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A Characterization of the Veblen-Schiitte Functions
by Means of Functionals')

HILBERT LEvVITZ

1. Introduction

Let Q denote the first uncountable ordinal. A function ¢ which maps the set
{x | x < Q} into itself is called a normal function if it is continuous and strictly increas-
ing. In [3] it is shown that a normal function has fixed points; i.e., solutions of the
equation ¢ (x)=x. In fact, the ordering function of these fixed points is itself a normal
function. One calls the function arrived at in this way the derived function of ¢. It is
also shown there that the process of taking the derived function can be iterated into
the transfinite, and a family {¢,},<q of normal functions can be obtained with the
property that ¢,=¢ and ¢, is the ordering function of the fixed points of ¢, for all g
such that 0< S <a. If ¢ (0)>0, one does not, however, obtain a normal function ¢, in
this way because {x ] ¢5(x)=x all B<Q} can be shown to be empty.

In [5], Schiitte extends this family by introducing Klammersymbols. A Klammer-
symbol is an expression

Aoy A1y ..y Ay

Ay Agyeeey Ay
where the a;, @; are ordinals less than Q and 0<a,<a; <---<a,. Equality among
Klammersymbols is governed by the rule that two Klammersymbols are equal if one

can be obtained from the other by the insertion or deletion of columns of the form 3
To each normal function ¢ and to each Klammersymbol 4 an ordinal ¢4 is assigned
so that

¢ (g) =¢(x) andfor a; #0, ¢ (ao, 15005 a,,)

0, ay,..., «,

is the a,-th solution of the set of equation

t 3

x, a*, as ..., a

d)(*’ PTB ")=x where o* <, a* <ay.
Oy Olyy Xgyouey Oy

1) These results have been extracted from the author’s thesis at Pennsylvania State University.
The idea of using functionals was suggested by W. A. Howard. He also conjectured Theorem 1.1.
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The functions
ixd X, Bps e @n) g Jeih 1
ao, al, veny (x" X
are shown to be normal functions?). The fixed points of Ax¢ (i) are referred to by

Veblen [6] as E-number (relative to the initial function ¢). Using properties of the
functions

axd ( Xy Gy eee a,,),

Xgs Ayyeney &y

Schiitte shows how to obtain a recursive well ordering of the natural numbers that has
the least E-number (relative to the function 1+ x) as its order type.

2. The Main Results

In this section we give a new characterization of

Ags Ay --vs Ay

¢ (ao, Ogsenes oc,,)'
For this purpose we introduce the notion of type. Objects of type O are ordinals.
Objects of type 1 are functions from ordinals to ordinals. Objects (functionals) of
type 2 are functions from objects of type 1 to objects of type 1.

With respect to notation, we use the following conventions:

1) We use o to denote the operation of composition of mappings. ¢ oy is the result
of applying first , then ¢.

2) Z¢ will denote the range of ¢.

3) If T is a functional then T (x) denotes the image of x under the functional 7.
Parentheses will be omitted when there is no danger of ambiguity.

DEFINITION 1.1. For a>0, a>0 we define functionals 7'; of type 2 as follows:

T2 (¢) = Axd (;;; Z) .

X, aly..., An

2) We are using the familiar Church lambda symbol notation. Ax¢ (ao " an) is the function

X, Aly...y an>

of x abstracted from the expression ¢ (ao X iy
£ L A ]
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; ,a\ . . . a
Since ¢ (())C oc) is defined only for normal functions, our functionals T'; are defined

only for such ¢. However in the discussion following Theorem 1.2, we shall extend the
domain of 7', to arbitrary functions ¢.

X, a
0, a
(3.5)]18), the composition of the functionals 7'y is well defined.

We also remark that since Ax¢ ( ) is again a normal function by [5, (3.2),

LEMMA 1.1. If a, #0, b#0, a, #0 and

E 3
d={y|¢(y,a1+b ga29-.-,an)____y; all b*<b, a*<a1}

#*
o, oy s 0oy evey Oly

and

*
y’a ,az,..., an * . 1
B = _ . <
{qub(“*s gy Ogseeey oz,,) y; all a"<ay, «a <oc1j,

then S/ = %.
Proof. Let y e/, then in particular for b*=0, a* =0 we get

Yo, Q15 A3, ..., A,
¢(0 1 2 )=y0

0, oy, gy ...s

so by definition [5, (2.3)], y, is the y,-th solution of the equations:
x, a* a a
¢(*, 5 Y2y e n)zx; all a*<a1’ a*<a1
Oy Oy Glgyaney Ol

therefore y,e%.

LEMMA 1.2.

X, Ay, Q25 ...5 Ay bOa bla---, bkab
[quS (0, Olyy 0oy enes o:,,)] ( 0, By .ees B g
— ¢(b0, bl’ soey bk’ 611 + b, az, ooy an).
0, By .-es Bis 4 s Oy eney O
bo, by, ..., by, b

0, B0 Bro g
graphical well ordering of the Klammersymbols described in [5, p. 17].

Proof. The proof is by transfinite induction on < > over the lexico-

3) [5, (3.2, (3.5)] refers to the article listed in the bibliography under [5]; the numbers (3.2) and
(3.5) are used in that article to denote various results.
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Case 1. by, b,,..., b, b are all zero. Then the desired result follows trivially from

[5, 2.1

Case 2. by, b,,..., b, are zero and b is not zero. Let y denote

X, Ay, Az, ..., 4, by, b
l:/lxqﬁ (0, Oy, 0oy enns oc,,)] ( 0, oc1>'

Then y is the b,-th member of

, X, gy Ay, ...y Ay y, b* . % ®
{y| [Axd)(o, tp oy Ofn)] (oz*, al)-—y, all " <b, « <a1}.

By induction hypothesis y is the by-th member of

%
&i:{qub(y’al'*'b ,az,...,a,.>=y; all b*<b, a*<a1}.

*
o, oy, Ogy eeey Oy

Case 2.1. a;=0. Then y is the b,-th member of

*
{y|¢<ya0+b sa23...,an)=y; all b*<b, a*<a}

£ 3
o, oy, Oy ey Oy

so by definition [5, (2.3)] we get

by, 0+ b, a,,..., a,
,y=¢<0 2 ).

0,a, a3,..., 0,

This is the desired result.
Case 2.2. a, #0. Let #Z denote

*
{y|¢(y,a,a2,...,an)=y; all a*<ay, oc*<a1}

%
O, Oy, Olgyenny O,

By Lemma 1.1 &/ = %, so o/ =&/ n#. Therefore y is the b,-th solution to both sets of
equations:

%
¢( ¥, a*, as, ..., a,

* >=y; all a* <a;, all a*<a,
0y Olgy Olgyenny Oy

and
v,a, + b* a,,...,a
g Lot oo g*<q,, B*<b.
a¥, oy, Ugyenny O,
But

{a*|a* <a;}u{a*|a* =a, +b* forsome b*<b}={a*|a*<a, + b}
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so y is the b,-th solution of the set of equations

*
¢( y,a,a,,...,a,
%
Oy Xy Xpyeeey Ay

)=y; all a*<a;, all a*<a, +b

so by definition [5, (2.3)] we get

by, a, + b, a,, ..., a,
)
s Xy, Ay eeny Uy

This is the desired result.
Case 3. b;#0 for some i, 1 <i<k. Assume ¢ is the smallest such i. Let § denote

X,ay, Ay ..., A, bg, byy ..., by, b
[Axd) <0, Ogs Ogyeeny oe,,)] ( 0, Besoevs Brs 1)’

then § is the b,-th solution of the set of equations:

X, Ay, Aygyen.y A y, b*, ..., b, b
(i)
[ ¢ (O, gy Ay oney Oy /3*9 Bes s Brs 24 Y
where b*<b,, f* <f,. By the induction hypothesis, § is the b,-th solution of the
set of equations:

¢( i)’ b*, ..., b, a, + b, a,, ..., a,,) —y
B™s Bes---s Brs %15 0gy enes &y

where b* <b,, f* < B,. So the desired result follows from [5, (2.3)]. This completes the
proof.

THEOREM 1.1. For a,>0,

Y, Ay, Q2 ... Ay
TaIO azo---o an = 2’ )
( ay ’I;zz T;") ¢ y¢ (O, Oys Xy eeesy a”)

al, az,---, an

Proof. The proof is by transfinite induction on ( ) over the lexico-

01y Ogyeeny Oy
graphical well ordering of the Klammersymbols.
By associativity

(Tl o T oo T) ¢ = T (T o Tog o Ta) @)
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by induction hypotheis
e Xy Ay eeny Ay
=T (Axd) (0, " ST oz,,))
LT X, Ay, ..., d\| (¥, a4, 0
=4y ~[’qu& (0, Qs oevs oc,,)_ (O, oy, cx2>]

(v, a4, a,,...,4,\
—afo( ez )]

0, Ogy Ogy aeey Oy

by Definition 1.1

by Lemma 1.2.

This completes the proof.

The purpose of the remainder of this work is to show that T'; can be defined directly
by transfinite induction. Thus Theorem 1.1 will provide a new definition of Schiitte’s
functions.

LEMMA 1.3. If a>0 then T} o T2=T2%*!,
Proof.

CROLE T

b,a+1
0,
X, a b1
Ax¢ (0, cx)] (0’ oc) by Lemma 1.2

Ly [qus (g Z) (é’ i)]) b by i-abstraction

- (T; [m/, (g i)D b by Definition 1.1

= (T, (Ti$)) b by Definition 1.1
=((T.°T;) ¢) b.

>] b by Definition 1.1

LEMMA 1.4. d)(g’ :z+1> is the x-th member of .@={y| () (z) =y}.

x, 1
0, a+1

, 0
af:{y|¢(;}*’a+l)=y; all cx*<oc+1}.

Proof. By definition [5, (2.3)], ¢ ( )=x-th member of &/ where
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Case 1. a=0. Then our result is immediate since trivially o/ =4%.
Case 2. O0<a. Then o/ =% %" where

/ , 0
i, e

and

g:{ylfp(igﬂ):y},

What we need to show is &7 =4.
&/ S A is trivial so we need only show #< ..

Let ye 4%, then ¢ <i> =y.
By [5, (3.4)], 0< y; so we get that y is the 0-th member of

*
{z|¢(z;i>=z all a*<a, y*<y}.

In particular, y is the 0-th member of

{z]d;(z; 2)=z all oc*<oc}.

So ye#’, from which it follows that ye.o/.

LEMMA 1.5. (Ti¢)a is the a-th solution of the equation ¢ (x)=x.
Proof.

oo s 5] o=o(3)

by Definition 1.1 and A-abstraction. Our result follows from [5, (2.3)].

LEMMA 1.6. Let R, be defined by R,p=Ay[(Ti$)0], then T..,=T;oR,.
Proof.
Case 1. a=0. Then the following shows that R, is the identity functional:

(Ro¢) a = (A [(T3¢) 0) @ = (Ay [(4x¢ () 0]) a = ¢ (a).

From this the desired result is immediate.
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Case 2. 0<a.

(T+19) b= [’lx‘f’ (golz+ 1)] o= ¢((1)):;+ 1)

= b-th fixed point of Ay¢ (i ) by Lemma 1.4

= [Tll </1y¢ (i))] b byLemmal.5
=[r (e ()]
= [Tl1 (/ly [Axd) (3,’ i) )0] >] b by A-abstraction

= [T{2y[(T)$)0]] » by definition of T?
=[T{ (R,$)] b by definition of R,
= [(Tl ORa) ¢] b.

LEMMA 1.7. Assume &, d are limit ordinals, and 0 <a, then

(i) Zixd (g Z) — N Rixd <g Z)

. x, 1\ x, 1
(ii) Zixd (O, &) = aOa RAxP (0’ oc)

Proof. (i) That the left side is included in the right side is immediate from the

definition of ¢ (;’ Z).

To show that the right side is included in the left side, let y be a member of the right
side; we must show that

E
¢<o):,’,‘;)=y all o* <o, a*<ad.

Let a* <a, a* <d be given, then since dis a limit ordinal, a* + 1 <d. Now by hypothesis

*
y is a member of Zix¢ (g’; + 1). From [5, (2.3)] we get
E 3
Y, 4\ _
¢ (a*’ x ) =Y.

: D s 1
(ii)) To show that the left side is included in the right side: Let ye Z1x¢ (g a) be
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given; to show that y is a member of the right side we must show that if a <& then

x, 1

yeRAx¢ (g’ :‘) Let o <& be given. Now ye ZAx¢ (0 a) means that y=¢ (;) *) for

all a* <a; in particular y=¢) (;;) for all d*<a; SO by [5’ (23)]’ J’E -%}.xqb (g’ clx).

To show that the right side is included in the left side, let y be a member of the right
side, we must show that

¢(§*)=y all o«* <a.

Let o* <& be given, then since & is a limit ordinal a* + 1 <&. Now by hypothesis y is a

member of #Ax¢ (g i*+1) s by [5, (2.3)] ¢ ( “y*) 7.

COROLLARY 1. Assume a>0, and d is a limit. If

X, d x+1,a
o(oe)<1<4(6"0)

then

x+1,a\ _ t, a
"’(o, a)‘i‘i‘i"’(o, a)'

To see this let { f,}.<a be the sequence of functions defined by

o=re(g2)

One can easily show that this sequence satisfies the hypotheses of [3, Th. 1, p. 43].
g’ Z) is the function ¥ referred to

in that theorem. The conclusion of that theorem is the desired result.

In view of part (i) of our lemma, the function Ax¢ <

COROLLARY 2. Assume & is a limit ordinal. If

x, 1 x+1,1
<

then

x+ 1,1\ _ t, 1
o(," " a) =9 (5.)
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To see this let { f,},<; be the sequence of functions defined by

x, 1

fo=in (3 )

One can easily show that this sequence satisfies the hypotheses of [3, Th. 1, p. 43].
x, 1

In view of part (i) of our lemma, the function Ax¢ (O .

) would play the role of  in

that theorem.
DEFINITION 1.2. ¢ (x)=¢(x)
67D (x) = ¢ (6 ().
THEOREM 1.2. Let &, d, X denote limit ordinals, then the following relations hold:

DThp=¢ if a>0
2a) (T{¢)0 = sup ¢™(0)

2b) (T14) (x +1) = Sup o™ ([(Ti ) x] + 1)
2) (Ti¢) x = S‘il_’ [(T{$) x]

3) T2 = T)oT? for a>0
3a) (T79)0=sup[(T/$)0] if a«a>0

3b) (T'¢) (x + 1) = sup [(T9) ((Ti¢) x]+ 1)] if «>0
3¢) (T;'¢) % =sup[(T/¢) x] if «>0

4) T!,, = TlR, where R,p=Ax[(T[¢$)0]; a>0
4a) (T;$) 0 = sup [(T; ¢) 0]

a<a

46) (T9) (x + 1) = sup[(T9) ([(T34) ] + 1)]

4c) (Ti¢) % = sup [(T:'¢) x]

Proof.
. b x,0
1) This follows from the fact that ¢ (O) =¢ (O a) ; [5, (2.2)].
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2a) By Lemma 1.5 and (3, p. 44].
2b) By Lemma 1.5 and [3, p. 44].
2¢) By continuity of Ax¢ (g }) : [5, (3.5)].
3) This is our Lemma 1.3.

3a) By continuity of Ax¢ (g’ z) - [5, (3.5)].

b

3b) By Corollary 1 to Lemma 1.7.
3¢) By continuity of Ax¢ (g ;’) : [5, (3.5)].
4) This is our Lemma 1.6.

4a) By continuity of Ax¢ (g’ )lc) ; [5, (4.3)]

b

4b) By Corollary 2 to Lemma 1.7.
4c) By continuity of Ax¢ (())C’ :‘) ; [5, (3.9)].

Discussion. Let ¢ run over arbitrary functions (rather than just normal functions).
Then 1) defines T outright, for a>0. The remaining equations 2a)-4c) define 7.7, for
a>0 and a>0, by transfinite induction. Indeed 2a)-2c) define (T}¢)x by transfinite
induction on x, so 2a)-2c) define T;. Suppose, for fixed «, that 7* is known for all
a<d; then 3a)-3c) define (7,/¢)x by transfinite induction on x. Thus 3a)-3c) define
T? from T,! by transfinite induction on a. T'? for >0 can be regarded as a kind of
a-th iterate of the functional T}; indeed, T2*'=T,c T% and more generally by our
Lemma 1.2, T***=T7%. T2

Similarly for f>0, 4)-4c) define T'; from T'¢ restricted to pairs (a, «) such that
a< B. Thus for (b, B) #1, the equations 3)-4c) define T} in terms of T4 restricted to
pairs (a, a) which precede (b, B) in the lexicographic ordering in which o dominates.
As already mentioned, 2a)-2c) define 7. Thus 1)-4c) define 7 by transfinite induc-
tion over the set of pairs (a, ) in the lexicographic ordering.
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