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On the Partial Derivatives of Thetafunctions

by HENRIK H. MARTENS

Let IT = (n}) be a matrix of 2n R-linearly independent column vectors 7, 7, ..., 7,
in C”", let G be the group of translations generated by these vectors, and let T be the
complex torus T = C/G.

Let A = (1f) be a matrix of 2n column vectors in C", and let y be a column vector
in C2",

A holomorphic function F, defined on C”" is said to be multiplicative of type (I, A, )
over a subset S of T if it satisfies the relations

F(u + my) = F (u) exp2mi (‘Lu + y)

with k=1, 2,..., 2n, for every u eC" whose projection lies in S. Here the presuper-
script ¢ denotes matrix transposition, and u is to be thought of as a column vector.

We refer to Conforto [1] for the standard theory of multiplicative functions. This
theory is normally concerned with functions which are multiplicative over all of T,
and the presence of the subset S in the preceding definition is unorthodox. The motiva-
tion for introducing S, and indeed for writing this paper, is the following simple
observation:

0.1 Let F be multiplicative of type (I, A, y) over T. Let 0y, 0,, ..., Oy be first order
partial differential operators with constant coefficients on C". Then the kth order partial
derivative 0, ... 0, F is multiplicative of type (II, A, y) over the projection in T of the set
of common zeros of F and all its partial derivatives of the form 0;, ... 0; F where.
J1<Jj,<--<j,andr<k.

The result is an immediate consequence of the formula obtained by differentiating
both sides of the defining relations.

At the Vth Nordic Summer School in Mathematics in Oslo 1970 I outlined how
this observation may be used in the proof of Riemann’s vanishing theorems for the
thetafunction of a jacobian variety [3]. In this paper I shall give a more careful exposi-
tion of the argument which will permit the derivation of additional information about
the partial derivatives that appears relevant to the study of jacobian varieties.

My objective is to provide a reasonably elementary analytic approach to the
vanishing theorems. An approach using different ideas will be found in J. Lewittes,
Riemann Surfaces and the Theta Function, Acta Math. 111 (1964), 37-61, and a brief
and elegant treatment is given by A. Mayer, Special Divisors and the Jacobian Variety,
Math. Ann. 153 (1964), 163-167.
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I am grateful to A. Mayer for pointing out to me that the present approach to
some extent was anticipated by E. B. Christoffel, Volistindige Theorie der Riemann’
schen 0 — Function, Math. Ann. 54 (1901) 347-399.

All of these proofs deal with the case of characteristic zero, i.e. the classical case of
Riemann surfaces. It should be emphasised that the validity of the vanishing theorems
by no means is restricted to this case. D. Mumford has an unpublished proof of the
theorem for all characteristics, and a striking generalization has been obtained by
G. Kempf in his Ph.D. thesis at Columbia (see Séminaire Bourbaki, Exposé 417).

1. Jacobian Varieties

If IT is a period matrix for a closed Riemann surface X of genus g > 2, the complex
torus constructed with the column vectors of II is denoted J(X') and referred to as the

Jjacobian variety of X.
We then have a canonical map

k: X - J(X)

determined up to a translation in J(X') by the requirements that x be holomorphic
and that the coordinate differentials du!,..., du® of C*® pull back via k to a basis
wl, ..., we for the abelian differentials on X such that

ni=J‘w’

Kk

where a5, ..., a,, is a basis for the first integral homology group on X.
The map « can be extended to a map of divisors by setting

k(D) =) mx(Q;)

when D =) m;Q;. According to Abel’s theorem, two positive divisors D; and D, of
the same degree are linearly equivalent if and only if k(D) = k(D).

We shall rely on [3] for proofs of certain basic results from the theory of jacobian
varieties. It will be convenient here, however, to review how properties of linear series
on X are reflected in the structure of certain subvarieties of J(X).

We introduce some notation for operations on subsets 4 and B of a complex torus
T. For veT, the translate of A by v will be denoted

A,={a+v:acA}.
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We define
A®B={a+b:acA, beB}
= |J{4,:beB}
and
AS©B=\{A_-,:beB}.
Since ueA_, if and only if u + be A we get
A©B={v:B,c A}.
Clearly
(A6B)eC=40BadC)=(A6C)OB.

We assume chosen, once and for all, a point P € X and normalize x by settingx (P ) = 0.
We denote by W" the set of points in J(X) which are images of positive divisors of
degree r, and take WP to be {0}. A positive divisor D of degree s < r has the same image
as the divisor D + (r — s)P, and hence W*< W". Translates of W’ are denoted by
W, = (W"),, and the image of W under the involution # — — u will be denoted — W_.

We further denote by G, the set of points in J(X') which are images of positive
divisors of degree n and (projective) dimension > r(=1I/(D)—1).

To any positive divisor D of degree g — 1 there is a positive divisor D’ of degree
g — 1 such that D+ D’ is canonical. The image of canonical divisors (which are
linearly equivalent) will be denoted by K. Thus

k(D)=-x(D)+ K
where, as D varies over all positive divisors of degree g — 1, so does D’. Hence
Gy_y =W 1=—Wws

More generally, if D and D’ are positive divisors such that D + D’ is canonical,
then the Riemann-Roch theorem in Brill-Noethers symmetric version states that

deg(D) — 21(D) = deg(D") — 21(D’)
Hence, in the equation
k(D)=—k(D')+ K

as D varies over positive divisors of degree g — 1 + r and dimension > s > r, D’ varies
over positive divisors of degree g — 1 —r and dimension > (s —r), and conversely.
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Hence, for 0<r<s,
e-1+r = (= Gg=1- 1)k
In particular if s = r we have Gg_ {—,=ws"17" whence

r . g—1-—r
g—1+r — = W—K

Now, let D be a positive divisor of degree r + s. Then a necessary and sufficient condi-
tion for D to be of dimension > r is that every positive divisor D’ of degree » deter-
mines at least one positive divisor D” of degree s such that D' + D" is linearly equiv-
alent to D. Thus, in the equation

— k(D) + k(D) =x(D")

as D’ varies over positive divisors of degree r, the right hand side takes values in W*.
If we set d = x (D), the condition may then be rephrased

deGlig <> (— W)= W°
whence
s =W'Oe(-W)
Comparing with previous formulas we have
WeTlO (= W)= Gyoyyp=— Wi
Using the equation W81 = — W& ,' we get
Wele Wr=we1"
which may be rephrased as
W Wt leaews 17T
Since clearly W@ W*= W"** we see that for 0<r<s<g—1
Wi W e W Wt

where t =g — 1 — 5. Hence a = W*™", and since the inclusion W, = W* is trivial for
aeW*"" we have

W, cWisaeW'".
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From the preceding it follows immediately that if r < g — 1 then W, = W" only if
a = 0,and hence all translates of such W" are distinct. In particular, if W2~ ' = — &1
then we have We™1 = — Wi ' = Wt ! whence 2a = — K. Thus

WeEle— W le2a=—K
The right hand side equation has 22" solutions.

2. Riemann’s Vanishing Theorems

Riemann’s vanishing theorems show how some of the subsets discussed in the
preceding section can be described by means of the thetafunction of J(X). A funda-
mental theorem in this connection is the following, which goes back to Riemann:

2.1. Let II be a period matrix formed with a canonical homology basis of the closed
Riemann surface X of genus g > 2. Let F, and F, be multiplicative over W' in J(X) of
types (I1, A, y,) and (I, A, y,), respectively. Assuming that F, and F, do not vanish
identically over W, they induce non-negative divisors D, and D, on X via k such that

’C(D1) - 'C(Dz) =PHJ()’1 —73)
and

deg(D,) = deg(D,)=4Tr(JN)
where

p is the projection C® - J(X)
. . 0 E

J is the matrix (_ £ 0)

E is the unit g x g matrix

N ='I1A —*AIl is the characteristic matrix of F, and F,.

A proof of this theorem is given in [3].

When dealing with jacobian varieties it is convenient to assume that I is in normal
form

IT = (niE A)
where A is symmetric with negative definite real part (Riemann’s relations). This can

be arranged by a proper choice of coordinates for J(X) (i. e. by a proper choice of the
basis w!, ..., wt for the abelian differentials). One then defines the thetafunction

O(u, A)= Y exp‘m(Am + 2u)

me 28
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which can be shown to be multiplicative over J(X) of type (II, A, y) with

e

’yk= 0 k=1,...,g
a k=g+1

This gives N= — J and $Tr(JN) =g.
Let d be a point in C# with projection aeJ(X). Let 6, denote the translate of 6
by 4 defined by

O,(u; A)=0(u—d, A).

Then an easy calculation shows that 8, is multiplicative over J(X) of type (IT, A, y —
— 'A4), where A and y are as above.

Let now 0, and 0; be two translates of § which do not vanish identically over W*,
They then induce divisors on X via k which only depend on a and b eJ(X). Denoting
these divisors by D, and D,, theorem 2.1 gives

x(D,) = k(Dy) = pllJ'A(b — d) = p(d — b)
=a—>b

since I1J'A = — E. The degree of the divisors is g.

We may note that the thetafunction as defined is not identically zero. This can
easily be seen by substituting e**' = z ; and observing that we then get a Laurent series
in the z; with non-vanishing coefficients. The fact that the thetafunction does have
zeros follows from the above result since g # 0. It is then clear that almost all translates
of 0 do not vanish identically over W',

Selecting a translate of § which does not vanish identically over W1, we can use it
as a reference and prove

2.2. There exists a constant c € J(X) such that if 8, does not vanish identically over
W1, then it induces a divisor D, on X of degree g such that

k(D,)=a+c.

If 0, and all its partial derivatives of order < r vanish identically over W*, then any r-th
order partial derivative of 0, which does not vanish identically over W* induces a divisor
D, on X of degree g such that

k(D,)=a+c.
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The statement about the partial derivatives follows from 0.1 and 2.1, since the assump-
tion insures that the derivatives are multiplicative over W! of the same type as 0,.

Selecting an arbitrary point ue€J(X) and setting a =u — ¢, we get a divisor of
degree g whose images is u, for it cannot happen that 8, and all its partial derivatives
of all orders vanish identically over W'. This shows that W2 = J(X) and is Riemann’s
solution to the Jacobi inversion problem.

In the case where 6, vanishes identically over W, the divisor induced by the
partial derivatives will not be unique, but any two such divisors must be linearly
equivalent. This agrees with the fact that the quotient of two such derivatives defines
a meromorphic function on X. We shall get a more precise result on this point:

Let x be any point of W?. Then x = k(Q) for some Q €X. Let z be a local coor-
dinate near Q with z(Q) = 0. The coordinate functions u',..., u® of C# serve as local
coordinates near x€J(X) and via k can be pulled back as holomorphic functions
#/ of z. The differentials

di’

—d j=1,2,..,
dz z ] g

then give a local reprcsentation of the basis w!, ..., w8, The partial differential operator

Z di’ (0)

can also be viewed as an operator on J(X) and will then be tangent to W! at x. If
Xy,..., X are points of W! corresponding to distinct points Qy,..., Q, on X, let
Zy,..., Z, be local parameters centered at the Q; and let 4% be the pullbacks of the
coordinate functions at Q;. Then the operators 0, ,..., d,, will form a basis for the
first order partial differential operators on C# provided the determinant

(0)

is different from zero. Since the entries are local representations of the basis for the
abelian differentials on X, the vanishing of the determinant i precisely the condition
that the divisor Q,; + --- +Q, have positive dimension. Thus the operators form a
basis for almost all g-tuples xy, ..., x,, i.e. for all g-tuples Q;,..., Q, except for a set
of positive co-dimension in X x -+ X X (g times).

Let u be an arbitrary point in C2, and let f be holomorphic in a neighborhood of
u. Let x,,... ,x, be points of W! corresponding to points Q,,..., O, of X. With a
simplified notation, we have

0, fu) = E *0)...

dzj

Akr

= O o i -
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The expression

di* di*r 0 0
) o @) G ) e 5 S
k

defines, for fixed u, a holomorphic function of (zy, ..., z,). Hence, if 0, ... d, f(u) #0,
the expression remains different from zero for all r-tuples (z,, ..., z,) in a neighbor-
hood of (0, ..., 0). The expression, however, corresponds to a partial derivative of the
form

G 3 ()

where x,..., x; are points in W' corresponding to an r-tuple (Q3,..., Q,) near
(@45, 0,)in X x -+- x X (r times). If not all partial derivatives of f of order r vanish
at u, we can obviously find some r-tuple of points x,, ..., x, such that

By, 0, f(1) # 0

since operators of this type form a basis. Then the above argument and analytic con-
tinuation on X x .-+ x X (# times) shows

2.3. If f is holomorphic near ueC", and if some r-th order partial derivative of f is
different from zero at u then

Oy, .. 0 f(u) #0

except for r-tuples (xi,..., x,) corresponding to a subset of positive codimension in
X X -« x X (r times).

Consider now the case when 8, vanishes identically over W', Assume that some
first order partial derivative of 8, does not vanish identically over W'. Then 0,0, will
not vanish identically over W! except possibly for a finite number of x e W, and 0,6,
will be multiplicative over W! of the same type as 8,. Since , is tangent to W' at
x, 0,0, will have a zero over x, and hence will induce a divisor on X of the form D +Q
where D is of degree g — 1 and k(Q) = x. Then

a+c=x(D)+x(Q)
and since Q can vary over an infinite subset of X, we must have

a+ceG,.

2.4. If 0, and all its partial derivatives of order < r vanish identically over W, then

a+ceGy.
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To see this, we assume that some partial derivative of order r does not vanish identi-
cally over W. If this assumption is violated, the assumption of the theorem will hold
for s > r, and if we can prove the theorem for s, it will hold a fortiori for r, since
G, < Gz when s > r.

By assumption we then conclude that 0, ... , 6, is multiplicative over W? of the
same type as 60, and fails to vanish identically over W for almost all r-tuples (x,, ..., x,)
of points in W'. But d,, ... 0,,0, is multiplicative and vanishes identically over W,
Since 0, is tangent to W' at x,, d,,(d,,... 0,,0,) must be zero over x,. Since the
partial differential operators may be permuted arbitrarily, we conclude that 0, ... 0,0,
is zero over x; for each k, and hence induces a divisor on X of the form D+ Q, +
+ .-+ + Q, where D is of degree g — r. It is a corollary of the argument that r < g.

We then have

at+c=xD)+x(Q; +---+0Q,)

and conclude that a+c—weW?*™" where w=x(Q, + --- +Q,). We have already
said enough to insure that a + ceG;. If we knew that W' is an analytic subvariety
and irreducible, we could conclude

('— Wr)a+c c WE'

and hence a + c € Gy, from the fact that w can vary over all of W' except a subset of
positive codimension by 2.3. This argument will be justified by our next proof.

From the definition of 0, we see that it is symmetric, i.e. 0(u; 4A)=0(—u; A4).
Hence if 6(d; 4) =0, then 6, is zero over the origin. Assuming this to be the case, we
conclude that if 6, does not vanish identically over W! it induces a divisor on X of
degree g of the form D + P with deg(D) =g — 1. Hence

a+c=x(D+ P)eWs 1.

If 6, vanishes identically over W, then a + ceG'g = W¥™! by the first part of the
proof of 2.4.

Assume on the other hand that a is such that a + ce W?™! and a + c¢G;. Then
a + c is the image of a unique positive divisor of the form D + P, with deg(D) =g — 1,
and hence this must be the divisor induced by 6, on X. 6, cannot vanish identically
over W* since this would imply @ + ¢ €G,. But then 6, must be zero over x (P) =0,
and hence 0(d; A)=0. W™ ! and in general W" is the image under a holomorphic
map of the (g — 1)-fold (r-fold) cartesian product of X with itself, and hence irre-
ducible. The preimage of G} is a set of positive codimension in the product, and hence
we have shown that 6(; 4) = 0 for all a such that a + ce W21,
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2.5. The divisor induced by the thetafunction on J(X) is precisely a translate W8}
of W&~ 1, where 2c =K.

We have in fact proved that the divisor is W%, and it only remains to observe
that the symmetry of the thetafunction implies W2,' = — W% !, whence 2c =K.

With 2.5. W&~ is established as an analytic subvariety of J(X). All the sets W"
and G’ can be obtained by intersecting suitable translates of W&~! and are therefore
analytic subvarieties defined as common zeros of translates of the thetafunction. This
justifies the final part of the proof of 2.4.

Let S"(0) denote the set of points of J(X) over which f and all its partial derivatives
of order < r vanish. Then 2.5 expresses the equality

S°(0) = we !
or
S°(0) =w*!

where ¢ is a point in C® with projection ¢. The statement of 2.4 may then be expressed
as
W'c S (0,) = a+ceGtt

2.6 Riemann’s Vanishing Theorems
S’(Ge) = G;-— 1
Proof. For r =0 this is a restatement of 2.5. We proceed by induction on r. We
note first that
aeGlii=ws 2o (- wth
< ml c Wg—l—ro(__ Wr+1)
<> W' c (W70 (—- W) o (- wh)
<> W ,cG,_, forall xeWw!'.
By the induction hypothesis W}_, = §7(8,) for all xe W'. Then all partial derivatives
of 6, of order < r vanish identically over W.__. Any partial derivative of 8, of order
r + 1 is a sum of terms of the form 0,60, where 0} is a partial derivative of order r and

x € W!. But since 8, is tangent to W,_, at a, it follows that 8,05 vanishes over a. Hence,
x being arbitrary

aeS™(0,)
This proves the inclusion
G}, = 57(0,)

for all r > 0.
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Assume now that aeS*(6,). Then, for any x € W the translate 6,_,. , will vanish
together with its first derivatives at x. Hence, unless it vanishes identically over W1 it
induces a divisor on X of degree g of the form

D + 20
where k(Q) = x. Then we have
c+c—a+x=K—-a+x=«x(D)+2x
whence
K—a=x(D)+xeWs 2.
If this happens for infinitely many x € W! we have
K—aeWs (- W) =6G,_,
and hence
ae G;_l

by the Brill-Noether formula. If 0,_,,, vanishes identically over W for all but a
finite number of x € W1, it vanishes for all x, by continuity. But then

Wl WEL,

and hence
acWs?

for all x, which implies
aeG,_;.

Thus the theorem holds for r =0, 1.

Suppose now that aeS"*1(6,). Then a fortiori a€S"(0,) and by the induction
hypothesis @ eG;_,. By the argument of the first part of the proof and by induction
hypothesis

W,_. < GZi=S5""(6,)

for all xe W', Hence all partial derivatives of order <r — 1 of 6, vanish identically
over W 1., and all partial derivatives of order r of 8, are multiplicative over W }_,
If, for all xeW?! all r-th order derivatives vanish identically over W.__, then

Wiy S’ (6:) = Gg-4
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by induction hypothesis, and by the first part of the proof
aeGli.

If W)_. 4 S"(0,) for some x € W, then the inclusion can hold for only finitely many
x. For then there is a point y e W' such that y + a — x¢S"(0,), and for fixed y the
condition y + a — x € S"(0,) is an analytic condition on x. Hence it either holds for all
x e W! or for at most finitely many. Hence, for all but a finite number of x € W! some
partial derivative of order r of §, will not vanish identically over W._ . Then, by the
proof of 2.4.

W .S 0)eW S 1 (0,_54x)
=>c+c—a+x=K-—a+xeG.

But aeS"*!(6,), hence any r-th order partial derivative of 0,_,,, will induce a
multiple zero on W1 at x. Hence the divisor induced by such a partial derivative on X
is of the form D + 20, and this is independent of the choice of partial differential
operator. Hence 2Q is a fixed divisor in the linear series of (D+2Q) and hence the
dimension of D is r.

We therefore have

ct+c—a+x=K—-a+x=x(D)+2x
whence
K—-—a—-x=x(D)eG;-,
for all but finitely many, and hence for all xeW!. But then
Wk-g-x<=Goy VxeW!
whence
K —aeGyl}
and
aeG;X}

by the Brill-Noether formula. This completes the proof of the vanishing theorems.
We may observe in retrospect that ae G5’ ] implies W,_, = G;_, = §"(6,) for all

x, and hence all partial derivatives of 8, of order <r do indeed vanish over W,_,. This

gives the argument an interesting constructive aspect. Assume namely that D is a
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positive divisor of degree g and dimension r > 1. Then, setting d = k(D), we get
deG, and hence

a=K-deG]_}
by the Brill-Noether formula. Then
W! cGiZi=5"1(6,

and hence all partial derivatives of 6, of order <r— 1 vanish identically over W_}.
Then the r-th order partial derivatives are multiplicative over W), and we claim that
they do not all vanish identically over W.. For in that case we should have

W, S7(6.)
which implies W' < S"(0,_;), and hence
ctc—a=K—a=deG,"!

by 2.4. But this contradicts the assumption that the dimension of D is precisely r. Thus,
for almost all r-tuples x,, ..., x, of points in W', 9, ... 8, 0,_, does not vanish identi-
cally over W1, and induces a divisor D’ on X of degree g such that

k(D)=c+c—a=K—-a=d

Hence D’ lies in the linear equivalence class of D, and by varying the r-tuple (x, ..., x,)
we obtain all divisors D’ in the linear equivalence class except those containing the
exceptional r-tuples. We claim that the set of r-th order partial derivatives must con-
tain r + 1 linearly independent elements which do not vanish identically over W, for
otherwise the equations

; ap;(x)=0

with r-th order derivatives yy,..., s <r could not be solved simultaneously for
r-tuples (x;,..., x,) in an r-dimensional neighborhood of W' x --- x W (r times).
On the other hand, since all these partial derivatives are multiplicative of the same
type over W, their quotients define meromorphic functions on X, and the quotients
of the derivatives in a basis set by any one of them generate L(D') for some D’ in the
linear equivalence class of D. Thus the restrictions of the partial derivatives to the
points over W! is a linear space of dimension r + 1. Hence

2.6. If D is a positive divisor of degree g and dimension r > 1 on X then the space
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L (D) of meromorphic functions on X is generated by the functions induced by quotients
of r-th order partial derivatives of 0,_, where a =K — k(D).

A positive divisor D on X is said to be special if there is a positive divisor D’ such
that D + D’ is canonical. If D is of dimension r > 1, then D can be written as

D"+Q1 ++Qr

where the dimension of D” is 0, and the dimension of D" + Q, is 1. Moreover deg(D")
< g — 1. Adding suitable positive divisor to D" + Q, we can produce a positive divisor
of degree g and dimension 1 whose linear series has the added divisor as a fixed divisor.
Using 2.6 we see that the space L( D" + Q,) will be generated by the constant function
and the meromorphic function induced on X by the quotient of two first order par-
tial derivatives of a suitable translate of the thetafunction. Hence

2.7. The functions on X associated with special linear series are precisely those that
can be expressed by means of linear combinations of functions induced by quotients of
first order partial derivatives of translates of the thetafunction.

We may note that if X is a hyperelliptic Riemann surface, then the functions of the
special linear series do not generate the function field of X, by a theorem of Noether
(see e.g. [2]). The consequences of this for the theteafunction of J(X) appears un-
known.

Riemann’s vanishing theorems are concerned with the common zeros of partial
derivatives of a given order. Since 0, is the translate of § which induces the divisor
W&~ 1on J(X), it follows from the theorems that 6, has simple zeros over the non-
singular points of W#~!, and hence that G;_; may be characterized as the set of
singularities of multiplicity r + 1 of W#~1. It is inherent in the arguments that there
are limitations on the multiplicity of these singularities, since by Clifford’s theorem
G-, is empty if 2r > g — 1 and also if 2r = g — 1 except in the hyperelliptic case (see
e.g. [2]). We shall not go into the consequences of the vanishing theorems here, but
shall prove one characterization of the zeros of first order derivatives.

2.8. If xeW?, then the divisor induced by 0,0, on W&~ ! is
W2 o — WEZZ

Proof. Let w=x; + -+ + x,_; be a nonsingular point of W*~!. From

g

00
O=d05=25jdu"

1
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which holds on all of W#~! we see that if 60,/0u’ = 0 at w, then the differential

g

00
Z 5;; (w) du*

2

vanishes at w. It is known (see e.g. [3]) that this differential by pull-back then corre-
sponds to the abelian differential on X with zeros at the points corresponding to
Xg,...5 Xg—y (including multiplicities).

If, by a linear change of coordinates, we choose u!,..., uf such that du?, ..., du®
correspond to a basis for the abelian differentials vanishing at a point x € W3, then
0, and 0/0u’ coincide except for a constant factor. But then the differential

g

Z g% (w) du*

2

corresponds to an abelian differential vanishing at the point corresponding to x. Hence
its divisor is a 2g — 2 tuple of points one of which corresponds to x, and since w is the
image of a (g — 1)-tuple of these, either w or K — w must lie in W2~ 2. If w is a singular
point of W#™! then we W22, and the proof is complete.
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