrasekharan fiir die Hilfe danken, die
er mir bei der Abfassung dieser Arbeit zuteilwerden liess.

1. Die Summe ) ; <, |a,|
Es seien ¢ (s)=) a,4,° und Y (s)=) b.u,° durch die Funktionalgleichung (6)

verkniipft, mit den Zahlen «,, B,, § wie in (6). Die Reihen fiir ¢ (s) und y (s) sollen
absolute Konvergenzabszissen ¢ und o haben. Ferner sei

N
A=) a,.
v=1

Fiir ganzes ¢ >0 sei
Ly : ™
A (x) = ——— a,(x—4,)°% x>0,
() F(Q‘*‘UZ ( )
An<x

wobei der Apostroph bedeutet, dass der letzte Summand a, halbiert wird, falls ¢=0
und x=4,. Fiir x>0 sei ferner

J‘ F(S)¢(S) xs+ods’ (8)

rt+o+s)
€

1
SG (X) = i—;(—i

wo ¥ eine positiv orientierte stiickweise glatte Jordankurve ist, welche alle Singulari-
titen des Integranden umschliesst. Es gilt fiir x>0

0 ) { ct+ioo F(s)(p(s) N
A0 =54 f Fd+e+s)" as, ®
c—iw

wobei ¢>0, c> o) ist. Das Restglied

Pe(x) = A°(x) — §°(x), x>0, (10)



412 H.JORIS

hat nach [2], Formel (4) und Lemma 1, die Darstellung

o0

® b" i
P?(x) = Cx“ {Z (AR aT24 cos (k (xp)' 24 — 5 (. D) + R, (x)}, (11)

n=1

wobei
N

C,=ex (29+1 o, log o 5+ 1 1 .
= v v W, =~ — = >
e = SXP\ 7y & e =27\ T24) 7 a4

v=1

D= { + — + Z B, — %)} D, +iD,, D, D, reell,

N
1
k=24 —-— 1
exp( y Z a, ogav),
v=1
R,(x)=0(x""?4) fir x>1. (12)

Die Darstellung (11) ist giiltig, falls 0>2A4ay — 45— 1.
Fiir 93>0 gilt

d
aP"“(x)=1>@(x), x>0, (13)

wobei fiir =0 an den Sprungstellen der Mittelwert der Rechts- und Linksableitung
genommen wird.
Wir beweisen nun:

SATZ 1. Falls fiir ein a, gilt Rea,#0, gibt es zwei positive Konstanten ki, k, mit
folgender Eigenschaft:
Zu jedem y>1 gibt es y, und y,,

ygyj<y+k1y1‘1/2‘43 j=1’2, (14)

derart dass

Re P°(y, zy‘i’ 2-1/ad

) =
Re P° (y2) <— 6/2 1/44_ (15)

Dasselbe gilt, falls iiberall Re durch Im ersetzt wird.
Man sieht leicht, dass dieser Satz eine Verstirkung von Satz 3.2 in [1] darstellt.
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Dort ist die Annahme, dass Reb,#0 fiir ein n. Dann gilt
Re PO (x) = Q, (x¥271/44), (16)

Die Annahme Reb, 0 fiir ein » ist aber gleichbedeutend mit Rea, #0 fiir ein »n. Falls
ndmlich Rea,=0 fiir alle n, gilt ¢ (§)= ——q;(s_), daher ReS°(x)=0, wegen (8), also
ReP°(x)=0, im Gegensatz zu (16). Umgekehrt impliziert Reb,=0 fiir alle n, dass
Rea,=0 fiir alle n.

Beweis von Satz 1. Es sei also Reb, #0 fiir ein n. Sei b,=b, +ib,. Dann ist, wegen

cos (a + bi) = cosa Coshb — isina Sinh b,
Re (b,, cos (k () 24 — g o—D, — iD2)>
— b’ cos (k ()24 — g 0— D1> Cosh D, (17)
— bl sin (k (px)' /24 — g o— D1> Sinh D, .

Da b, #0 fiir mindestens ein #, und Cosh D, >1, gibt es ein n, derart dass
(b, Cosh D,, — b, Sinh D,) # (0, 0).

Sei M das kleinste derartige n. Wegen (17) gibt es unter vier aufeinanderfolgenden
ganzen g sicher eines mit der Eigenschaft:

Re (bM cos (k (xppg)' /%4 — g 0— D))

> Y= (b Cosh D,)* + (b Sinh D,))"? =K >0,
wéhrend
Re <b,, cos (k (xp,)'/*4 — gg — D)) =0 fir n<M. (19)
Fiir n3>M sei v,=p,/uy; dann folgt aus (12) und (19) fiir ¢>2A40y — A6 —}:
T
Re (bM cos (k(xuM)”“ -5e- D))
T
C,x“° © Re (b,, cos (k (xp,)'*4 — -0 — D))
Re P?(x) = o/2+1e/4A To/24 2 (20)
Py + Y2+ 1/44+0/24
n=M+1 "
|+ Q,(x),
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Q,(x)=0(x""*). 21

Wegen v, 2> vy 4+, > 1 fiir n> M ist fiir gentigend grosses g, sagen wir 9 =g,, 00 +1, ...,
und fiir x>0,

© Re (b,, cos (k (xp,)' /%4 — g 0— D))

K
Z vf,/“l J4A+o[24 I < Z . (22)

n=M+1

Nun werde x, noch so gross gewéhlt, dass fiir x=>x, und g=g0,, 0o +1, 00 +2, 00 +3
gilt:

K
12,(x)I < e (23)

was wegen (21) moglich ist. Wegen (18), (20), (22) und (23) gibt es zu gegebenen x> x,,
und 4> 0 unter den vier Zahlen g, 0o +1, 0o +2, 0o +3 stets eine, ¢, mit der Eigen-
schaft:

C,(x+ h)™ K
ReP%(x + h) > N%‘;H,Mﬂ,z,—z—. (24)

Sei nun y, eine reelle Variable, x<y,<x+h, x> x,, und
Re P (y,) < kpyg 714 S ky (x + R)27144, (25)

falls 6>1/2A, was wir annehmen wollen. Auf diese Ungleichung wird folgendes Inte-
gral angewandt:

x+h x+h y1 Ye-1
f dy f dy, f dy, ... f dy,.
x x+h—(x+h—y)le y1—(x+h-y)le Ye-1—(x+h—y)/e

Dies ergibt, wie man leicht nachrechnet, unter Verwendung von (13),
e

Re (hP"(x + )+ Z(s’l) (-1 (P"“(x + ) — Pt (x + (1 - %) h)))

m=1
hq+1

<k,(x+h 3/2—1/44
2 (x + ) ¢°(1+0)

< k2 (k + h)6/2—1/4A hq+1 . (26)

Nun ist wegen (11) mit einem k3>0 fiir y>1:

lPe'l-l (y)l < ksyme+(1—1/24)‘ (27)
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Es sei vorderhand 24> 1, und sei

C, K

5/2+1/44+¢/24
M

C§,=inf{ gzgo,...,go+3},
2u

Co =k3 (0o +3) Qe0+4
Dann folgt aus (24), (26), (27):
fea (x + B2 TR > (x4 )% (Coh — C3(x + h)'~124).

Setzt man jetzt h=k,x'~1/?4, k, >4C{/C,, und wihlt man x, gross genug, dass fiir
X=X, gilt

(1 + kyx~ 1241124 < o
so erhdlt man wegen w,=0/2—1/44+(1—1/24) ¢:

kzk(i-i-l > (1 + klx_l/ZA)(l_I/ZA)Q(k1C6 — Cg(l e klx—IIZA)I—IIZA)
> k,C, — 2CL = 2C5,
v 5 2Co

2% ;e0t4"
k9

Somit ist Ungleichung (25) fiir hinreichend kleines k, nicht fiir alle y, im Intervall
moglich, falls A=k, x*~1/24 gewihit wird. Durch Vergrosserung von k; und Verklei-
nerung von k, muss man anstat tx > x, nur voraussetzen x> 1. Damit ist die Existenz
eines y, in Satz 1 gezeigt. Genau gleich zeigt man die Existenz eines y,.

Man sieht leicht, dass die wihrend des Beweises gemachten Annahmen 24 > 1 und
0>1/2A nicht wesentlich sind. Sie dienten lediglich dazu, um Potenzen y*, x <y <x +#4,
wegen « >0 durch (x +4)* abzuschitzen. Falls « <0, ist y*<x*; wegen h=o0(x) dndert
das aber am Beweis nichts.

Um die Aussagen iiber den Imaginérteil im Satz 1 zu erhalten, multipliziert man

die ganze Funktionalgleichung (6) mit i =\/ —1 und fiihrt so die Behauptung auf die
eben bewiesene zuriick.
Bemerkung 1. Der Beweis von Satz 1 wurde ein wenig kompliziert, da D,#0
zugelassen wurde. Dem Verfasser ist allerdings kein solches Beispiel bekannt.
Bemerkung 2. Aus Satz 1 folgt, falls Rea, #0 fiir ein n, dass ReP° () zwischen 1
und x mindestens c,x!/24 —c, Vorzeichenwechsel hat, wo ¢;, ¢, >0 Konstanten sind,
und x> 1. Ein solcher Satz wurde von J. Steinig [13] bewiesen, der auch ¢, explicit
angibt.
Nun beweist man leicht
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SATZ 2. Die Voraussetzungen seien wie im Satz 1. Es gebe ein n mit Rea,#0.a>0
sei fest gewdhlt. Dann gibt es ein x,>a und ein ¢>0 sodass fiir x> x, gilt:

f |d Re P° ()] = cx/2+1/%4, (28)

Dasselbe gilt mit Im anstelle von Re, also gilt stets, falls ¢ (s)#0,

x

f IdPO (t)l > cx6/2+1/4'4. (29)
Ist zudem

d o 5/2+1/44-1 "

EJ_cS (x)=o(x ) fir x - o0, (30)
so ist, falls Rea,+#0 fiir ein n:

Y [Rea,| > cx®2*1/44, (31)

An<Xx

Dasselbe gilt fiir Im anstelle von Re, also, falls ¢ (s)#0:

Z lanl ? Cx6/2+1/4A. (32)

lnsx

Dabei sind c>0 geeignete Konstanten und x geniigend gross.
Beweis. Es sei k; die Konstante aus Satz 1. Wir setzen

k 24
y(n)=Cn2A, n=1,2,; C:max(l,(_j) )’

Dann ist fiir n>n,, n, geniigend gross:

y(n+1)—y(n)=kyy(n) 7124, -
und
y(n)=1.

Sei nun n+1>ny und y(n+1)<x<y(n+2). Dann ist wegen (15):

5 y(n+1)

[1arerr iz [ larerr @126 3 y(mpaies

¥ (mo) ¥ (n0) ] m=ne
>2k266/2—1/4.4 Z mAs—1/2

m=no

Ao+1/2
> /

] 1/4 2+1/4
cyn = oy (n)Y2 1A 5 o x 2 H 144,
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Damit ist (28) gezeigt. Falls 6/2+1/44<0, ist (31) trivial. Also sei §/2+1/44>0.
Dann ist fiir x — oo, wegen (30):

Y |Rea,| > f |d Re A° ()] = f |d Re P° ()| — f |d S° ()]

AnSXx
E 231 441 14
x

> cx6/2+1/4A + f 0(t6/2+1/4A—1) dt = cx&/2+1/4A(1 + 0(1))
+A1
was (31) beweist.

KOROLLAR. Die Voraussetzungen seien wie in Satz 2. Es gelte (30) und ¢ (s)#0.
Dann ist mit einem ¢>0 fiir geniigend grosses x:

|,
2115/2“/4‘4 clogx. (33)

AnSXx

Fiir den Beweis benutzt man die gleiche Folge y (n) wie beim Beweis von (28) sowie
die Ungleichung:

n y(m+1)
|a,| _
) > 00)+ P4 1)
Ansx m=no y(m)

Der Rest ist nach dem Vorangegangenen leicht nachzurechnen.
2. Das Integral [§ x"e™*"P?(x?4) dx

Die Bezeichnungen seien die gleichen wie bisher. Fiir die Summationsordnung @
wollen wir der Allgemeinheit halber auch nicht ganze positive Werte zulassen. Es gilt
dann weiterhin die verallgemeinerte Perronsche Formel (9). Als einziges ist die Defini-
tion von S¢(x) etwas abzuidndern, da der Integrand in (8) bei nicht-ganzem ¢ auf der
negativen reellen Achse beliebig weit nach links Pole hat, ndmlich Pole von I'(z). Wir
definieren daher € in (8) als das positiv umlaufene Rechteck mit der Ecke ¢; —iR,
¢, +iR, ¢, +iR, c,—iR. Dabei ist ¢, >0, ¢;>0a>; R ist so gross dass der Integrand
reguldr ist fiir |Imz|> R. Ferner ist ¢,= —(my+3%), my ganz, my=>0. m, soll gross
genug sein, insbesondere folgende Bedingungen erfiillen:

5+%+mo>ab,5+‘}+mo>Re(—~£—V) v=1,...N,

v

(34)

36 -1
%+m0>—‘_— %+m0>RC ﬁ s v=1,...N.
24 a,
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Es ist dann

1
PQ(X)=—2—7';i

o(2)I'(z) ,,,
IF(2+1+Q)X a, (35)

L

wo €, der Streckenzug ¢, —ico, ¢; —iR, ¢, —iR, ¢, +iR, ¢, +iR, c¢; +ico ist. Es ist
A?(x)=0fiir x<4,, und

S¢(x) =0 (x~m"12*q) x50,
also

PP(x)=0(x"m"12*) x<,. (36)
Fiir >0 ist das Integral (35) absolut konvergent, also

PP(x)=0(x""%), x=4,. (37

Es ist aber auch S°(x)=0(x!) fiir x— oo, aber, da Y |a,| 1,”°' <o, auch 4°(x)
=0(x!). Also gilt (37) auch fiir ¢=0.
Es sei nun Res>0, ¢=>0 und

r>2A4A(mg+ %) —24¢+o. (38)

Dann konvergiert wegen (36) und (37) das Integral

2.o(5) = f x'e ™" P? (x*4) dx (39)
0

absolut. :
Sei nun s>0, ¢>0. Wegen der absoluten Konvergenz von (35) ist

re@

xr+24(e+z) e-xs dx dZ
rz+e+1)
0

e =5 [ 0
~r-1-24g 2) I (r z
s J‘¢(Z)F( )T (r+24z+ 240+ 1)

-2Azd . 40
I'(z+e+1) § o0 (40)

—

2mi
%
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Sei ¢=0. Durch partielle Integration erhilt man

[+ o}

g.0(s)= J x" e P (x*4) dx

—_— Pl (xZA) d(xr—2A+1 e-—xS)

n
_ 1 _E_J‘r(z)q’(z) x2A(z+1)dZd(xr-2A+1 e *).

T 24)2ni ) T2+ 2)

0 €1

Da d/dx (x"~24*1e~*)= O (x"~ 24) fiir x —» 0, und da r—24 (m, +3%) >0, ist das Dop-
pelintegral absolut konvergent, also

[« o}

o o(s) H ((z)i())(_ ) fxm,m L e s

dz,

oz )F(Z)F(r+2Az+ 1)
2mi r(l+z)
d.h. (40) gilt auch fur ¢=0. Nun geht, nach der Stirlingschen Formel fiir die Gamma-
funktion, der Integrand in (40) in jedem Vertikalstreifen endlicher Breite gleichméssig
gegen 0, falls Imz — + oo, so dass gilt: Fiir >0, ¢>0, ist

ca+ioo
s 24e ( )F(z)F(2A2+2AQ+1+r)
_— z
r(z+e+1)

8,0 (S) = ~24z 4z, (41)

2mi
c2—ioo
Nun ist ¢ (z)=y (6—z2) (4(6—2)/4(2)), und fiir Rez=c,= —(m, +1%) ist wegen der
ersten Ungleichung in (34) Re(6—z)> o7, also
S—r-l-ZAq
&, Q(S) -
fw(é A6 —2)T(z2) T (r+240 + 24z + 1)
A(Z) T (z+0+1)

— o—r—1-24p Z b" 1
=g — a2
Uy 27i

n=1

X A(5~—z)F(Z)F(r+2AQ+2Az+1)( )"ZAzd
J A(z2)T(z+e+1) 124 z,

—ZAz dZ

(42)

n
c2
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wegen der absoluten Konvergenz. Dabei sei fiir reelles a:

a+ioo

ff(z) dz = f f(z)dz.
Fiir Rev>0 definieren wir:

1 1
M, ,(v) = 57124

z z'
) Cow) ., @
v

X f F'r+z+240+1) dz.

— 24 (mo+1/2) F(Q +1+ %4) A(EZ;I)

Das Integral ist fiir Rev>0 absolut konvergent und definiert dort eine analytische
Funktion. Somit ist fiir s>0:

e o]

b s
-r—1—24¢ n
8 o(s)=s —M, <_*_~) (44)
) ) 2 (o

n=1

Nun ist

sinnz' I (z) T (1 -z)=m.

Also
4(5—5—4) 2n
——t = (=2i)""V (- 2) Z me ™, (45)
Z
(27) k=1
wobei
V(z2) f]r o+ B i )r(1 ﬁ+°‘“ ) (46)
= — — — Z ],
2= (“” v o4’ "7 24
n T
S =T > 12 Z > Yaw ==, (47)

Die 7, sind komplexe Konstanten, wobei

N, = €Xp (— i é:l ﬂ,,) ,  Mfav =€Xp (ni (i B, — N)) . (48)

v=1

-



Q-Sitze fiir gewisse multiplikative arithmetische Funktionen 421

1 (2

L, ,(v)=— V(=2z)I'(r+z+240+1)

2mi z
—24 (mo+1/2) F(Q +1+ 574)

Sei nun

v *dz.

(49)

Wegen der Bedingungen fiir m, und r trifft die Integrationslinie keinen Pol des Inte-
granden; und zwar hat sie alle Pole von V' (—z) rechts, alle Pole von I' (r +z +2A4¢ +1)
links liegen.

Das Integral (49) konvergiert fiir |argv| <=n absolut und lokal gleichmaissig, dort
ist also L, , reguldr, und es gilt fiir Rev>0:

2N
—2mi) ¥ .
M, , (U) = L?Z)“_ Z 'lkLr,o(eka) . (50)
k=1

Aus der Formel von Stirling ergibt sich: Sei z= —24(my+4%)+iR+{, (=& +in, R
gross genug, Im{ >0 und v=|v| exp(i}). Dann ist

F(z2A) T '(e+1+zRA) I (r+1+z+240)V(-2)v* .
=0 ([g17 (e ol) ¢ "¢ ™), (51)

wobeli
N

Sei jetzt || <=, |v|<e™ ¢, €<0. Sei
eclvl=k1<1, es_"=k2<1.

Dann ist

1% (e [o]) ™% " @™ = |1%1 %K% < IC17 (max (ky, k)"
= 161745,

mit k3 <1, wegen £ <0, n>0. Dieselbe Ungleichung erhilt man mit z= —24 (my + %)
— iR+, {=¢+in, £<0, n<0. Daher ldsst sich der Integrationsweg in (49) knicken
zum Streckenzug —oo—iR, —2A4(my+%)—iR, —2A4(my+3%)+iR, —oo +iR. Auf
diesem Weg ist der Integrand

0 (I51* (e o)),
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sodass das Integral fiir beliebige v mit 0<|v| <e™° konvergiert, d.h. L, ,(v) lisst sich
in den punktierten Kreis 0<|v] <e™° beliebig fortsetzen, und fiir 0<|v]<de™¢, argy
beschrinkt, ist

Lr,a(v) = 0('0'24(m0+1/2)). (52)

Genau gleich kann man, falls [v|>e™ € ist, die Integrationslinie in (49) knicken zum
Streckenzug o —iR, —2A4(mo+3%)—iR, —2A4(mo+%)+iR, oo +iR. L, ,(v) ldsst sich
so in |v| >exp (—c) beliebig analytisch fortsetzen, und es ist

L, ,(v) = O (jo]4 (ma+1/2) (53)

fiir |v| >2e™ ¢, argv beschrinkt.

LEMMA 1. Sei L, ,(v) wie in (49) definiert. Dann ist fiir |[v| -0 oder |v| - co mit
largy| <m,

L, o (v) = O (Jo|4 e+ 1/2), (54)
Weiter sei

a=r+(24—-1)g+3+ 45, B=r+(24-1)g,

N o
=la], ¢c=— a, lo .
m = [a] 4.2 %%y

(Dabei sei r so gewdhlt, dass a nicht ganz ist). Dann ist fiir |argv|<n, v— —e™ °:
L, (v)= Y ko’ (™ +v)™*""+0(1); (55)
v=0

es ist ko>0, und fiir v*, (e”“+v)~**" werden die Zweige genommen, welche fiir v>0
positiv werden. Insbesondere ist fiir 0 <o <const.:

L,,,("‘ e—c i ia,) = Bo e:txi/Z (r+ (ZA—I)Q—I/Z—AJ)G,—G(I + O(G)), (56)

mit By>0.

Man bemerke, dass a>1 wegen der dritten Ungleichung in (34).

Beweis. (54) ist schon bewiesen. (56) folgt sofort aus (55). Fiir den Beweis von (55)
bemerken wir, dass fiir a>0, Jargv| <=, die folgende Identitit gilt:

~cp ,—B

(1 + ve°) ™" = ;_nﬂfza) (z+B)I(a—B—z)(ve)dz+0(1),

~2A(mpo+1/2)
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falls v— — e~ ¢, sowie, dass wegen der Stirlingschen Formel:

r(zR2A)TI o+ 1+ z24A) T (r+z+1+240) V(- 2)

m

=T'(z+B)I(x—P—z)e e (1 + z %+ O(Izl”'"")),

n=1

fiir |z| — o0, n/4<|argz| <3n/4, c, reell. Im librigen geht der Beweis wie in [4], Th. 3.
Aus Lemma 1 folgt wegen (50) sofort:

LEMMA 2. Fiir Rev>0 sei M, ,(v) wie in (43) definiert. Dann ist mit den gleichen

Bezeichnungen wie in Lemma 1, sowie mit E=e™°:

M, ,(v) = O (jo]*4™*1/2) + O(lv + E|™*) + O (Jv — E| ™). (58)
Fiir v— 0 ist gleichmdssig in Rev>0: .

M, ,(v) = O (o] ™™ 1/2), (59)
Ferner sei

D'=rf2+ (24 —1) o2 — 1/4— A5]2 — ‘i 8, - 1),

wo die B, die durch die Funktionalgleichung definierten Konstanten sind. Dann gilt fiir
0< o <const. mit einem B; >0:

M, (o + iE) = B, e*"®"¢7*(1 + 0 (0)). (60)

LEMMA 3. Es seig,,,(s) fiir Res>0 durch (39) definiert. Es ist dann fiir Res>0:

i b, —1/2.
gr.c(s) =57 e Z ;PM"‘?(S”" 1/“)’ (61)
n=1

wobei die Reihe rechts lokal gleichmdssig absolut konvergiert. Fiir |s| <4ui/*AE ist
gr,o(s) — O(ISIZA(mo+ 1/2)—r——1—2Aq) (62)

gleichmdssig in Res>0.
Beweis. (61) ist gezeigt fiir s>0. Die gleichmissige Konvergenz und damit die
Analyzitit der Reihe rechts in (61) folgt aus (59) und aus der ersten Ungleichung
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(34). Gleichzeitig folgt auch (62): Sei |s]<R, Res>0, R<3Eul/*4, no>1. Dann ist

no

o0

|, —1/24 24 1/2 |5,
Z u M, (s "*4) = O [ R e BTz
= n n

n=no

— 0 (RZA (mo+ 1/2)) .
Durch analytische Fortsetzung gilt (61) in ganz Res>0.
LEMMA 4. Es gebe eine reelle Konstante y mit

|un - ”niil_l = 0(”3)
fiir n>2. Mit denselben Bezeichnungen wie in Lemma 2, 3 sei

D=D" —4(r+1+2Ao).

Dann ist fiir p, <p,<Y, 0<o<iEu}'*4:
) b
. 24 tmi m F
g,,‘,(a' + iEp,, )=B,e Dua/2+1/44+g/2,4 +0(oY"),
m

mit einem B, >0 und einer reellen Zahl F.

Der Beweis geht wie in [6] oder [9], indem man in (61) Lemma 2 auf die Teilsum-
MEN Ly = fhy; Py < S 2 oy Un 7 iy > 2%ty anwendet.

Ahnlich, durch Aufteilung der Summe (61) in die zwei Teilsummen

2 24 D) 24
< o 5 n >\ = ’
Pn (E ISI> H ( 5 ISI)

erhilt man wie in [6] oder [9]:

LEMMA 5. Es sei 0<w < Eu}'*4. Im iibrigen seien die Bezeichnungen wie bisher.
Dann gibt es eine positive Konstante F mit der Eigenschaft:

Fiir Res>0 und |s+iEu}*Y|>w, n=1,2,3,... ist g, ,(s)=0(w""|s|F)+
O(lsl—r-l-2Aa+2A(mo+l/2)).

3. Beweis eines Q-Satzes

Es sollen weiterhin ¢ (s)=Y a,4, *und  (s)=), b,u, * die Funktionalgleichung (6)
erfiillen. Dabei sei mit einem 4, >0

ﬂn=A1n9 n=1:2) 3’; (63)
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es gebe eine komplexe Zahl b#0, eine natiirliche Zahl M, derart, das

b,=b-b(n), n=1,2,.. (64)
b(n) b(m)=>b(nm), (n,m)=(n My)=1. (65)
Weiter sei
S92 (x) = -L:J HOx s, (66)
2mi §

wo % alle Singularitdten des Integranden einmal positiv umlduft. Es gelte:

d
o Sl? (x) — 0(x6/2+ 1/4A—1), (67)
dx
N
24 =2 ) a,= M = natiirliche Zahl > 2. (68)
v=1

Fiir jede endliche Menge Primzahlen % soll {¥} die Menge derjenigen natiirlichen
Zahlen sein, deren Primteiler in & liegen. Fiir jedes endliche % soll gelten, mit
y=05/2+1/4A4:

b
Z | ’E:’)‘ <o. (69)
ne{¥}
Ebenso sei
b n
Z | ;ﬁ, | oo, (70)

(p, Mo)=1 n=2

SATZ 3. Es seien (63) bis (70) erfiillt und P°(x)=A°(x)—S°(x) wie in (10) defi-
niert. Falls es ein n gibt mit Rea,#0, ist

Re P%(x) = Q; (x**""*41ogloglogx), x—o00;

falls es ein n gibt mit Ima,#0, ist
ImP°(x) = Q, (x>~ '*4logloglogx), x — 0.

Fiir den Beweis brauchen wir:

LEMMA 6. Es sei py, P3,P3,-.. €ine Folge von Primzahlen, die alle bis auf endlich
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viele Primzahlen enthdlt. Ferner gebe es ein n mit Reb,#0. Dann gibt es ein my mit der
Eigenschaft

. 1 lRe bmoql
lim sup — ——>0. (71)
P log x q
qe 2(x)

Dabei ist 2(x) die Menge der quadratfreien Zahlen der Form q=p;p;,...p;,
pj <+-<p;<x, und

y=0/2+ 1/44.
Beweis. Wegen (67) gilt nach (33); fiir x>x,:

b
Z | (?)l = cologx.
n

O.E.d.A. sei(p;, My)=1fiir j=1, 2,.... & sei die endliche Menge Primzahlen, welche
nicht in p,, p,, p3,... vorkommen. Dann ist wegen (69), (70), (65):

§ : |6 (n)] 15 (n)| |b(P )l 15 (p?)l
: < . I | g 2; s oo
n n° p;<x PJ Pj
n<x ne{%}

B S

<cs Z lb(:l)l’
q

qe2(x)
also
b b
Z l_..l = |B| Z l_____(q)l > c; logx. (73)
q’ q’
qe2(x) qge2(x)
Falls
1 Reb
lim sup —— IRe 2l o, (74)
x= 00 log x q’
ge2(x)

ist das Lemma mit m,=1 bewiesen. Sonst ist wegen (73):

i 1 |Im b,

im sup —

o plogx q
ged (%)

>0, (75)
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lim sup L IRe b =0. (76)
% 85 logx q’

qe 2 (x)

Wenn Imb (n)=0 fiir alle n ist, muss wegen b,=b-b(n) (Imb,: Reb,)=(Imb: Reb) fiir
alle n mit b,#0 gelten. Wegen (75) und (76) ist das nur méglich falls Reb, =0 fiir alle
n, was der Voraussetzung widerspricht. Also gibt es ein my mit Imb (m,)+0. O.B.d.A.
sei (mo, p;)=1 fiir j=1, 2, 3,.... Wegen (69) kann man ndmlich endlich viele p ; weg-
lassen, ohne an (73), (75), (76) etwas zu dndern. Wegen (64), (65) ist, mit b(mg)=s+it,
t#0:

|Re byl = [Reb(my) by| = |t Imb,| — |s Re b,
daraus mit (75), (76):

. 1 X IRe by, |
lim sup — >0.
% o log x q’
ge 2 (x)

w.z.b.w.

Beweis von Satz 3. Sei Rea,, #0 fiir ein m; mq, p;, p,,... und 2(x) sollen dieselbe

Bedeutung haben wie im Lemma 6, wobei man (p j» Mo)=1 annehmen darf. E sei wie
im Lemma 4 und 5, A; wie in (63). Wir setzen:

G=EA/™, n(x)= Y 1,

py<x
¥ (x) = 2" = {Anzahl Zahlen in 2 (x)}
Es ist mit einem ¢, >0
Y (x) <exp(cyx/logx) fiir x - .
Sei
fi(x) = G inf {W’M + Y r(gme)'™||m=0,1,2,3,..,

qe 2 (x)

r,=0,+1, ) rf;Z}.

ge 2 (x)
Wegen (68) ist wie in [9] und [5] mit einem ¢, >0:

1
log —— < exp(cyx/logx), x - .
fi (x)

Nun sei ¢;=max(c,, 2¢;), Q(x)=exp(csx/logx), also

y(x)=0(Q(x)), x-00. an
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Fiir geniigend grosses x sei:

0. = A5— 1+ 1 Re P° (u™)
x = - —y x =SUp ———.
o(x) TS W=

Es ist y,>0 wegen Satz 1. Wie in [9] sei 7, < 00, da sonst nichts mehr zu beweisen ist.
Weiter sei

@5 (u) = 7,u°* — Re P (u™),
also ¢, (#)=0 fiir u>1. Sei noch fiir x>x,, ¢ reell, u>0:
o,=e 2W, V(@)=1+cost=1+13e"+4e *>0.
T.(w)= [] V(G(gmo)'™u+39)>0,

qe2(x)

wo die 9, reelle, spéter genau zu bestimmende Zahlen sind. Nun sei r wie in (38)
gewihlt, a=r+ 40 +% wie in Lemma 1. Man sieht leicht, wegen (36), (38) und (77),
dass

1

i f uP® (uM) T, (u) e™°* du = 0 (022 ™)
0
= Ofexp {— «Q (x) + (@ (x))}] = 0 (1).

fiir x —» co0. Daher ist

<}

oy f u'o,(u) T, (u) e " du

0
[ o] 1

= o5 f u'g,(u) T, (u) e” " du + 63y, f O T, (u) e™ " du
1 0

1
— o5 f Re PP (u™) u'T, (1) e ™ du>0+0+0(1)=0(1),

0

da die Integranden der ersten beiden Integrale positiv sind. Nun geht man genau gleich
weiter wie in [5], [6] oder [9], wobei man T, () als trigonometrisches Polynom schreibt
und sich tiberlegt, dass fiir a komplex, b reell, gilt:

a f u'P° (uM) ™ e 7" du = ag, (0, — ib),

0
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nach Definition (39). Man benutzt dann die Lemmas 3, 4, 5. Wir lassen die Berech-
nungen aus und schreiben als Endresultat:

b
7x(1 + 0(1)) > B3 Re Z ™ cos(nD — 9,) + o(1),

q”
qe 2(x)

fiir x — 00. Dabei ist y=8/2+1/44, B;=B,(my4,)"? e~ 'I'(¢)"'>0, D und B, wie
im Lemma 4. Bei geeigneter Wahl von 3, ist,

Re (b, cos (nD — 3,)) = |Re b,,,,| ,

qmo
wie man leicht feststellt. Also ist fiir x — oo, mit B, =4B;.
Rebd
3y. > B, Z IR Dol +o(1).

qv
qe 2(x)

Nach Lemma 6 und nach Definition von y, gibt es eine Folge x,, x,,... = 0, und eine
Folge uy, u,, ..., u;2>1, mit

Re P° (u¥)u;®* > B, logx;,

mit Bs>0. Da die linke Seite bei beschrénktem u;>1 beschrédnkt bliebe, muss mit x;
auch u; gegen oo gehen. Obige Ungleichung kann geschrieben werden als:

Re P° (u¥)u; W12 > B, uj/2ED Jogx;. (78)

Ist nun u;/%*? <logloglogu;, so erhdlt man durch dreifaches Logarithmieren fiir
geniigend grosse x;, u;:

logx; > 4 log log logu;,

so dass der Ausdruck rechts in (78) stets grosser als ¢ log log logu; ist fiir grosse j,
mit einem ¢> 0. Ersetzt man noch u™ durch u, so ergibt sich genau der erste Teil von
Satz 3. Die iibrigen Aussagen ergeben sich durch Multiplikation der Funktional-
gleichung mit —1, +i aus dem Bewiesenen.

4. Beispiele
a) Grassencharaktere und Idealklassencharaktere

Sei K ein algebraischer Zahlkérper der Dimension m iiber dem rationalen Q,
m=r; +2r,, mit r; reellen Konjugierten und 2r, komplexen Konjugierten. Sei A ein
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Grossencharakter modf, f ein ganzes Ideal, (s. Hecke [7]). Sei fiir Res>1

- (14

a#¥0

wobei sich das Produkt iiber alle Primideale erstreckt. Es ist A (a)=0 fiir (a, {)#1.
Falls A eigentlich ist (s. [7]), geniigt { (s, A) der Funktionalgleichung

{(s, A)A(s)=k-A{°A(1 —s) (1 =, 4),

wo k#0, A; >0,

rit+r2

A(s) = H r(3s+p,) [l I'(s+8),

v=p;+1

also 24=m. Dabei in ImY ;"™ B,=0. Falls A nicht eigentlich ist, sondern vom
eigentlichen 4; modf, abgeleitet ist, ist

=T (1-400) cto .

P

Da {(s, A;) mit {(s, 4,) einer Funktionalgleichung (6) geniigt, ist {(s, A) mit der
Funktion

¥ (s) = kA2 (s, 4,)" pI|]f (1 -

1 P 431

N(p) 1 ) (78)

A (p) N (py

k,#0, A,>0, durch eine Gleichung (6) verkniipft, mit =1 und 4 (s) wie oben. Dies
rechnet man leicht nach. Falls A nicht der Hauptcharakter ist, ist ¥ (s) ganz, also
Sy (x)=const. Man weiss auch dass y (s) den Bedingungen (64), (65) gehorcht. Es ist

=(n+1)/2n> }. Daauch b (n) = O (n¢) fiir beliebig kleines £> 0, sind die Bedingungen
(69), (70) erfiillt. Daher haben wir fiir m>2 nach Satz 3:

Re Y A(a)=Q.(x™ 1/ ]logloglogx), (79)
N(a)<x

fiir beliebige Grissencharaktere, die nicht Hauptcharaktere sind. Die Bedingung Rea, #
#0 fiir ein n ist stets erfiillt, da a, = A (1)=1. Falls fiir ein n gilt: ImY .= A(a)#0,
ist auch

Im( Y A(a)) =Q, (x™ 12" 1og log log x). (80)
(a)€x
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Nach Satz 2 ist fiir x> x,:

))

n<x

> cxrti2n (81)

2, 4(q)

N (a)=n

Falls A=y ein Idealklassencharakter ist, zeigen wir, dass ein besseres Resultat mog-
lich ist. Es sei L die Galoische Abschliessung von K. Nach Hecke [8] gibt es eine
Folge p, p,,... von Primzahlen, so dass p;=N((=;)) fiir n;e L, n; ganz, totalpositiv,
n;=1modN(f) in L, und

Die Konjugierten (n}) von (n;) sind genau die Ideale, welche p; als Norm haben. Sie
haben die selben Eigenschaften wie die z; selber, da ja N(f) im rationalen Kérper
definiert ist. Bildet man die Relativnormen Ny x ((;)°) aller Konjugierten von (=), so
erhdlt man m Hauptideale (P; ), k=1, ..., m, jedes [L: K]-mal. Es ist N((P;,;))=
=p;, P;  ist totalpositiv, P; ;=1 modf, (sogar mod N(f)), und ausser den (P,,,) hat
kein ganzes Ideal die Norm p;. Da nun die (P, ;) modf im Einheitsstrahl liegen, ist
x((P;,:))=1 fiir jeden Idealklassencharakter y, d.h.

Y x(@)=m.

N(a)=py

Wihlt man nun fiir 2(x) die quadratfreien Zahlen, die aus den p;<x zusammenge-
setzt sind, so ergibt sich mit einem ¢>0 und einer natiirlichen Zahl m,

(m—1)/2m

x ;: |Re b I}
lim supiexp| — ¢ —— -7 150,
- p{ p( logx ) g+ Dizm

q¢€2(x)

wo die b, die Koeffizienten von ¥ (s) in (78’) bedeuten. Dies erhélt man durch Kombi-
nation von Formel (73) in [9] mit den Uberlegungen in Lemma 6 dieser Arbeit.

Diese Verschiarfung von Lemma 6 ergibt wie in [9], Satz 1, folgende Verschidrfung
von (79):

SATZ 4. Sei y ein vom Hauptcharakter verschiedener Idealklassencharakter in
einem algebraischen Zahlkorper vom Grade m>=2. Dann ist mit einem ¢>0:

(log log x )™~ 1)/2m
(log log log x )™+ r/2m

Re Y x(a)=9. (x""“”’z"‘ exp (c (82)

N(a)<x

fiir x— 0. Falls Y y.ay<x 1 (@) nicht fiir alle x reell ist, gilt (82) mit Im anstatt Re.
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Man bemerke, dass die Bedingung (67) in diesem Falle nicht benétigt wurde. An
dieser Stelle mochten wir bemerken, dass die Bedingungen (67) respektive (30) nicht
wesentlich sind. Sie dienen lediglich dazu um bei Abschédtzungen der Art (31) und (32)
die Variation des Hauptterms S° gegeniiber der Variation des Restterms P° klein zu
halten. In vielen Féllen, wie eben, bekommt man auf andere Weise bessere Resultate.
Insbesondere bekdme man mit dem hier beschriebenen Beweis bei positiven b, bes-
sere Resultate als in Satz 3, es soll aber hier darauf nicht eingegangen werden, weil
bei positiven b, andere Methoden, ausser in wenigen Einzelféllen, wirksamer sind.
Fiir Referenzen siche [9].

Falls ¥ ein Hauptcharakter ist, ergibt sich:

SATZ 5. Sei K ein algebraischer Zahlkiorper vom Grade m>2, § ein ganzes Ideal,
Ak das Residuum der Dedekindschen Zetafunktion von K. Dann ist mit einem ¢>0:

1
1=2 (1—— )x
e L= A I 5
(a,F)=1

(m—1)/2m
+Q, (x(m—l)/zm exp (c (log log x) ))

(log log log x )™+ V)/2m

(83)

KOROLLAR. Hat eine Idealklassengruppe {% ;}"_, des algebraischen Zahlkérpers
K vom Grade m>2 mindestens zwei Elemente, so gibt es zu jeder Idealklasse € ; eine
Idealklasse € ;, sodass

1— ¥ 1
N (a)<x N(a)<x
ae ¢ ae €y

log log x )™~ 1)/2m
=0 (m—1)/2m ( ( )) . 84
* (x CXP\ ¢ (log log log x)™* 1/2m (84)

Beweis des Korollars. Sei

Rk(x)= Z 1, k=1,...h;

N (a)<x,a¢e €k

dann ist fir y#1:

R (x) = Ri(x)I >

IIM:-

IIM:— nM

= Z z (a)|.

N (a)<x
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Die Behauptung folgt dann aus Satz 4. Dass die Behauptung nicht fiir beliebige €,

und €, gilt, sieht man an folgendem einfachen Beispiel: K=Q (\/ —23), mit der ge-
wohnlichen Idealklasseneinteilung nach den Hauptidealen, A= 3:% ;= {Hauptideale},

€,=%;'=%,, also R, (x)=R,(x).

b) Koeffizienten von Modulformen
Es seien N und k natiirliche Zahlen, Im7>0,

o]
f(‘t) — Z a, e21tim.’/N
n=1

sei eine Spitzenform der Stufe N und des Gewichtes k. Sei ¢ (s)=)¢ a,n”% fir
Res>a,. Dann gibt es eine Reihe Y (s)=>  b,n~%, fiir Res>a,, derart dass

2n

(?ﬁ’f) 0(5) I (5) = (ﬁ) Wk = s)T (k= s).

Wir kénnen Satz 1 und Satz 2 anwenden. (Da ¢ (s) und ¥ (s) ganz sind, ist S°(x) eine
Konstante). Wir erhalten insbesondere fiir ein ¢>0 und geniigend grosse x:

Y la) > exP e, (85)

n<x

Schreibt man

g(x)= Y b,&"N, Imt>0,
n=1

SO ist

f(x)= f"‘g( 1),

T

und g ist ebenfalls eine Spitzenform des Gewichtes & und der Stufe N. Der Vektor-
raum V der Spitzenformen der Stufe N und des Gewichtes £ hat endliche komplexe
Dimension und wird aufgespannt durch die Eigenfunktionen des Hecke-Rings (s. Ogg
[10]). Falls g(t) eine solche Eigenfunktion ist, so ist b, #0, und ¥ (s) hat das Euler-
produkt

o0

b b /b k—1\ —1
'ﬁ(s):Z;;::bln(l- p/sl+8pp2.s) :

P p p

n=1

wo &,=0 falls p | N, &5 " =1, falls (p, N)=1 (¢ (N)=Anzahl teilerfremde Restklas-
sen mod N). Insbesondere ist b,b,,=b,,, fir (n, m)=1, falls b; =1.
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Man kann nun genau wie Pennington [11], Lemma 2, zeigen, dass die Bedingungen
(69) und (70) erfiillt sind. Falls also  (s) ein Eulerprodukt hat, und Rea,+#0 fiir ein n,
so ist

Re Y a, =9, (x> '*1og log logx). (86)

n<x

Dasselbe gilt mit Im anstart Re.
Falls N=1, so ist ¢ (s)= ¥ (s), d.h. ¢ (s) hat auch ein Eulerprodukt. Falls a; =1,
sind alle a, reell und es ist

AT —’;=H(l—%+";:)<o(s)

n pIM

Q

(n,M)=1

und man sieht wie bei den uneigentlichen Charakteren, dass auch ¢, (s) eine Funk-
tionalgleichung hat. Dabei bleiben alle Bedingungen fiir Satz 3 erhalten. Somit gilt:

Falls ¢ (s)=).7 a,n™* ay=1, ein Eulerprodukt hat und f(t)=Y){ a, exp(2nint)
eine Spitzenform des Gewichtes k und der Stufe 1 ist, so gilt fiir beliebiges natiir-
liches M:

; a, = Q, (x*>71*1og log log x). (87)
(n, M)=1
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