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Geodesics Satisfying General Boundary Conditions

by KARSTEN GROVE?)

The existence of infinitely many geodesics joining orthogonal two submanifolds
V; and ¥V, of a Riemannian manifold M has been studied in Morse [4] and in Serre [5]
under the assumptions ¥; compact and V; n V, =0. Existence of such geodesics is in
that case clear. If however V; n V, #0 this is not in general the case (see §2). It is the
purpose of this paper to examine that situation.

In §1 we shall study geodesics satisfying a general boundary condition. Special
cases of this boundary condition are satisfied by V; — V,-connecting geodesics, closed
geodesics and isometry-invariant geodesics (see Grove [2], [3]). In §2 we concentrate
on V; — V,-connecting geodesics. A typical result in that section is that if V; and V,
are compact and M is contractible then there exists ¥V, — V,-connecting geodesics.

The main tools in our approach are critical point theory on infinite dimensional
manifolds and elementary homotopy theory.

§1. N-Geodesics

Throughout this paper M will be a connected complete Riemannian manifold and
Nc M x M aclosed submanifold of M x M. We shall say that a geodesic y:[0,1]—> M
is a N-geodesic if it satisfies the boundary condition

(»(0), y(1))eN and (7(0), — 7(1))is normal to N, (1.1)

where 7§ (t) denotes the velocity vector of y at t and M x M is endowed with the product
metric.

EXAMPLES. (1) 4(M)-geodesics are closed geodesics on M.

(2) graph(4 )-geodesics, A: M — M an isometry, are A-invariant geodesics (see
[2] and [3]).

(3) V; x V,-geodesics are V; — V,-connecting geodesics.

Let L} (I, M) denote the complete Riemannian Hilbertmanifold consisting of
absolutely continuous curves ¢:7=[0, 1] — M with ¢ square integrable (see Flaschel
and Klingenberg [1]). From the propositions I.1.4 and I.1.5 of [2] it follows easily that

1) This work was done under the program ‘‘Sonderforschungsbereich Theoretische Mathematik’
(SFB 40) at the University of Bonn.
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N-geodesics are in one to one correspondence with critical points for the energy integral
E:Ay(M)—R, o—-31[5ll6|%, where Ay(M)={ceLi(l, M)|(c(0),s(1))eN} is a
submanifold of L% (I, M). Furthermore E: Ay (M )— R satisfies condition (C) of Palais
and Smale if projection on the first, Py (N)c M or the second factor P,(N)c=M is
compact (Theorem 1.2.4 of [2]). We shall therefore assume that e.g. P, (N)c= M is
compact. To make successful use of critical point theory for Hilbert-manifolds we
assume furthermore that N n A4 is a union of closed submanifolds, — here A denotes the
diagonal 4 (M) of M in M x M.
With N as above we have,

LEMMA 1.2. If there are no non-trivial N-geodesics on M, then the inclusion
e:Nnd->Ay(M), e(x,x)(t)=x Vtel

is @ homotopy equivalence.

Proof (Sketch). First we observe that each component of N n4 is a compact
non-degenerate critical submanifold of Ay (M) of index 0. To see this we just note that
the Hessian of E:Ay(M)—R at a constant curve p:I - M, p(t)=p for all tel is
given by

H(E)y (X, Y) = [ <X (@, ¥' (03, ds

for all X, Ye TpAy(M). From this and (X (0), X (1))e TN for XeTAy(M) it
easily follows that each component of N n 4 is a non-degenerate critical submanifold
of index 0. We can now argue exactly as in the proofs of Corollary I1.3 and Lemma
I1.4 of [2], i.e. by the generalized Morse Lemma and condition (C) prove that there
exists an ¢>0 such that Nn4 is a strong deformation retract of Ay(M):
={oeAy(M) | E (s)<e}. Assuming that there are no critical values >0 (no non-
trivial N-geodesics) we obtain from this, completenes of Ay (M) and condition(C)
that the inclusion e: N n4— Ay (M) is a weak homotopy equivalence and hence a
homotopy equivalence.
We are now ready to prove the main result of this section.

THEOREM 1.3. If there are no non-trivial N-geodesics on M, then there is an
exact sequence of homotopy groups

(P)s+1—(P2)a+1

s (M) > e (N 4) S e (N), *20.

= T (N)



378 KARSTEN GROVE

Exactness at n,_, (N n4) implies that

Vik]en,(M)3I[g]len, (N)I[h]en (N, Nn4) s.t.
(k] = ((Py)« ([A]) — (P2)x ([2D)) — (P1)x ([e]) — (P2)«([g])) *Z=1.

( for x=1 read multiplicative ).

Proof. The inclusion Ay(M)—Cy(M):={feC°(I, M) | (f(0), f(1))eN} is a
homotopy equivalence (Theorem 1.1.3 of [2]) so instead of Ay(M) we consider
C3(M). Consider now the commutative diagram,

o Ty 1 (CIM, QM)

Pryg| = s

> Tysy (N)——> (TM) B (cxfm-,’i‘»n* (N)

Txs1 (M) > 1, (N N A)
where the mid-sequence is the exact sequence for the fibration P:Cy(M)— N,
P (f)=(f(0), f(1)) with fiber the loopspace QM of M (Serre [5]), where ¢ is the
boundary map in the exact sequence for the pair (C]?, (M), QM) and H is the
Hurewicz map. We shall compute the maps in cupic homotopi.

Let a: 7% x I-Cy(M) represent an element [«] in 7y, (CyM, QM). Evaluation
of a;:19x {0} - QM, &, represents Hod[o]=Ho0d(P,[«]). From this we see that
evaluation of a: 7971 —» CJM, is a homotopy between —P,oPoa+&+P,0Poa
and the constant map, thus Hd([B])=(P,)+([B])—(P)x([B]) for all
[B]=Ps[0]€ns+ (V). Since we assume that there are no non-trivial N-geodesics
ex:Tx (N nA) -1, (CYM) is an isomorphism by Lemma 1.2 and the lower se-
quence is the desired sequence.

We will now examine in detail what exactness at 7, (N n4) i.e. e, (keri,)=imj,
means.

Let [ f]en, (2M) be represented by f:19— QM. Since j, ([ f])eime, there is a
homotopy

114

G :I*x I -»Cqy(M)

with G,(-,0)=jof and G, (-, 1):I9—>e(N n4). Identifying e(N n4) with Nn4
we get from [G, (-, 1)]ee, (keri,) a homotopy

G,:I"xI->N
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with G,(-,0)=G, (-, 1) and G, (-, 1)=base point. The homotopies PoG,:I?xI—> N
and G,:19xI— N combines to an element [g]en, ., (N) and G, itself represents an
element [h]en,, (N, N n4). Evaluation of Gy, G,:I*xIxI— M give rise to a
homotopy between Pjog+H (f)—P,og:1%"' > M and P,oh—P,oh:1?*' > M,
note that G,(+,0, *)=H (f) i.e. H[f]=(Pixs+1[A]—Pras1[A]) —(P1s+:[2]-
I S [g]) Q.E.D.

Remark. From theorem 1.3 we can derive the following theorems. If M is compact
there exist closed geodesics on M. If V is a compact submanifold of M and if there are no
V — V-connecting geodesics then the inclusion N — M is a homotopy equivalence. We can
also obtain some partial results from [2] and [3] by this theorem.

§2. V,— V,-Connecting Geodesics.?)

In this paragraph N=V, x V,, where V, and V, are closed connected submanifold
of M, V, is compact and V"V, is a union of closed submanifolds of M (may be of
different dimensions). As mentionedin§1isa V; x V,-geodesic y:I - M with y(0)e V,
y(1)eV,, 7(0)LV; and y(1)LV,.

We shall derive all our conclusions from the exact sequence of Theorem 1.3, which
in the case N=V, x V, can be written as,

Gi)x+1—=(2)n+1

S Tys 1 (Vi X V) ——— 1y s (M) >y (Vi 0 Va) o 1y (Vi X V) (2.1)
We get immediately

COROLLARY 2.2. Suppose that dim(V,nV,)=0 and that n,(M)=0 or
VinV,={pt}. If there are no non-trivial V, — V,-connecting geodesics on M then all
the homotopy groups of M are isomorphic to those of V, x V,, — in fact (iy)s— (i3)x:
17y (Vy X V) > (M) is an isomorphism.

The following example illustrates this corollary.

EXAMPLE. Let V and W be Riemannian manifolds and let M=V x W be
endowed with the product metric. For a fixed (v, w)eM put Vi=Vx {w} and V, =
={v} x W, then there are no non-trivial V;—V,-connecting geodesics on M. Other
immediate consequences of (2.1) are

COROLLARY 2.3. If V,nV, is not connected and M is 1-connected then there
exists non-trivial V; —V,-connecting geodesics.

2) Note that N-geodesics are in 1-1-correspondence with N— 4 (M )-connecting geodesics in M X M
with product metric (see €.g. L. N. Pattersen, On the index theorem, Amer. J. Math. 85 (1963), 271-297).
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COROLLARY 2.4. Suppose that M is a K (n, 1) (e.g. M has negative curvature)
and that there are no non-trivial V; — V,-connecting geodesics on M. Then we have:

) If ny (Vy)=mn,(V,)=0 then n; (Vi V,)=0 and n, (M) is finite (impossible if
M has neg. curvature).

(2) If ViV, consists only of isolated points then V, x V, is a K (7', 1).

COROLLARY 2.5. Suppose that M is contractible. Then we have:

(1) If Vy and V, are compact there exists non-trivial V| — V,-connecting geodesics.
(Vi=V,={pt} not included).

(2) If V, is contractible and there are no non-trivial V, — V ,-connecting geodesics
on M then V,cV,.

Proof. (1) From (2.1) we get that

i:Vanz")V1XV2, i(p)=(p,p) pEVanz

is a homotopy equivalence if there are no non-trivial ¥, — V,-connecting geodesics.
Since now V; x V, is compact we get especially that dim(V; nV,)=dim(V; x V,)
which is impossible except for the case V;, =V, =point.

(2) In the case V, contractible we obtain that

VImVZ—)Vl

is a homotopy equivalence if there are no non-trivial V; — V,-connecting geodesics on
M. By compactness dim(V;nV,)=V; which then implies that V,nV,=V, or
equivalently V, < V,.

Remark. M=R3*>R?*=V,>V,=S! gives an example of (2) in corollary 2.5. —
It is clearly difficult to get more general results from (2.1). In concrete situations how-
ever where one knows more about homotopy groups of M, V,, and V, (2.1) is
useful in deciding whether there exists V; — V,-connecting geodesics on M.

Let us finish with some remarks on the case where M =2ZX" is a homotopy sphere.

COROLLARY 2.6. Let M=2X" be a homotopy sphere. Then

(1) If V, "V, consists only of isolated points there exists non-trivial V|, — V ,-con-
necting geodesics on M.

(2) If there is a g<n—1 so that n (V,)#0 and n,(V,)#0 then there exists non-
trivial Vy—V,-connecting geodesics on M (more general q<l—1 if M is (I-1)-
connected).

Proof. Since max (dim ¥;, dim ¥,) <n we have that n, (¥, x V,) #0 for some g<n.
This together with corollary 2.2 proves (1). To prove (2) we see from (2.1) that
iy: e (Vi V,)> e (Vy X V) is an isomorphism for x<n—1 if there are no non-
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trivial V;—V,-connecting geodesics. If there is a g<n—1 with 7, (¥;)#0 and
n,(V,)#0 this is clearly impossible.

To illustrate that no reasonable general existence results, besides those allready
mentioned, can be expected, let us give one more example on non-existence of V; — V-
connecting geodesics.

EXAMPLE. Let M=S?cR* with standard metric of constant curvature 1 and
similar ¥, =82 the equator of S’. Then for any ¥V, =S! embedded in S? such that
Vi (—V;)=0 there are no non-trivial V; — ¥V,-connecting geodesics. On the other
hand we note that if V,=S* V,=8" and V\V';nV,#0, i=1, 2 then there exists
non-trivial ¥, — V,-connecting geodesics on M =2".
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