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Geodesics Satisfying General Boundary Conditions

by Karsten Grove1)

The existence of infinitely many geodesics joining orthogonal two submanifolds

Vt and V2 of a Riemannian manifold M has been studied in Morse [4] and in Serre [5]
under the assumptions Vt compact and Vx nV2 Q. Existence of such geodesics is in
that case clear. If however V1 n V2 ^0 this is not in gênerai the case (see §2). It is the

purpose of this paper to examine that situation.
In § 1 we shall study geodesics satisfying a gênerai boundary condition. Spécial

cases of this boundary condition are satisfied by Vx — F2-connecting geodesics, closed

geodesics and isometry-invariant geodesics (see Grove [2], [3]). In §2 we concentrate

on Vt — F2-connecting geodesics. A typical resuit in that section is that if Vt and V2

are compact and M is contractible then there exists Vx — K2-connecting geodesics.
The main tools in our approach are critical point theory on infinité dimensional

manifolds and elementary homotopy theory.

§1. A-Geodesics

Throughout this paper M will be a connected complète Riemannian manifold and
Nez MxM a closed submanifold of M x M. We shall say that a géodésie y : [0,1] -> M
is a N-geodesic if it satisfies the boundary condition

(y(0), y(l))sN and (y (0), - y (1)) is normal to JV, (1.1)

where y(t) dénotes the velocity vector ofyatt and MxM is endowed with the product
metric.

EXAMPLES. (1) A (M)-geodesics are closed geodesics on M.
(2) graph(^4)-geodesics, A:M-+M an isometry, are yl-invariant geodesics (see

[2] and [3]).
(3) Vt x F2-geodesics are Vx — F2-connecting geodesics.

Let LÎ(I,M) dénote the complète Riemannian Hilbertmanifold consisting of
absolutely continuous curves a:I= [0, 1] -» M with à square integrable (see Flaschel

and Klingenberg [1]). From the propositions 1.1.4 and 1.1.5 of [2] it follows easily that

x) This work was done under the program"Sonderforschungsbereich Theoretische Mathematik"
(SFB 40) at the University of Bonn.
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N-geodesics are in one to one correspondence with critical points for the energy intégral
E:AN(M)-+R, <7h-»iJJ||cr||2, where AN{M)={aeL\{I, M) | (cr(O), <r(l))eN} is a
submanifold of L\ (/, M). Furthermore E:AN(M)-+Rsatisfies condition (C) ofPalais
and Smale if projection on the first, Pl(N)czM or the second factor P2(N)czM is

compact (Theorem 1.2.4 of [2]). We shall therefore assume that e.g. Pl(N)cM is

compact. To make successful use of critical point theory for Hilbert-manifolds we
assume furthermore that N r\A is a union of closed submanifolds, - hère A dénotes the

diagonal A (M) of M in Mx M.
With N as above we hâve,

LEMMA 1.2. If there are no non-trivial N-geodesics on M, then the inclusion

e(x,x)(t) x Vtel

is a homotopy équivalence.

Proof (Sketch). First we observe that each component of N n A is a compact
non-degenerate critical submanifold of AN (M) of index 0. To see this we just note that
the Hessian of E:AN(M)-+R at a constant curve p:I-+M, p(t) p for ail tel is

given by
1

H(E)f(X,Y)= Ux'(t),Y'(t)>pdt

for ail X, YeTPAN(M). From this and (X(0), X (l))e TN for XeTAN(M) it
easily follows that each component of N n A is a non-degenerate critical submanifold
of index 0. We can now argue exactly as in the proofs of Corollary II.3 and Lemma
II.4 of [2], i.e. by the generalized Morse Lemma and condition (C) prove that there

exists an e>0 such that NnA is a strong déformation retract of AN(M)S:
{aeAN(M) | E (a)<&). Assuming that there are no critical values >0 (no non-

trivial iV-geodesics) we obtain from this, completenes of AN(M) and condition(C)
that the inclusion e:N n A-*AN(M) is a weak homotopy équivalence and hence a

homotopy équivalence.
We are now ready to prove the main resuit of this section.

THEOREM 1.3. If there are no non-trivial N-geodesics on M, then there is an

exact séquence of homotopy groups
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Exactness at n^-l{NnA) implies that

V[*]6«*(Af)3[g]6Jt,(Ar)3[A]eB«(iV, N nA) s.t.

(P2)* (M)) " ((PO* (M) - (P2)*

f/or readmultiplicative).
Proof. The inclusion ylN(M)^C£(M): {/eC°(J, M) | (/(0),/(l))etf} is a

homotopy équivalence (Theorem 1.1.3 of [2]) so instead of AN(M) we consider
CjJ(M). Consider now the commutative diagram,

"î" /(M)-+n*(NnA)

where the mid-sequence is the exact séquence for the fibration P:C%(M)->N9
p (j) (/(o),/(l)) with fiber the loopspace QM of M (Serre [5]), where ô is the

boundary map in the exact séquence for the pair (C%(M), QM) and H is the
Hurewicz map. We shall compute the maps in cupic homotopi.

Let a: IqxI-+C%(M) represent an élément [a] in n* + 1(C%M, QM). Evaluation
of az:/*x {0}-+QM, &t represents Hoô\_a]z=Hod(P^{oc]). From this we see that
évaluation of a: Iq+1 -+C$M, is a homotopy between — PtoPooL-\-ôtl+P2°P°ol
and the constant map, thus #°d([/0)=(A)*([/0)~(^2)*(M) fc>r ail
[f}]=P*[oL]en* + 1(N). Since we assume that there are no non-trivial iV-geodesics

£*:rc*(N nA)-*n*(C%M) is an isomorphism by Lemma 1.2 and the lower

séquence is the desired séquence.
We will now examine in détail what exactness at n+ÇN n A) i.e. e*(keri*) imj*

means.
Let [f~]enq(QM) be represented by f:Iq-^QM. Since 7#([/])ei/weJ|e there is a

homotopy

G^PxI^CUM)

with G1(-,0)=jo/and Gt(-, l):Iq-+e(NnA). Identifying e(Nr\A) with NnA
we get from [Gt('9 l)]ee#(ker/J|e) a homotopy

G2;IqxI->N
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with G2(-,0) G1(-,l) and G2(-, l) base point. The homotopiesPoGir/^xJ-» AT

and G2:Iqx/->N combines to an élément [g]enq+i (N) and G2 itself represents an
élément \h"]enq+1{N, NnA). Evaluation of Gl9 Ô1:lqxlxl-+M give rise to a

homotopy between P±o g+H (f)-P2o g:I«+l -+ M and P1oh-P2oh:Iq+i->M,
note that Gt(-90, •) #(/) Le. JÏ[/] (P^ + 1[A]-P2« + iM) -(^? + i[g]-
^? + i[d). Q.E.D.

Remark. From theorem 1.3 we can dérive the following theorems. IfMis compact
there exist closed geodesics on M. If V is a compact submanifold ofM and ifthere are no
V— V-connecting geodesics then the inclusion N -> Misa homotopy équivalence. We can
also obtain some partial results from [2] and [3] by this theorem.

§2, V1 - F2-Connecting Geodesics.2)

In this paragraph N= Vx x V2, where Vx and V2 are closed connected submanifold

of M, Vx is compact and Vx n V2 is a union of closed submanifolds of M (may be of
différent dimensions). As mentioned in §1 is a V1 x F2-geodesic y:/-» M with y(0)e Vu

We shall dérive ail our conclusions from the exact séquence of Theorem 1.3, which
in the case N= Vt x V2 can be written as,

(i)i~(ih n*(V1nV2)-+n*(Vl x V2) (2.1)

We get immediately

COROLLARY 2.2. Suppose that dim(F1nF2)=0 and that ni(M)=O or
Vxr\V2— {pt}. If there are no non-trivial Vt — V2-Connecting geodesics on M then ail
the homotopy groups of M are isomorphic to those of VlxV2, - infact (/i)* — 0*2)*:

:n^(Vtx V2)->n*(M) is an isomorphism.
The following example illustrâtes this coroilary.

EXAMPLE. Let V and W be Riemannian manifolds and let M Vx W be

endowed with the product metric. For a fixed (v, w)eM put V1 Vx {w} and V2

{v}x W, then there are no non-trivial V1 — V2-connecting geodesics on M. Other
immédiate conséquences of (2.1) are

COROLLARY 2.3. If V1nV2 is not connected and M is l-connected then there

exists non-trivial V1 — V2-connecting geodesics.

2) Note that iV-geodesics are in 1-1-correspondence with N—A (M)-Connecting geodesics in M x M
with product metric (see e.g. L. N. Pattersen, On the index theorem, Amer. J. Math. 85 (1963), 271-297).
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COROLLARY 2.4. Suppose that M is a K (n9 1) (e.g. M has négative curvature)
and that there are no non-trivial Vt — V2-connecting geodesics on M. Then we hâve:

(1) Ifn1(Vl) n1(V2)=0 then n1(V1nV2) 0 andnx{M) isfinite (impossible if
M has neg. curvature).

(2) If V1nV2 consists only of isolated points then Vx x V2 is a K (n\ 1).

COROLLARY 2.5. Suppose that M is contractible. Then we hâve:

(1) If Vt and V2 are compact there exists non-trivial Vx — V2-connecting geodesics.

(Vl==:V2 {pt} not included).
(2) If V2 is contractible and there are no non-trivial V1 — V2-connecting geodesics

on M then Vt c: V2.

Proof. (1) From (2.1) we get that

i:Vx nV2-^V1xV2, i(p) (p, p) pe Vt n V2

is a homotopy équivalence if there are no non-trivial Vx — F2-connecting geodesics.
Since now Vx x V2 is compact we get especially that dim(F1 n F2) dim(F1 x V2)
which is impossible except for the case Vx V2 point.

(2) In the case V2 contractible we obtain that

is a homotopy équivalence if there are no non-trivial Vx — F2-connecting geodesics on
M. By compactness dim(V1nV2)=V1 which then implies that VlnV2 V1 or
equivalently V1cV2.

Remark. M=R3=>R2 V2^V1 S1 gives an example of (2) in corollary 2.5. -
It is clearly difficult to get more gênerai results from (2.1). In concrète situations how-
ever where one knows more about homotopy groups of M, Vl9 and V2 (2.1) is
useful in deciding whether there exists Vx — K2-connecting geodesics on M.

Let us finish with some remarks on the case where M=In is a homotopy sphère.

COROLLARY 2.6. Let M=In be a homotopy sphère. Then

(1) If V1nV2 consists only of isolated points there exists non-trivial Vx — V2-con-

necting geodesics on M.
(2) If there is a q<n—\ so that n€(Pi)#0 and Ttq{V2)^0 then there exists non-

trivial V1 — V2-connecting geodesics on M (more gênerai q<l—\ if M is (/-l)-
connected).

Proof. Since max(dimKl5 dimF2)<« we hâve that nq{V1 x V2)^0 for some q<n.
This together with corollary 2.2 proves (1). To prove (2) we see from (2.1) that

i x y2) *s an isomorphism for *<«—1 if there are no non-
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trivial Vl — F2-connecting geodesics. If there is a q<n — \ with nq{V{)i^Q and

nq(V2)^=0 this is clearly impossible.
To illustrate that no reasonable gênerai existence results, besides those allready

mentioned, can be expected, let us give one more example on non-existence of Vx — V2-

connecting geodesics.

EXAMPLE. Let M=S3cR4 with standard metric of constant curvature 1 and

similar V2 S2 the equator of S1. Then for any F1=51 embedded in S2 such that
V1n(— F1) 0 there are no non-trivial V1 — K2-connecting geodesics. On the other
hand we note that if V1 Sk9 V2 Sl and V\VlnV2^, f=l,2 then there exists

non-trivial V1 — F2-connecting geodesics on M=In.
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