
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 48 (1973)

Artikel: On the Partial Derivatives of Thetafunctions

Autor: Martens, Henrik H.

DOI: https://doi.org/10.5169/seals-37164

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-37164
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


394

On the Partial Derivatives of Thetafimctions

by Henrik H. Martens

Let II (nJk)be a matrix of 2« R-linearly independent columnvectors7r1,7r2,..., tt2w

in C", let G be the group of translations generated by thèse vectors, and let T be the

complex torus T — C/G.
Let A (lJk) be a matrix of 2n column vectors in Cn, and let y be a column vector

in C2n.

A holomorphic function F, defined on C" is said to be multiplicative oftype (II, A, y)
over a subset S of T if it satisfies the relations

F(u + nk) F{u) exp2;rï (%u + yk)

with k= 1, 2,..., 2n, for every weC" whose projection lies in S. Hère the presuper-
script t dénotes matrix transposition, and u is to be thought of as a column vector.

We refer to Conforto [1] for the standard theory of multiplicative functions. This
theory is normally concerned with functions which are multiplicative over ail of J,
and the présence of the subset S in the preceding définition is unorthodox. The motivation

for introducing S, and indeed for writing this paper, is the following simple
observation :

0.1 Let F be multiplicative of type (il, A, y) over T. Let ôl9 d2,..., dk befirst order

partial differential operators with constant coefficients on Cn. Then the kth order partial
dérivâtive dx... dk Fis multiplicative of type (II, A, y) over the projection in T of the set

of common zéros of F and ail Us partial derivatives of the form dJl... dJrF where.

Ji<J2<-~<Jr<mdr<k.
The resuit is an immédiate conséquence of the formula obtained by differentiating

both sides of the defining relations.
At the Vth Nordic Summer School in Mathematics in Oslo 1970 I outlined how

this observation may be used in the proof of Riemann's vanishing theorems for the

thetafunction of a jacobian variety [3]. In this paper I shall give a more careful exposition

of the argument which will permit the dérivation of additional information about
the partial derivatives that appears relevant to the study of jacobian varieties.

My objective is to provide a reasonably elementary analytic approach to the

vanishing theorems. An approach using différent ideas will be found in J. Lewittes,
Riemann Surfaces and the Thêta Function, Acta Math. 111 (1964), 37-61, and a brief
and élégant treatment is given by A. Mayer, Spécial Divisors and the Jacobian Variety,
Math. Ann. 153 (1964), 163-167.
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I am grateful to A. Mayer for pointing out to me that the présent approach to
some extent was anticipated by E. B. Christoffel, Vollstândige Théorie der Riemann'
schen 6 - Function, Math. Ann. 54 (1901) 347-399.

Ail of thèse proofs deal with the case of characteristic zéro, i.e. the classical case of
Riemann surfaces. It should be emphasised that the validity of the vanishing theorems

by no means is restricted to this case. D. Mumford has an unpublished proof of the
theorem for ail characteristics, and a striking generalization has been obtained by
G. Kempf in his Ph.D. thesis at Columbia (see Séminaire Bourbaki, Exposé 417).

1. Jacobian Varieties

If JJ is a period matrix for a closed Riemann surface X of genus g ^ 2, the complex
torus constructed with the column vectors of II is denoted J(X) and referred to as the

jacobian variety of X.
We then hâve a canonical map

k:X -+ J(X)

determined up to a translation in J(X) by the requirements that k be holomorphic
and that the coordinate differentials du1,..., du8 of Cg pull back via k to a basis

w1,..., w8 for the abelian differentials on X such that

J wj

where oc1,..., a2n is a basis for the first intégral homology group on X.
The map k can be extended to a map of divisors by setting

when D Yj f^iQi- According to Abel's theorem, two positive divisors Dt and D2 of
the same degree are linearly équivalent if and only if k(D1) k(D2).

We shall rely on [3] for proofs of certain basic results from the theory of jacobian
varieties. It will be convenient hère, however, to review how properties of linear séries

on X are reflected in the structure of certain subvarieties of J(X).
We introduce some notation for opérations on subsets A and B of a complex torus

T. For veT, the translate of A by v will be denoted

Av {a + v.aeA}.
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We define

A@B {a + b:aeA, beB}
\J{Ab:beB}

and

AQB=Ç\{A-h:beB}.

Since u eA-b if and only if u + b sA we get

AQB {v:Bv<zA}.

Clearly

(v4 e b) e c a e (b e c) (a q c) e b

We assume chosen, once and for ail, a point P eX and normalize jc by setting /c (P 0.

We dénote by Wr the set of points in J(X) which are images of positive divisors of
degree r, and take W° to be {0}. A positive divisor D of degree s < r has the same image
as the divisor D + (r — s)P, and hence Ws c JP\ Translates of Wr are denoted by
Wra PF")a, and the image of Wa under the involution u -> - u will be denoted - Wra.

We further dénote by Grn the set of points in J(X) which are images of positive
divisors of degree n and (projective) dimension ^ r(= l(D)~ 1).

To any positive divisor D of degree g — 1 there is a positive divisor D' of degree

g — 1 such that D + D' is canonical. The image of canonical divisors (which are

linearly équivalent) will be denoted by K. Thus

where, as D varies over ail positive divisors of degree g — 1, so does Df. Hence

More generally, if D and D' are positive divisors such that D + D'is canonical,
then the Riemann-Roch theorem in Brill-Noethers symmetric version states that

deg(D) - 21 (D) deg(D') - 21 (Df)

Hence, in the équation

as D varies over positive divisors of degree g — 1 + r and dimension ^s^r, D'varies
over positive divisors of degree g - 1 — r and dimension ^ (s - r), and conversely.
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Hence, for 0 < r < s,

In particular if .y r we hâve G°g_ x _ r
wg "1 "r whence

g-l+r — ~~ "-K

Now, let D be a positive divisor of degree r + s. Then a necessary and sufficient condition

for D to be of dimension ^ r is that every positive divisor D7 of degree r
détermines at least one positive divisor D" of degree s such that D' + D" is linearly équivalent

to D. Thus, in the équation

as D' varies over positive divisors of degree r, the right hand side takes values in Ws.

If we set d k (D), the condition may then be rephrased

whence

Comparing with previous formulas we hâve

w*-1 e (- wr) Grg.1+r - wrx-rK

Using the équation W8'1 - WV* we get

which may be rephrased as

Warcz W8~1oaeWg~1~r

Since clearly W®WS= Wr+S9 we see that

where t g - 1 - s. Hence acF"r, and since the inclusion Wra a Ws is trivial for
"

we hâve

WraaWsoaeWs'r.
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From the preceding it follows immediately that if r ^ g — 1 then Wra Wr only if
a 0, and hence ail translates of such Wr are distinct. In particular, ifWg~1= — Wg~1

then we hâve W*'1 - W\~^ Wl~Kx whence 2a -K. Thus

The right hand side équation has 22n solutions.

2. Riemann's Vanishing Theorems

Riemann's vanishing theorems show how some of the subsets discussed in the

preceding section can be described by means of the thetafunction of J(X). A funda-
mental theorem in this connection is the following, which goes back to Riemann:

2.1. Let II be a period matrix formed with a canonical homology basis of the closed

Riemann surface X of genus g ^ 2. Let Ft and F2 be multiplicative over Wl in J{X) of
types (17, A, yt) and (IJ, A, y2), respectively. Assuming that F^ and F2 do not vanish

identically over W1, they induce non-negative divisors Dx and D2 on X via k such that

K(D1)-K(D2)=pIIJ(y1-y2)
and

where

p is the projection Cg-+J(X)

J is the matrix [ „ ~\-E 0/
E is the unit g x g matrix
N tTLA — MU is the characteristic matrix of Fx and F2.

A proof of this theorem is given in [3].
When dealing with jacobian varieties it is convenient to assume that U is in normal

form

n (niE A)

where A is symmetric with négative definite real part (Riemann's relations). This can
be arranged by a proper choice of coordinates for J(X) (i. e. by a proper choice of the
basis w1,..., w8 for the abelian differentials). One then defines the thetafunction

meZ*
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which can be shown to be multiplicative over J(X) of type (77, A, y) with

This gives N= — J and ^Tr(JN) g.
Let a be a point in Cg with projection aeJ(X). Let 9â dénote the translate of 9

by â defined by

Then an easy calculation shows that 9â is multiplicative over J(X) of type (77, A,y —

— tAâ)9 where A and y are as above.

Let now 9â and 96 be two translates of 9 which do not vanish identically over W1.

They then induce divisors on X via k which only dépend on a and b eJ(X). Denoting
thèse divisors by Da and Db, theorem 2.1 gives

k(Da) - k(Db)

a-b
since TU*A — — E. The degree of the divisors is g.

We may note that the thetafunction as defined is not identically zéro. This can

easily be seen by substituting e2uJ Zj and observing that we then get a Laurent séries

in the Zj with non-vanishing coefficients. The fact that the thetafunction does hâve

zéros foliows from the above resuit since g # 0. It is then clear that almost ail translates

of 9 do not vanish identically over W1.

Selecting a translate of 9 which does not vanish identically over W1, we can use it
as a référence and prove

2.2. There exists a constant ceJ(X) such that if 9â does not vanish identically over
W1, then it induces a divisor Da on X of degree g such that

If9â and ail its partial derivatives oforder < r vanish identically over W1, then any r-th
order partial derivative of9â which does not vanish identically over W1 induces a divisor

Da on X of degree g such that
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The statement about the partial derivatives follows from 0.1 and 2.1, since the assump-
tion insures that the derivatives are multiplicative over W1 of the same type as 9â.

Selecting an arbitrary point ueJ(X) and setting a w- c, we get a divisor of
degree g whose images is w, for it cannot happen that 6â and ail its partial derivatives
of ail orders vanish identically over W1. This shows that Wg J(X) and is Riemann's
solution to the Jacobi inversion problem.

In the case where 6â vanishes identically over W1, the divisor induced by the

partial derivatives will not be unique, but any two such divisors must be linearly
équivalent. This agrées with the fact that the quotient of two such derivatives defines

a meromorphic function on X. We shall get a more précise resuit on this point:
Let x be any point of W1. Then x k(Q) for some QeX. Let z be a local coor-

dinate near Q with z(Q) 0. The coordinate functions w1,..., u8 of Cg serve as local
coordinates near xeJ(X) and via k can be pulled back as holomorphic functions
ûj of z. The differentials

then give a local représentation of the basis w1,..., wg. The partial differential operator

can also be viewed as an operator on J(X) and will then be tangent to W1 at x. If
xl9...9xg are points of W1 corresponding to distinct points &,..., Qg on X, let

zu...9 zg be local parameters centered at the Qj and let û) be the pullbacks of the

coordinate functions at Qj. Then the operators dXl,...9 ôXg will form a basis for the

first order partial differential operators on Cg provided the déterminant

is différent from zéro. Since the entries are local représentations of the basis for the

abelian differentials on X, the vanishing of the déterminant i precisely the condition
that the divisor Qt H— +Qg hâve positive dimension. Thus the operators form a

basis for almost ail g-tuples xl9..., xv i.e. for ail g-tuples Qu..., Qg except for a set

of positive co-dimension in X x ••• x X (g times).
Let u be an arbitrary point in Cg, and let/be holomorphic in a neighborhood of

u. Let xl9... 9xr be points of W1 corresponding to points Ql9...9Qr of X. With a

simplified notation, we hâve
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The expression

k dûk- e d

defines, for fixed w, a holomorphic function of (zu..., zr). Hence, if ôXl... dXrf(u) ^ 0,

the expression remains différent from zéro for ail r-tuples (zu...9 zr) in a neighbor-
hood of (0,..., 0). The expression, however, corresponds to a partial derivative of the
form

where xi,...,x, are points in Wl corresponding to an r-tuple (fii,...,£?,) near
{Qu "•> Qr) in Z x ••• x X(r times). If not ail partial derivatives of/of order r vanish
at w, we can obviously find some r-tuple of points xl9..., xr such that

dxl...dXrf(u)*o

since operators of this type form a basis. Then the above argument and analytic
continuation on Xx ••• x X{r times) shows

2.3. Iff is holomorphic near ueCn, and if some r-th order partial derivative off is

différent from zéro at u then

except for r-tuples (xl9...,xr) corresponding to a subset of positive codimension in

X x -" x X (r times).
Consider now the case when 9â vanishes identically over W1. Assume that some

first order partial derivative of 9â does not vanish identically over W1. Then ôx0â will
not vanish identically over W1 except possibly for a finite number ofxeW1, and dx0â

will be multiplicative over W1 of the same type as 6â. Since ôx is tangent to W1 at

x, dx9â will hâve a zéro over x, and hence will induce a divisor on X of the form D + Q
where D is of degree g — 1 and k (Q) x. Then

and since Q can vary over an infinité subset of X9 we must hâve

2.4. If9â and ail its partial derivatives of order < r vanish identically over W1, then

ceGrg.
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To see this, we assume that some partial derivative of order r does not vanish identi-
cally over W1. If this assumption is violated, the assumption of the theorem will hold
for s > r, and if we can prove the theorem for s, it will hold a fortiori for r, since
Gsg cz Grg when s > r.

By assumption we then conclude that dXi... dXr6â is multiplicative over W1 of the
same type as 9â and fails to vanish identically over Wl for almost ail r-tuples (xl9..., xr)
of points in W1. But dX2... dX26â is multiplicative and vanishes identically over W1.

Since dXi is tangent to W1 at xu dXi(dX2... dXr9â) must be zéro over xx. Since the

partial differential operators may be permuted arbitrarily, we conclude that ôXl... dXr9â

is zéro over xk for each k, and hence induces a divisor on X of the form D + Qx +
H— + Qr where D is of degree g — r. It is a corollary of the argument that r ^ g.

We then hâve

and conclude that a + c—weWg~r where w K(Qt + •- +Qr). We hâve already
said enough to insure that a + ceG\. If we knew that W is an analytic subvariety
and irreducible, we could conclude

and hence a 4- c eGrg9 from the fact that w can vary over ail of Wr except a subset of
positive codimension by 2.3. This argument will be justified by our next proof.

From the définition of 6, we see that it is symmetric, i.e. 0(w; A) 9{— u; A).
Hence if B(â; A) 0, then 6â is zéro over the origin. Assuming this to be the case, we
conclude that if 6â does not vanish identically over W1 it induces a divisor on X of
degree g of the form D + P with deg(Z>) g — 1. Hence

If 6â vanishes identically over W1, then a + ce G1g a Wg~l by the first part of the

proof of 2.4.

Assume on the other hand that a is such that a + ceWg~1 and a 4- c $G\. Then
# + c is the image of a unique positive divisor of the form D + P, with deg(D) g — 1,

and hence this must be the divisor induced by 6â on X. 6â cannot vanish identically
over W1 since this would imply a + ceG\. But then 9â must be zéro over k(P) 0,
and hence 9(â; A) 0. FF*"1 and in gênerai PFr is the image under a holomorphic
map of the (g — l)-fold (r-fold) cartesian product of X with itself, and hence
irreducible. The preimage of G\ is a set of positive codimension in the product, and hence

we hâve shown that 9(; A) 0 for ail a such that a + ce W*'1.
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2.5. The divisor inducedby the thetafunction on J{X) isprecisely a translate Wi~l
of W8~\ where 2c =K.

We hâve in fact proved that the divisor is Wi'1, and it only remains to observe

that the symmetry of the thetafunction implies Wt~cx — JP!."1, whence 2c =K.
With 2.5. W8'1 is established as an analytic subvariety of J(X). AH the sets W

and Grn can be obtained by intersecting suitable translates of W8'1, and are therefore

analytic subvarieties defined as common zéros of translates of the thetafunction. This
justifies the final part of the proof of 2.4.

Let Sr (9) dénote the set of points of J{X) over which 6 and ail its partial derivatives
of order < r vanish. Then 2.5 expresses the equality

or

where c is a point in Cg with projection c. The statement of 2.4 may then be expressed
as

2.6 Riemanris Vanishing Theorems

Proof. For r 0 this is a restatement of 2.5. We proceed by induction on r. We

note first that

aeG\t\ W8~2'r 0 (- Wr+1)

o W.1 c (W^-'Oi- W))0{- W1)

oWa1-xczGrg-l for ail xeW1.

By the induction hypothesis W^x c Sr(6ê) for ail xeW1. Then ail partial derivatives
of 6ê of order < r vanish identically over W^-x. Any partial derivative of 0e of order

r + 1 is a sum of terms of the form ôx0rê where 6rÊ is a partial derivative of order r and
xeW1. But since dx is tangent to Wl^x at a, it follows that ôx9rê vanishes over a. Hence,

x being arbitrary

This proves the inclusion

for ail r ^ 0.
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Assume now that aeS1(9ê). Then, for any xe W1 the translate 9ê-â+x will vanish
together with its first derivatives at x. Hence, unless it vanishes identically over W1 it
induces a divisor on X of degree g of the form

D + 2Q

where k(Q) x. Then we hâve

c + c - a + x K - a + x k(D) + 2x

whence

If this happens for infinitely many xeW1 we hâve

K - aeWg-20(- W1) G1^!

and hence

by the Brill-Noether formula. If 9ô-â+x vanishes identically over W1 for ail but a

finite number of xe W1, it vanishes for ail x, by continuity. But then

wl cz wralx

and hence

for ail x, which implies

Thus the theorem holds for r 0, 1.

Suppose now that aeSr+1(6ê). Then a fortiori aeSr(9ê) and by the induction
hypothesis aeGrg-v By the argument of the first part of the proof and by induction
hypothesis

for ail xgW1. Hence ail partial derivatives of order < r — 1 of 9ê vanish identically
over W^x, and ail partial derivatives of order r of 9ê are multiplicative over W^x

If, for ail xeW1 ail r-th order derivatives vanish identically over W^x, then
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by induction hypothesis, and by the first part of the proof

If Wl-X 4= Sr(6ê) for some xeW1, then the inclusion can hold for only finitely many
x. For then there is a point y e W1 such that y-Va- x$Sr(Oê), and for fixed y the
condition y + a — xeSr(9ê) is an analytic condition on x. Hence it either holds for ait

x e W1 or for at most finitely many. Hence, for ail but a finite number of x e W1 some

partial derivative of order r of 0ê will not vanish identically over W*-x. Then, by the

proof of 2.4.

=> c + c — a + x K — a + xeGrg.

But aeSr+1(Oê), hence any r-th order partial derivative of 8ê-â+x will induce a

multiple zéro on W1 at x. Hence the divisor induced by such a partial derivative on X
is of the form D -f 2g, and this is independent of the choice of partial differential

operator. Hence 2g is a fixed divisor in the linear séries of (D + 2Q) and hence the
dimension of D is r.

We therefore hâve

c + c - a + x K - a + x k(D) + 2x

whence

for ail but finitely many, and hence for ail xeW1. But then

whence

and

by the Brill-Noether formula. This complètes the proof of the vanishing theorems.

We may observe in retrospect that aeGrgt\ implies Wl-X c:Grg^l Sr(9ê) for ail

x, and hence ail partial derivatives of 0ê of order <r do indeed vanish over Wf-X. This

gives the argument an interesting constructive aspect. Assume namely that D is a
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positive divisor of degree g and dimension r ^ 1. Then, setting d k(D), we get
deGrg and hence

by the Brill-Noether formula. Then

and hence ail partial derivatives of 6ê of order < r — 1 vanish identically over W*.
Then the r-th order partial derivatives are multiplicative over W*, and we claim that
they do not ail vanish identically over W\. For in that case we should hâve

which implies Wl cz Sr(0â-â)9 and hence

by 2.4. But this contradicts the assumption that the dimension ofD is precisely r. Thus,
for almost ail r-tuples xl9...9 xr of points in W1, dXi... dXr0ê_â does not vanish identically

over W1, and induces a divisor D' on ^of degree g such that

Hence D'lies in the linear équivalence class of/), and by varying the r-tuple (xu...9 xr)
we obtain ail divisors D' in the linear équivalence class except those containing the

exceptional r-tuples. We claim that the set of r-th order partial derivatives must con-
tain r + 1 linearly independent éléments which do not vanish identically over W1, for
otherwise the équations

with r-th order derivatives \jfu...,^/ss^r could not be solved simultaneously for
r-tuples (xl9...9xr) in an r-dimensional neighborhood of W1 x ••• x W1 (r times).
On the other hand, since ail thèse partial derivatives are multiplicative of the same

type over W1, their quotients define meromorphic functions on X, and the quotients
of the derivatives in a basis set by any one of them generate L(Df) for some D'in the
linear équivalence class of D, Thus the restrictions of the partial derivatives to the

points over W1 is a linear space of dimension r + 1. Hence

2.6. If D is a positive divisor of degree g and dimension r ^ 1 on X then the space
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L (D) of meromorphic functions on X is generated by the functions induced by quotients

of r-th order partial derivatives of 6ê_â where a — K— k(D).
A positive divisor D on X is said to be spécial if there is a positive divisor D' such

that D + D'is canonical. If D is of dimension r ^ 1, then D can be written as

where the dimension of D" is 0, and the dimension of D" + Qk is 1. Moreover deg(Z>")

^ g — 1. Adding suitable positive divisor to D" + Qk we can produce a positive divisor
of degree g and dimension 1 whose linear séries has the added divisor as a fixed divisor.

Using 2.6 we see that the space L(D" + Qk) will be generated by the constant function
and the meromorphic function induced on X by the quotient of two first order partial

derivatives of a suitable translate of the thetafunction. Hence

2.7. The functions on X associated with spécial linear séries are precisely those that

can be expressed by means of linear combinations of functions induced by quotients of
first order partial derivatives of translates of the thetafunction.

We may note that if JHs a hyperelliptic Riemann surface, then the functions of the

spécial linear séries do not generate the function field of X, by a theorem of Noether
(see e.g. [2]). The conséquences of this for the theteafunction of J(X) appears un-
known.

Riemann's vanishing theorems are concerned with the common zéros of partial
derivatives of a given order. Since 6ê is the translate of 0 which induces the divisor
W8'1 on J(X)9 it follows from the theorems that 6e has simple zéros over the non-
singular points of JF*"1, and hence that Grg.l may be characterized as the set of
singularities of multiplicity r 4-1 of Wg~1. It is inhérent in the arguments that there

are limitations on the multiplicity of thèse singularities, since by Clifford's theorem

GJ_ is empty if 2r > g - 1 and also if 2r g - 1 except in the hyperelliptic case (see

e.g. [2]). We shall not go into the conséquences of the vanishing theorems hère, but
shall prove one characterization of the zéros of first order derivatives.

2.8. If x g W1, then the divisor induced by ôx6ê on Wg~l is

wr2 u - wszi

Proof. Let w xl-\— +xrlbea nonsingular point of Wg~1. From
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which holds on ail of W*'1 we see that if dOJdu1 0 at w, then the differential

vanishes at w. It is known (see e.g. [3]) that this differential by pull-back then
corresponds to the abelian differential on X with zéros at the points corresponding to

xu...9 Xg-i (including multiplicities).
If, by a linear change of coordinates, we choose w1,..., u8 such that du2,..., du8

correspond to a basis for the abelian differentials vanishing at a point xeW1, then

ôx and d/du1 coincide except for a constant factor. But then the differential

corresponds to an abelian differential vanishing at the point corresponding to x. Hence

its divisor is a 2g — 2 tuple of points one of which corresponds to x, and since w is the

image of a (g — 1 )-tuple of thèse, either w or K—w must lie in Wl ~ 2. If w is a singular

point of J^*"1 then we W%~2, and the proof is complète.
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