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O-Sâtze fur gewisse multiplikative arithmetische Funktionen1)

von H. Joris

Kûrzlich bewies ich in dieser Zeitschrift das folgende Ergebnis ([9]): Es sei Kcin
algebraischer Zahlkôrper vom Grade n9 X das Residuum der Zetafunktion ÇK von K,
wobei fur Re^> 1 gilt:

00

m= 1

Ferner sei ^W Em^jcfl(m) fur x>0. Dann gilt fur x^> oo :

(ôSSSS^))
wo c> 0 nur von K abhângt.

In dieser Arbeit werden gleichartige Resultate fur L-Funktionen mit Idealklassen-
charakteren bewiesen. Sei x ein solcher Charakter, eigentlich oder uneigentlich, und

wo a aile ganzen nichttrivialen Idéale durchlâuft. Sei À das Residuum von L (s, x) bd
s=\ (X 0 falls x nicht ein Hauptcharakter ist). Dann gilt:

Unter einer natûrlichen Bedingung gilt dasselbe fur Im anstelle von Re. Nimmt man
anstelle des Klassencharakters x einen Heckeschen Grôssencharakter A, erhâlt man
das schwâchere Résultat:

Re X yl(a) O±(x(w-1)/2nlogloglogx), (4)

und dasselbe mit Im anstelle von Re, falls eine entsprechende Bedingung erfûllt ist.

x) Dièse Arbeit wurde 1972 Dank eines Stipendiums des Schweizerischen Nationalfonds zur
Fôrderung der Wissenschaften ausgefiihrt.
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Dièses Résultat entspricht folgender in [9] bewiesener Abschâtzung fur Ramanujans
t-Funktion

£ T(«) O±(x23/4logloglogx). (5)

(3) und (4) sind Verschârfungen der Ergebnisse, welche K. Chandrasekharan und
R. Narasimhan in [1] bewiesen haben. In ihrer Arbeit wurde dièses Problem behandelt
im weiteren Rahmen der Abschâtzung der Koeffizientensummen von Dirichletreihen,
welche eine Funktionalgleichung mit mehreren Gammafaktoren erfûllen. Eine âhn-
liche Verallgemeinerung wird hier betrachtet. (3) und (4) folgen dann als Spezialfâlle.

Es seien <p(s)=YanKs> ^(^)=Z*»^S Dirichletreihen, welche die Funktionalgleichung

(6)

im Sinne von [1, 2] erfûllen, wobei

A(s) fi r(ocvs + pv).
v=l

Satz 3 dieser Arbeit, welcher (4) und, mit einer leichten Abânderung des Beweises,

(3) als Spezialfâlle enthâlt, wird bewiesen unter der Bedingung (6) mit den zusâtzlichen
Annahmen:

fin Aln, #i 1,2,..., At>0; bn b-b(n),

wo b konstant und b(n) eine multiplikative arithmetische Funktion ist; 2-A=2 £ av

soll eine natûrliche Zahl M^2 sein.

Der Beweis beruht zum ersten auf einer grundlegenden Identitât, welche K.
Chandrasekharan und R. Narasimhan fur die Riesz-Summen der Koeffizienten von
Dirichletreihen mit einer Funktionalgleichung (6) aufstellten [1, 2]. Zum zweiten
betrachtet man eine Laplacetransformation der Funktion, deren Verhalten untersucht
wird; man erhâlt eine Identitât, welche im speziellen Fall A(s)=F(s) von K.
Chandrasekharan und R. Narasimhan [3] im gleichen Zusammenhang bewiesen und ver-
wendet wurde. Dièse Identitât ist verknùpft mit einer Klasse von Identitâten, welche

zu Gleichung (6) aequivalent sind. (s. K. Chandrasekharan und H. Joris [4]). Schliess-

lich wird der Beweis mit der gleichen Méthode durchgefûhrt, mit der in [9] die Ab-
schâtzungen (1) und (5) bewiesen wurden.

Zum Beweis von Satz 3 werden zwei Resultate benôtigt, welche fur sich allein ein

gewisses Interesse haben. Satz 1 setzt nur die Gleichung (6) voraus. Er gibt eine

Abschâtzung fur das Restglied der Summenfunktion der Koeffizienten an in einem Inter-
vall mit beliebigem Anfangspunkt y und genûgend grosser, von y abhângiger Lange.
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Aus diesem Satz folgt sofort Satz 3.2 in [1] fur Riesz-Summen der Ordnung g=0
(d.h. gewôhnliche Partialsummen). Er liesse sich aber fur beliebige q^O ebenso be-

weisen, was dann fur genûgend grosse q die genaue Grôssenordnung der Restglieder
wie im Satz 3.2., [1], ergibt. Der Einfachheit halber beschrânke ich mich auf g=0. Es

besteht auch ein Zusammenhang zwischen Satz 1 und einem Satz von J. Steinig [13]
ûber die Mindestzahl von Zeichenwechseln der Restgliedfunktion. Satz 2 gibt eine

untere Abschâtzung fur die Partialsummen der absoluten Betrâge der Koeffizienten

von Dirichletreihen mit Funktionalgleichung (6), was von Interesse ist, falls dièse

Koeffizienten nicht konstantes Vorzeichen haben.

Ich môchte an dieser Stelle Prof. K. Chandrasekharan fur die Hilfe danken, die

er mir bei der Abfassung dieser Arbeit zuteilwerden Hess.

1. DieSummeX^JtfJ

Es seien (p(s)=YÀanKs und ^(fHZ^n^T* durch die Funktionalgleichung (6)

verknûpft, mit den Zahlen av, j8v, ô wie in (6). Die Reihen fur q>(s) und ij/(s) sollen

absolute Konvergenzabszissen a* und a* haben. Ferner sei

N

v=l

Fur ganzes q^O sei

wobei der Apostroph bedeutet, dass der letzte Summand an halbiert wird, falls g=0
und ;c=An. Fur x>0 sei ferner

(8)

wo ^ eine positiv orientierte stûckweise glatte Jordankurve ist, welche aile Singulari-
tâten des Integranden umschliesst. Es gilt fur x>0

wobei c>0, c>a* ist. Das Restglied

PQ (x) AQ (x) -Se(x), x > 0, (10)
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hat nach [2], Formel (4) und Lemma 1, die Darstellung

lcos
wobei

2T L ^ l0gaV' *' 2
V=l

JV

reell,

-- avlogav
A L

v=l
fur x>l. (12)

Die Darstellung (11) ist gûltig, falls Q>2Ao%-Ab-\.
Fur

^
x>0, (13)

wobei fur ^ 0 an den Sprungstellen der Mittelwert der Rechts- und Linksableitung

genommen wird.
Wir beweisen nun:

SATZ 1. Falls fur ein an gilt Rean/0, gibt es zwei positive Konstanten ku k2 mit
folgender Eigenschaft:

Zujedem y^\ gibt es yt undy2>

j-1,2, (14)

derart dass

i)>k2yr-ll4A,
}

Dasselbe gilt, falls iiberall Re durch Im ersetzt wird.

Man sieht leicht, dass dieser Satz eine Verstârkung von Satz 3.2 in [1] darstellt.
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Dort ist die Annahme, dass Re&^O fur ein n. Dann gilt

ReP°{x) Q±(xâ/2-1/4A). (16)

Die Annahme Reèn^0 fur ein n ist aber gleichbedeutend mit Reaw^0 fur ein w. Falls

nâmlich Reart 0 fur aile «, gilt q> (s) - cp (s), daher RqS°(x) 0, wegen (8), also

ReP°(x)=0, im Gegensatz zu (16). Umgekehrt impliziert Reèn=0 fur aile «, dass

Re#n 0 fur aile n.
Beweis von Satz 1. Es sei also Reè^O fur ein n. Sei bn bfn+ibr^. Dann ist, wegen

cos (a 4- bï) — cos a Cosh b — i sin a Sinh b,

Re Un cos (Wx)1/2A " \q ~ Dx - iD

b'n cos (k (nnxfllA -ng-DA CoshD2 (17)

- K sin (k{iinx)ll2A --q-dÙ SinhD2.

Da b'nî£0 fur mindestens ein n, und Cosh/)2^ 1, gibt es ein «, derart dass

(*; CoshD2, - Z>; SinhD2) * (0, 0).

Sei M das kleinste derartige «. Wegen (17) gibt es unter vier aufeinanderfolgenden

ganzen q sicher eines mit der Eigenschaft:

^ ^- ((b'M CoshD2)2 + {b"M SinhD2)2)1/2 K > 0,

wâhrend

„ cos f k(xfiny^2A q — Dj) =0 fur n<M. (19)

Fur «^M sei vn jUrt/jwM; dann folgt aus (12) und (19) fur q>2AoÎ-Aô-%:

{Re bM cos I

\ 2 //
(20)Rel-(*)- -- ' - Re'è"COS(b

n M+l
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(21)

Wegen
undfûr x>0,

fur n>Mist fur genûgend grosses q, sagen wir q=q0,

ï (22)

Nun werde x0 noch so gross gewâhlt, dass fur x^x0 und q=q0, £o + 1> £o+2, qo+3
gilt:

K
Q 4 '

was wegen (21) môglich ist. Wegen (18), (20), (22) und (23) gibt es zu gegebenen x>x0
und A>0 unter den vier Zahlen £0, qo + 1, q0 +2, g0+3 stets eine, q, mit der Eigen-
schaft:

Sei nun yQ eine réelle Variable,

ReP°0>,) < M'2
9 x^x09 und

(24)

(25)

falls ô^l/2A, was wir annehmen wollen. Auf dièse Ungleichung wird folgendes Intégral

angewandt:

x + h x + h

J ày J dji j dy2... J ^c.
x x+A-Cx + Zi-^/tf yi~(x + h-y)/e ye-i-(x+ h-y)/Q

Dies ergibt, wie man leicht nachrechnet, unter Verwendung von (13),

m-l

Nun ist wegen (11) mit einem k3 >0 fur y^ 1 :

(26)

(27)
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Es sei vorderhand 2A^l, und sei

C 'K
2 ô/

CZ k3(Qo +

Dann folgt aus (24), (26), (27):

Setzt man jetzt A=/:1x1"1/2A, ki>4CÔ/CÔ9 und wàhlt man x0 gross genug, dass fur
x>x0 gilt

so erhâlt man wegen coQ 5/2 -1/44 4- (1 - 1/2.4) q :

ik2*S+1 ^ (i + k1x'1/2A)il"lf2A)9(k1c0 - cs(i
>fc1Ci-2CS>2C5,

2C"

Somit ist Ungleichung (25) fur hinreichend kleines k2 nicht fur aile yQ im Intervall
môglich, falls h=kix1~1/2A gewâhlt wird. Durch Vergrôsserung von kt und Verklei-

nerung von k2 muss man anstat tx^x0 nur voraussetzen jc> 1. Damit ist die Existenz
eines yt in Satz 1 gezeigt. Genau gleich zeigt man die Existenz eines y2.

Man sieht leicht, dass die wâhrend des Beweises gemachten Annahmen 2^4 ^ 1 und
ô > 1/2A nicht wesentlich sind. Sie dienten lediglich dazu, um Potenzen y*, x < j> < x+h9
wegen a^O durch (jc+A)a abzuschâtzen. Falls a<0, ist y"<x*; wegen h o(x) ândert
das aber am Beweis nichts.

Um die Aussagen ûber den Imaginârteil im Satz 1 zu erhalten, multipliziert man

die ganze Funktionalgleichung (6) mit /=x/— 1 und fûhrt so die Behauptung auf die

eben bewiesene zurûck.
Bemerkung 1. Der Beweis von Satz 1 wurde ein wenig kompliziert, da D2^0

zugelassen wurde. Dem Verfasser ist allerdings kein solches Beispiel bekannt.

Bemerkung 2. Aus Satz 1 folgt, falls Retfrt/0 fur ein n9 dass RcP°(t) zwischen 1

undxmindestens c1x1/2A — c2 Vorzeichenwechsel hat, wo cl9 c2>0 Konstanten sind,

und jc>1. Ein solcher Satz wurde von J. Steinig [13] bewiesen, der auch ct explicit
angibt.
Nun beweist man leicht
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SATZ 2. Die Voraussetzungen seien wie im Satz 1. Es gebe ein n mit Kean ^ 0. a > 0

seifest gewâhlt. Dann gibt es ein xo>a undein c>0 sodassfûr x^x0 gilt:
X

[\dReP°(t)\>cxl2+ll*A. (28)

a

Dasselbe gilt mit Im anstelle von Re, also gilt stets,falls cp(s)=ÉO,

(29)

a

Ist zudem

~S°(x) o(xô/2 + mA~1) fur x-+oo, (30)
dX

so ist.falls Rean^0fur ein n:

I \Rean\>cxsl2+ll*A. (31)

Dasselbe gilt fur Im anstelle von Re, also, fails (p(s

£ \au\>cx?'2 + 1/4A. (32)

Dabei sind c>0 geeignete Konstanten und x genùgendgross.
Beweis. Es sei kt die Konstante aus Satz 1. Wir setzen

y(n) cn2A, w l,2,...; c max(\A-j\ j,
Dann ist fur n^no,no genùgend gross:

und

Sei nun n + l>n0 und j(« + 1)^jc<j(«+2). Dann ist wegen (15):

x y(n+l)

f \dRsP°(t)\> f |dRcP°(r)|>2/fc2 t j(mf2-1/4^
J J m no

y(»o) y(»o)

ClnAi+m cV(«)*/2+1/4A > c3xxs/2+mA
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Damit ist (28) gezeigt. Falls Ô/2 +1/44^0, ist (31) trivial. Also sei (5/2 +1/44>0.
Dann ist fur x-+ oo, wegen (30):

\dReA°(t)\> f |dReP0(f)|- f
J J J

was (31) beweist.

KOROLLAR. Die Voraussetzungen seien wie in Satz 2. Es gelte (30) und (p(s)-£O.
Dann ist mit einem oOfur genugend grosses x:

l kl ^clogx. (33)

Fur den Beweis benutzt man die gleiche Folgej (n) wie beim Beweis von (28) sowie
die Ungleichung:

(m+

J

Der Rest ist nach dem Vorangegangenen leicht nachzurechnen.

2. Das Intégral J? ^e-sxPe(x2A) dx

Die Bezeichnungen seien die gleichen wie bisher. Fur die Summationsordnung q
wollen wir der Allgemeinheit halber auch nicht ganze positive Werte zulassen. Es gilt
dann weiterhin die verallgemeinerte Perronsche Formel (9). Als einziges ist die Définition

von S6(x) etwas abzuândern, da der Integrand in (8) bei nicht-ganzem q auf der

negativen reellen Achse beliebig weit nach links Pôle hat, nâmlich Pôle von F(z). Wir
definieren daher # in (8) als das positiv umlaufene Rechteck mit der Ecke ct — iR,
ct+iR9 c2+iR, c2 — iR. Dabei ist cl>09 qxrj; jR ist so gross dass der Integrand
regulâr ist fur \lmz\^R. Ferner ist c2=— (mo + !)> mo g^nz, mo^O. m0 soll gross

genug sein, insbesondere folgende Bedingungen erfûllen:

3 S

— --,2A 2

- p;

(34)
—1\^-

av /
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Es ist dann

wo Vt der Streckenzug q —/oo, cx — iR, c2—iR, c2+iR, ci-hiR, Ci+ico ist. Es ist
AQ(x)=0fmx<Xi9 und

also

P'(x) O(x~w°-1/2+<?), x < Xt. (36)

Fur ^>0 ist das Intégral (35) absolut konvergent, also

x>kx. (37)

Es ist aber auch S°(x)=O(xCi) fur x-*oo, aber, da X!k»l AB~cl<oo, auch A°(x)
O(xCi). Also gilt (37) auch fur ^=0.
Es sei nun Re^>0, q^O und

r>2A (m0 4- i) - 2Aq+q (38)

Dann konvergiert wegen (36) und (37) das Intégral

gr,Q(s)~ jx'e-sxI»(x2A) dx (39)

absolut.
Sei nun j>0, ^>0. Wegen der absoluten Konvergenz von (35) ist

(40,
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Sei g=0. Durch partielle Intégration erhâlt man

00

--LïpUx*
2a) {X

0
oo

—-f-f2A J 2ni J
0

Da d/dx(xr-2A+ie"xs) O(xr-2A) fur x-*0, und da r-2A(mo + i)>0, ist das Dop-
pelintegral absolut konvergent, also

d.h. (40) gilt auch fur q=0. Nun geht, nach der Stirlingschen Formel fur die Gamma-

funktion, der Integrand in (40) in jedem Vertikalstreifen endlicher Breite gleichmâssig

gegen 0, falls Imz-* ± oo, so dass gilt: Fur s>0, g^O, ist

J
_2Az jdz-

Nun ist cp(z)=il/(S—z) (A(ô—z)/A(z)), und fur Rez=c2= — (mo + i) ist wegen der
ersten Ungleichung in (34) Re(<5—z)>a*, also

(42)

— s

i^«l^il>fiV\,ï



420 H.JORIS

wegen der absoluten Konvergenz. Dabei sei fur réelles a:

if(z)dz= f f{z)dz.
J J
a a — iao

Fur Reu>0 definieren wir:

j
rU4) ^l*-^) (43)

Das Intégral ist fur Ret?>0 absolut konvergent und definiert dort eine analytische
Funktion. Somit ist fur s>0:

(44)
U \ U ' I

n=l
Nun ist

sin7rz-r(z)r(l - z) tt.

Also

— (-2«i)-"K(-z) i|,«-", (45)

Jlc=l

wobei

n n

Die ^k sind komplexe Konstanten, wobei

tji exp l — ni Y, Pv)> *l2x ~ exP f^(E jSv — JV J j. (48)
\ v=i / \ \v=i //
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Sei nun

-2A(mo+l/2) Fi Q + 1 + —
2A

(49)

Wegen der Bedingungen fur m0 und r trifft die Integrationslinie keinen Pol des Inte-
granden; und zwar hat sie aile Pôle von V( — z) rechts, aile Pôle von F(r +z +2Aq + 1)

links liegen.
Das Intégral (49) konvergiert fur |argt;|<7r absolut und lokal gleichmâssig, dort

ist also LrQ regulâr, und es gilt fur Ret;>0:

,(*'»• (50)

fc=l

Aus der Formel von Stirling ergibt sich: Sei z= — 2A(n
gross genug, Im^O und v \v\ exp(/^). Dann ist

r(z/2A) r~x (q + 1 + z/2A)r(r + 1 + z + 2,4e) F(- z) i?"

wobei

v=l

Seijetzt \9\<n, \v\<e~c, ^<0. Sei

Dann ist

mit k3 < 1, wegen £ < 0, >y ^ 0. Dieselbe Ungleichung erhalt man mit z - 2.4 (m0
— iR+Ç9 Ç Ç+irj9 {<0, >/^0. Daher lâsst sich der Integrationsweg in (49) knicken

zum Streckenzug —co-iR, —2A(mo + i)-iR, -2A(mo + i)+iR, -oo+iR. Auf
diesem Weg ist der Integrand
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sodass das Intégral fur beliebige v mit 0< |i?| <e~c konvergiert, d.h. Lr$Q{v) lâsst sich
in den punktierten Kreis 0<|t>|<e~*c beliebig fortsetzen, und fur 0<\v\^ie~c, argt;
beschrânkt, ist

Lr,e(v) O(\v\2A(m°+i/2)). (52)

Genau gleich kann man, falls |t>|>e~c ist, die Integrationslinie in (49) knicken zum
Streckenzug oo - iR9 - 2A (m0 + i)- iR9 - 2A (m0 + i) + iR9 oo + iR. LTtQ (v) lâsst sich

so in |t;|>exp(—c) beliebig analytisch fortsetzen, und es ist

(53)

fur \v\>2e"c9 argt? beschrânkt.

LEMMA 1. Sei LftQ(v) wie in (49) definiert. Dann istfur \v\ -»0 oder \v\ -? oo mit
\eiTgv\<n9

(54)

Weiter sei

(Dabei sei r so gewâhlt, dass a nicht ganz ist). Dann ist fur |argt?|<7r, t?-> — e~~c:

Lr.e(v)= ï k,v'(e-c + vr<+* + O(l); (55)
0

es ist ko>09 undfur xPt (e"c+t?)"a+v werden die Zweige genommen, welchefur v>0
positiv werden. Insbesondere ist fur 0<cr<const.:

!*.,(- e~c ± ia) Bo e±Ki/2ir+ c^-Dt-i/i-^)^-.^ + o(a))f (56)

mit Bo>0.
Man bemerke, dass a> 1 wegen der dritten Ungleichung in (34).
Beweis. (54) ist schon bewiesen. (56) folgt sofort aus (55). Fur den Beweis von (55)

bemerken wir, dass fur a>09 \argv\ <n9 die folgende Identitât gilt:

^)-" ^^ J
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falls v-> - e ~c, sowie, dass wegen der Stirlingschen Formel:

-l{Q + 1 + z/2A)r(r + z + 1 + 2Aq) V(- z)

fur \z\ -* oo, 7r/4<|argz|<37c/4, q reell. Im ùbrigen geht der Beweis wie in [4], Th. 3.

Aus Lemma 1 folgt wegen (50) sofort:

LEMMA 2. Fur Rev>0 sei MrfQ(v) wie in (43) definiert. Dann ist mit den gleichen
Bezeichnungen wie in Lemma 1, sowie mit E~e~~c\

Af,,» O(\v\2Aimo+i/2)) + 0(\v + £f) + 0(|» - Ef). (58)

Fur v-+0 ist gleichmâssig in Ret>>0:

MrQ{v) 0(\v\ <mo+1/2))< (59)

Ferner sei
N

wo die Pv die durch die Funktionalgleichung definierten Konstanten sind. Dann giltfùr
0<a<const. mit einem Bl>0:

Afr .((7+ iJ5) JBj 6 n(T~a(l + 0((t)). (60)

LEMMA 3. Ey seigffQ(s)fur Re^>0 rfwrcA (39) definiert. Es ist dannfur Rej>0:

V
]Lé

(61)

wobei die Reihe rechts lokal gleichmâssig absolut konvergiert. Fur \s\ <ifi\/2AE ist

grQ(S) Ofl^^+l/D-r-l-l*) (62)

gleichmâssig in
Beweis. (61) ist gezeigt fur s>0. Die gleichmâssige Konvergenz und damit die

Analyzitât der Reihe rechts in (61) folgt aus (59) und aus der ersten Ungleichung
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(34). Gleichzeitig folgt auch (62): Sei \s\<R, Res>0, J*<i£>iJo/2il, no^l. Dann ist

Z~™-\M (<iirll2A\\ - O (R2A(mo+l/2) \
a \Mr,QWn )\-U\K >

ô
Pn \ Là Vn

ô + mo+1/2

n n,

Durch analytische Fortsetzung gilt (61) in ganz

LEMMA 4. Es gebe eine réelle Konstante y mit

fur n^2. Mit denselben Bezeichnungen wie in Lemma 2, 3 sei

Dann ist fur fi^p^Y, 0<a<iEfi\/2A:

grte(a ± ŒnH2*) B2 e^iD àjl^QJ2A + 0(aYF),

mit einem B2>0 undeiner reellen ZahlF.
Der Beweis geht wie in [6] oder [9], indem man in (61) Lemma 2 auf die Teilsum-

jn=/im; ^^ixn^2AAixm, \in^\im\ nn>24Afim anwendet.

Âhnlich, durch Aufteilung der Summe (61) in die zwei Teilsummen

2A 2

erhâlt man wie in [6] oder [9] :

LEMMA 5. Es sei 0<co<Efi{f2A. Im ubrigen seien die Bezeichnungen wie bisher.

Dann gibt es eine positive Konstante F mit der Eigenschaft:
Fur Re^>0 und \s±iEfil/2A\^œ, «=1,2,3,... ist grtQ(s)=zO(co~a\s\F) +

U\)S\

3. Beweis eines Œ-Satzes

Es sollen weiterhin ç (s)=J] ank~s und xj/ (s)=£ bnfi~s die Funktionalgleichung (6)
erfûllen. Dabei sei mit einem Ax>0

Hn^Ain, « 1,2,3,...; (63)
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es gebe eine komplexe Zahl 6/0, eine natûrliche Zahl Mo derart, das

bn b-b(n)9 « 1,2,... (64)

b (n) b{m) b (nm), (», m) (n, Mo) 1. (65)

Weiter sei

sow iftW^, (66)
27CIJ 5

wo <% aile Singularitâten des Integranden einmal positiv umlâuft. Es gelte :

^ (67)
(XX

N
2,4 2 £ av M natûrliche Zahl ^ 2. (68)

v=l

Fur jede endliche Menge Primzahlen £f soll {£?} die Menge derjenigen natûrlichen
Zahlen sein, deren Primteiler in S? liegen. Fur jedes endliche y soll gelten, mit
y ô/2 + l/4A:

l
Ebenso sei

n 2

SATZ 3. Es seien (63) bis (70) erfullt undP0(x) A°(x)-S°(x) wie in (10) défi-
niert. Falls es ein n gibt mit Retfw/0, ist

Re P° (x) Q± (xô/2~i/4A log log logx), x -> oo ;

yiar/Zy es ein n gibt mit Iman7^0, ist

ImP°(x) Q± (xô/2-1/4A log log logx), x - oo.

Fur den Beweis brauchen wir:

LEMMA 6. Es sei PuP2>Pzi-~ e^ne Folge von Primzahlen, die aile bis aufendlich
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viele Primzahlen enthâlt. Ferner gebe es ein n mit Reèn#0. Dann gibt es ein m0 mit der

Eigenschaft

limsup— V ""»">0. (71)
loff JC / O

q 6 M \X)

Dabei ist £(x) die Menge der quadratfreien Zahlen der Form q=zPjiPj2-"Pjs,

y «5/2 + 1/44.

Beweis. Wegen (67) gilt nach (33); fur

O.E.d.A. sei (pj9 M0) l fûrj= 1, 2,.... S? sei die endliche Menge Primzahlen, welche

nicht in/?1,/?2,/?3,... vorkommen. Dann ist wegen (69), (70), (65):

Là n LU n Pj^x\ Pj
n**x ne {y}

also

__£. | j| \ — — ^ C3 logx. (73)

q 6 J (*)

Falls

Bmsup J_ V ^>0, (74)

ist das Lemma mit mo 1 bewiesen. Sonst ist wegen (73):

IimsupJ_ V li^!>0, (75)
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lim sup —-*- 0. (76)
x-oo logx Lj qy

qeâ(x)

Wenn lmb(n)=0 fur aile n ist, muss wegen bn b-b(n) (lmbn: Re£M) (Imè: ReZ>) fur
aile « mit Z^O gelten. Wegen (75) und (76) ist das nur môglich falls Re6n 0 fur aile

n, was der Voraussetzung widerspricht. Also gibt es ein m0 mit Imb(mo)^O. O.B.d.A.
sei (m0,Pj)=l furj= 1, 2, 3,.... Wegen (69) kann man nâmlich endlich viele^y weg-
lassen, ohne an (73), (75), (76) etwas zu ândern. Wegen (64), (65) ist, mit b(mo)=t

|Re*vJ

daraus mit (75), (76):

lim sup
x-oo logX Lj q

qeâ(x)
w.z.b.w.

3. Sei Rea^Ofûr ein m; m09pl,p2,... und £{x) sollen dieselbe

Bedeutung haben wie im Lemma 6, wobei man (pj9 mo) l annehmen darf. E sei wie
im Lemma 4 und 5, At wie in (63). Wir setzen:

i// (x) 2*(x) {Anzahl Zahlen in M (x)}.

Es ist mit einem cx >0

i/f (x) < exp (cjx/log x) fur x -? oo

Sei

i7(x) Ginfj|m1/M+ % rq(qm0)t/M\ \ m 0, 1, 2, 3,...,

Wegen (68) ist wie in [9] und [5] mit einem c2 >0:

log —— < exp (c2x/log x), x -+ oo.

Nun sei c3=max(c2, 2cx\ g(x)=exp(c3x/logx), also

X-+O0. (77)
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Fur genûgend grosses x sei :

ReP°(uM)

Q(x)
yx sup

Es ist yx>0 wegen Satz 1. Wie in [9] sei yx< oo, da sonst nichts mehr zu beweisen ist.
Weiter sei

also (px(u)^0 fur w^ 1. Sei noch fur x^x0, t reell,

ffx e~Qix\ V{t) 1 + cosf 1 + i eu + |

wo die 9q réelle, spâter genau zu bestimmende Zahlen sind. Nun sei r wie in (38)

gewâhlt, u r+Aô+i wie in Lemma 1. Man sieht leicht, wegen (36), (38) und (77),
dass

î

gx [ urP°(uM) Tx(u) e~CxU du

fur x-+ oo. Daher ist

0
oo 1

al J uV, (u) Tx (u) e-*- <*« + «#, J u'+e* Tx (u) e~°*» du

1 0
1

-<\ ReP°(uM) mT^m) e"ffxa du ^ 0 4- 0 + o{\) o(l),
o

da die Integranden der ersten beiden Intégrale positiv sind. Nun geht man genau gleich
weiter wie in [5], [6] oder [9], wobei man Tx{u) als trigonometrisches Polynom schreibt
und sich ûberlegt, dass fur a komplex, b reell, gilt:

00

a

o

J u'P° (uM) e""1 e-"" du agr,0 {ax - ib),
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nach Définition (39). Man benutzt dann die Lemmas 3, 4, 5. Wir lassen die Berech-

nungen aus und schreiben als Endresultat:

Là 4

fur x->oo. Dabei ist y <5/2 + l/4,4, B3 B2(m0Al)~y e~îr((x)~l>09 D und B2 wie
im Lemma 4. Bei geeigneter Wahl von &q ist,

wie man leicht feststellt. Also ist fur x^> oo, mit B4

Nach Lemma 6 und nach Définition von yx gibt es eine Folge xi9 x2,... -* oo, und eine

Folge uu u2,..., Uj^l, mit

mit ^5 >0. Da die linke Seite bei beschrânktem uf& 1 beschrânkt bliebe, muss mit
auch Uj gegen oo gehen. Obige Ungleichung kann geschrieben werden als :

ReP°(Mf uj {AÔ~m) > B5 u)IQ^ log^.. (78)

Ist nun uyQ(Xj) ^logloglogt/y, so erhâlt man durch dreifaches Logarithmieren fur
genûgend grosse xj9 uf.

logX, > \ 10g 10g 10gUj

so dass der Ausdruck rechts in (78) stets grôsser als c log log logw^ ist fur grosse j,
mit einem c>0. Ersetzt man noch uM durch u, so ergibt sich genau der erste Teil von
Satz 3. Die ûbrigen Aussagen ergeben sich durch Multiplikation der Funktional-
gleichung mit — 1, ±i aus dem Bewiesenen.

4. Beispiele

a) Grôssencharaktere und Idealklassencharaktere
Sei K ein algebraischer Zahlkôrper der Dimension m ûber dem rationalen Q,

m=r1 +2r2, mit rx reellen Konjugierten und 2r2 komplexen Konjugierten. Sei A ein
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Grôssencharakter modf, f ein ganzes Idéal, (s. Hecke [7]). Sei fur

c(s9a)= y ^(a)=nfi A{v)\1

wobei sich das Produkt ûber aile Primideale erstreckt. Es ist A(a)=0 fur (û, f)#l.
Falls A eigentlich ist (s. [7]), genûgt Ç (s, A) der Funktionalgleichung

C(s, A) A (s) k-AÏ'A (l-j)C(l- s,

wo&^O, At>09

A(s)=f\r(is + pv) "ff r(s + pv)

also 2A=m. Dabei in Im^i1"1"1*2 j8v=0. Falls A nicht eigentlich ist, sondern vom
eigentlichen Ax modfi abgeleitet ist, ist

Da C(^^i) mit C(^>^i) eîner Funktionalgleichung (6) genûgt, ist Ç(s,A) mit der

Funktion

Xib) (78'}

kx # 0, A 2 > 0, durch eine Gleichung (6) verknûpft, mit 5 1 und A (s) wie oben. Dies

rechnet man leicht nach. Falls A nicht der Hauptcharakter ist, ist \l/(s) ganz, also

JS6°(x)=const. Man weiss auch dass ^(j) den Bedingungen (64), (65) gehorcht. Es ist

y=(n +1 )/2n > J. Da auch b(n) O (ne) fur beliebig kleines e > 0, sind die Bedingungen
(69), (70) erfûllt. Daher haben wirfur m^2 nach Satz 3:

Re £ ^l(a) O±(x(M-1)/2inlogloglogx), (79)

fur beliebige Grôssencharaktere, die nicht Hauptcharaktere sind. Die Bedingung Re#

/0 fur ein n ist stets erfûllt, da at=,1(1)=1. Fallsfur ein n gilt: Im5^(a)aB|l yl

Imf S yl(a))=Û±(x(m-1)/2wlogloglogx). (80)
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Nach Satz 2 ist fur x>xo\

I M«) >cx(n+l)/2n. (81)

Falls A=x ein Idealklassencharakter ist, zeigen wir, dass ein besseres Résultat môg-
lich ist. Es sei L die Galoische Abschliessung von K. Nach Hecke [8] gibt es eine

Folge/^,/^,... von Primzahlen, so dassPj=N((nj)) fur KjeL, Uj ganz, totalpositiv,

Kj= 1 modiV(f) in L, und

xy \~c 9 x -? oo c>0.

Die Konjugierten (n)) von (71^) sind genau die Idéale, welche pj als Norm haben. Sie

haben die selben Eigenschaften wie die 7tj selber, da ja iV(f) im rationalen Korper
definiert ist. Bildet man die Relativnormen NLfK((nj)T) aller Konjugierten von (nj)9 so

erhâlt man m Hauptideale (PJtk), *=1,..., m, jedes [L:^T]-mal. Es ist N((Pjtk))=
=Pp Pjtk ist totalpositiv, PJtk 1 modf, (sogar mod iV(f)), und ausser den (JPy,fc) hat
kein ganzes Idéal die Normpj. Da nun die (PJtk) modf im Einheitsstrahl liegen, ist

l fur jeden Idealklassencharakter %, d.h.

Wâhlt man nun fur £(x) die quadratfreien Zahlen, die aus den/?^<x zusammenge-
setzt sind, so ergibt sich mit einem c>Q und einer natûrlichen Zahl m0

lm\

wo die èB die Koeffizienten von \j/ (s) in (78') bedeuten. Dies erhâlt man durch Kombi-
nation von Formel (73) in [9] mit den (îberlegungen in Lemma 6 dieser Arbeit.

Dièse Verschârfung von Lemma 6 ergibt wie in [9], Satz 1, folgende Verschârfung
von (79):

SATZ 4. Sei x ein vont Hauptcharakter verschiedener Idealklassencharakter in
einem algebraischen Zahlkôrper vont Grade m^2. Dann ist mit einem c>0:

fur X-+00. Falls ^N{a)^x x(ct) nichtfûr aile x reell ist, gilt (82) mit Im anstatt Re.
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Man bemerke, dass die Bedingung (67) in diesem Falle nicht benôtigt wurde. An
dieser Stelle môchten wir bemerken, dass die Bedingungen (67) respektive (30) nicht
wesentlich sind. Sie dienen lediglich dazu um bei Abschâtzungen der Art (31) und (32)
die Variation des Hauptterms S0 gegenûber der Variation des Restterms P° klein zu
halten. In vielen Fâllen, wie eben, bekommt man auf andere Weise bessere Resultate.
Insbesondere bekâme man mit dem hier beschriebenen Beweis bei positiven bn bessere

Resultate als in Satz 3, es soll aber hier darauf nicht eingegangen werden, weil
bei positiven bn andere Methoden, ausser in wenigen Einzelfâllen, wirksamer sind.

Fur Referenzen siehe [9].
Falls x ein Hauptcharakter ist, ergibt sich:

SATZ 5. Sei K ein algebraischer Zahlkôrper vom Grade m^2, f ein ganzes Idéal,
AK das Residuum der Dedekindschen Zetafunktion von K. Dann ist mit einem c>0:

N(a

(83)

KOROLLAR. Hat eine Idealklassengruppe &j})=i des algebraischen Zahlkôrpers
K vom Grade m^2 mindestens zwei Elemente, so gibt es zujeder Idealklasse <€i eine

Idealklasse <%Jf sodass

— y -Q (,* exp
-\)l2m

Beweis des Korollars. Sei

dann ist fur x^\:
h

(Rj(x)-Rt(x))X(Vj).

S Rj

z(o)
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Die Behauptung folgt dann aus Satz 4. Dass die Behauptung nicht fur beliebige ^
und ^2 gilt, sieht man an folgendem einfachen Beispiel: K=Q(yJ—23), mit der ge-
wohnlichen Idealklasseneinteilung nach den Hauptidealen, h 3:(£3 {Hauptideale},

^2=^-1=^1, also R1(x) R2(x).

b) Koeffizienten von Modulformen
Es seien N und k natûrliche Zahlen, ImT>0,

n=l

sei eine Spitzenform der Stufe N und des Gewichtes k. Sei (p(s) Y<? ann

0. Dann gibt es eine Reihe $(s) Ya bnn~s, fur Re.sxro, derart dass

Wir kônnen Satz 1 und Satz 2 anwenden. (Da cp (s) und i// (s) ganz sind, ist S0 (x) eine

Konstante). Wir erhalten insbesondere fur ein c>0 undgenugend grosse x:

(85)

Schreibt man

g (t) £ bn e2nint/N, Im t > 0,
n=l

so ist

und g ist ebenfalls eine Spitzenform des Gewichtes k und der Stufe N. Der Vektor-
raum V der Spitzenformen der Stufe N und des Gewichtes k hat endliche komplexe
Dimension und wird aufgespannt durch die Eigenfunktionen des Hecke-Rings (s. Ogg
[10]). Falls g(x) eine solche Eigenfunktion ist, so ist bx ^0, und \//(s) hat das Euler-

produkt
oo

M-V*.-M

wo ep=0 falls/? | iV, e^(JV) l, falls (p, N) l (<p(iV)=Anzahl teilerfremde Restklas-

sen modiV). Insbesondere ist bnbm=bnm fur (n, w)= 1, falls 6X 1.
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Man kann nun genau wie Pennington [11], Lemma 2, zeigen, dass die Bedingungen
(69) und (70) erfûllt sind. Falls also \j/(s) ein Eulerprodukt hat, und Rcan^0fur ein n,
so ist

Re £ <*» ®± (xk/2-m log log logx). (86)

Dasselbe gilt mit Im anstatt Re.
Falls N== 1, so ist q>(s)=±\l/(s), d.h. q>(s) hat auch ein Eulerprodukt. Falls at 1,

sind aile an reell und es ist

und man sieht wie bei den uneigentlichen Charakteren, dass auch <px (s) eine Funk-
tionalgleichung hat. Dabei bleiben aile Bedingungen fur Satz 3 erhalten. Somit gilt:

Falls <p(s)=Ya ann~s> ûfi 1, ein Eulerprodukt hat und/(t) J]Î) an expfainx)
eine Spitzenform des Gewichtes k und der Stufe 1 ist, so gilt fur beliebiges natiïr-
liches M:

Y an~Q± (xk/2-1/4 log log logx). (87)

(n, M)=l
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