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Komplexe Basen zu quasieigentlichen holomorphen Abbildungen

NORBERT K UHLMANN

Meinem Lehrer, Heinrich Behnke, zum 75. Geburtstag.

1. Einleitung

X und Y seien irreduzible komplexe Rédume, 7: X — Y eine surjektive, holomorphe
Abbildung. Der Korper R(Y) der auf Y meromorphen Funktionen liBt sich als
Unterkorper des Korpers R,(X) der auf X meromorphen Funktionen, die von t
analytisch abhédngig sind, auffassen. — Es interessiert, unter welchen Bedingungen
R.(X) ein algebraischer Funktionenkorper iiber R(Y) ist.

Probleme dieses Types wurden schon von WeierstraB untersucht. Die wohl am
weitest gehenden allgemeinen Resultate in dieser Hinsicht finden sich in [2].

In einer Reihe von Spezialfillen 16ste K. Stein dieses Problem, in dem er zunéchst
die Existenz einer komplexen Basis (Z, ¢) zu 7 nachwies. — In [2] wurde vermutet,
daB es moglich sein miisse, die in [2], §9 und §10, dargestellten Resultate zu gewinnen,
indem man ebenfalls zunédchst die Existenz einer komplexen Basis sichert.

Dies fiihren wir uv.a. in der vorliegenden Arbeit durch. Im Mittelpunkt der Be-
trachtungen stehen nicht, wie in [2], die quasieigentlichen, sondern (die von mir so
genannten) N-quasieigentlichen holomorphen Abbildungen (die mit den quasieigent-
lichen holomorphen Abbildungen in einem sehr engen Zusammenhang stehen). Zen-
tral in der vorliegenden Arbeit ist

SATZ 1. Es seien X ein irreduzibler normaler komplexer Raum, 1:X—> Y eine
N-quasieigentliche holomorphe Abbildung mit der Entartungsmenge E,. ©(E,) sei in Y
analytisch. Dann besitzt t eine komplexe Basis (Z*, ¢p*). Z* ist normal. Die durch
t=y*o* definierte holomorphe Abbildung y*:Z* - Y ist eigentlich und diskret. (Z, ¢)
ist eine komplexe Basis von t|X; hierbei seienX=X—1"'(1(E,)), ¢=¢*| X, Z=
=Z*—y* 1 (t(E,)). ¢* ist ebenfalls N-quasieigentlich.

Die Voraussetzungen von Satz 1 sind z.B. bei einer quasieigentlichen holomorphen
Abbildung 7: X — Y eines irreduziblen normalen komplexen Raumes X gegeben.

Satz 1 wird in Abschnitt 3 bewiesen. — In Abschnitt 4 betrachten wir (als Beispiel
zu Satz 1) gewisse r-konkave holomorphe Abbildungen. — In Abschnitt 5 beweisen
wir die Hauptresultate aus [2], §10, mit Hilfe von Satz 1. — Als Ergidnzung weisen
wir noch in Abschnitt 6 die Existenz komplexer Basen bei N-vollen holomorphen
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Abbildungen normaler komplexer Rdume nach (der Begriff der N-vollen holomorphen
Abbildung steht in enger Beziehung zum in [2] gepréigten Begriff der vollen holomor-
phen Abbildung).

2. Vorbereitungen

a. Sofern nicht ausdriicklich anders vermerkt, seien die auftretenden komplexen
Réume reduziert und von abzéhlbarer Topologie. Ist N eine analytische Untermenge
einer offenen Menge U eines komplexen Raumes X, so sei N (wenn nichts anderes
vereinbart ist) mit der Strukturgarbe Oy: =((0x | U)/ A" | N versehen; hierbei sei A~
die Idealgarbe aller auf N verschwindenden holomorphen Funktionskeime.

Unter einer Niveaumenge einer holomorphen Abbildung 7:X — Y versteht man
eine Zusammenhangskomponente einer Faser t!(Q), Qe Y. — Eine holomorphe
Abbildung u: X — T heiBt von 7 analytisch abhidngig, wenn auf X eine offene, dichte
Menge U existiert, so daB u| U auf den Niveaumengen von t | U konstant ist.
Ist X irreduzibel, so ist u bereits von t analytisch abhdingig, wenn auf X eine offene
Menge U #0 existiert, so daf ul U auf den Niveaumengen von 1:] U konstant ist.
u nennt man strikt analytisch abhidngig von 7, wenn u auf allen Niveaumengen von
7 konstant ist. — ¢: X — Z majorisiert die holomorphe Abbildung 7:X — ¥, wenn
(genau) eine holomorphe Abbildung §/:Z — Y mit T=1 o existiert.

Ein Paar (Z, ¢) heiBt eine komplexe Basis von 7, wenn gilt: Z ist ein komplexer
Raum, ¢:X — Z ist eine von 7 strikt analytisch abhingige holomorphe Abbildung,
die jede von 7 strikt analytisch abhédngige holomorphe Abbildung u: X — T majorisiert.

Eine holomorphe Abbildung ¢:X—Z heiBt maximal, wenn sie jede von ihr
strikt analytisch abhiingige holomorphe Abbildung u: X — T majorisiert; (Z, @) ist
eine komplexe Basis von 1, wenn ¢: X — Z maximal ist und ¢ von t sowie 7 von @
strikt analytisch abhédngen.

Wichtig ist: Es seien X ein irreduzibler normaler komplexer Raum, t: X — Y eine
nirgends entartete holomorphe Abbildung. Dann besitzt © eine komplexe Basis (Z, §).

b. 7:X—> Y sei eine holomorphe Abbildung. Das Supremum supp y(dimpX—
—dimpt~! (¢ (P)) nennt man den Rang von . — Der Rang von 7 stimmt mit der
halben topologischen Dimension von 7 (X) tiberein.

X sei ein irreduzibler komplexer Raum. Die Menge E, aller Punkte PeX mit
dimpt ™ (¢ (P))>dim X —rangzt ist auf X analytisch und X—E, liegt auf X dicht.
E, heiBt die Entartungsmenge von 7. — Ist E,=0, so nennen wir t nirgends entartet.

Eine eigentliche, holomorphe Abbildung 7: X — Y heiBt eine eigentliche Modifi-
kationsabbildung, wenn auf X eine offene, dichte Menge existiert, die vermoge 7
biholomorph auf eine in Y offene und dichte Menge abgebildet wird.

Wichtig ist der sogenannte ,,Hauptsatz von Zariski‘“: Y sei ein normaler komplexer
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Raum, ©1: X — Y sei eine eigentliche Modifikationsabbildung. Dann ist © bereits biholo-
morph, wenn die Entartungsmenge E_ von 7 leer ist.

X sei ein komplexer Raum. Eine Abbildung u von X in die Potenzmenge von Y
heilt eine meromorphe Abbildung von X in Y, wenn gilt: Der Graph G,:=
={(x, y) | xeX, yep(x)} ist analytisch in X x Y¥; die Projektion G,— X ist eine
eigentliche Modifikationsabbildung. — Im Fall einer meromorphen Abbildung u
schreiben wir unter MiB3brauch der Bezeichnungsweise auch u: X — Y. — Eine mero-
morphe Abbildung u:X—P! nennen wir eine meromorphe Funktion auf X, wenn
p~1 (P! - {o0}) auf X dicht liegt.

c. Eine holomorphe Abbildung 7:X— Y hei8t semieigentlich, wenn es zu jedem
Punkte QeY eine Umgebung ¥ von Q und eine kompakte Menge K in X mit
1(X)nV=1t(K)nV gibt.

7 ist genau dann semieigentlich, wenn es zu jedem Punkte Qe Y eine Umgebung
¥ von Q und eine Menge K =t~ (V') gibt, so daB t(K)=1(r"*(V))und ¢ | K: K>V
eigentlich ist.

Wichtig ist fiir unsere Zwecke die folgende Verschirfung des Remmertschen
Abbildungssatzes: Ist 1: X — Y eine semieigentliche holomorphe Abbildung, so ist T(X)
in Y analytisch.

Die holomorphe Abbildung 7: X — Y heiBle N-quasieigentlich, wenn es zu jedem
Punkte QeY eine Umgebung ¥ von Q und eine Menge K<t * (V) gibt, so daB
1| K:K— V eigentlich ist und fiir alle Q'€ V' jede Zusammenhangskomponente von
771(Q’) in K eindringt. — Natiirlich ist jede N-quasieigentliche holomorphe Abbildung
semieeigentlich.

SATZ 2. Es seien X ein irreduzibler normaler komplexer Raum, t:X— Y eine
nirgends entartete, N-quasieigentliche holomorphe Abbildung. Dann besitzt 1 eine
komplexe Basis (Z, ) mit der folgenden Eigenschaft: Die durch 1=y o definierte
holomorphe Abbildung \j:Z — Y ist eigentlich, diskret.

Beweis. Da 1: X — Y nirgends entartet, besitzt © eine komplexe Basis (Z, @).

Es sei V#0 eine offene Menge auf Y mit einer kompakten Menge K17 (V),
so daB t | K: K— ¥ eigentlich ist und fiir alle Q'€ ¥V jede Zusammenhangskomponente
von 71(Q") in K eindringt.

Nur endlich viele Zusammenhangskomponenten N, ..., Ny von t~1(Q’) dringen
in K ein. Also ist y ~1(Q’) endlichpunktig, d.h. : Z — Y is diskret.

Y:Z— Y ist eigentlich. — Ist nimlich K* < V kompakt, so ist wegen §~!(K*)c
(17! (K*)n K) auch § ~* (K*) kompakt; {: Z — Y ist somit eigentlich.

d. Eine holomorphe Abbildung 7:X— Y heift quasieigentlich, wenn es zu jedem
Punkte QeY eine Umgebung ¥ von Q und eine Menge K=t~ (V) gibt, so daB
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1| K: K- V eigentlich ist und so daB fiir alle Q'€ V jede irreduzible Komponente von
771(Q’) in K eindringt. — Natiirlich ist eine quasieigentliche holomorphe Abbildung
N-quasieigentlich. Wir benétigen

SATZ 3. Es seien X ein irreduzibler komplexer Raum, 1:X — Y eine quasieigent-
liche holomorphe Abbildung mit der Entartungsmenge E, und der Normalisierungs-
abbildung o' : X' - X. Dann gilt: 109’ : X' > Y ist N-quasieigentlich. Ist © nirgends
entartet, so ist T o9’ quasieigentlich. —t|E, ist quasieigentlich.

Der Beweis ist trivial. — Bemerkung: Die Voraussetzung der Irreduzibilitit von X
ist (bei passender Definition von E,) tiberfliissig.

Eine holomorphe Abbildung 7: X — Y heil3t quasieigentlich von der Kodimension
k, wenn es zu jedem Punkte Q € Y eine Umgebung ¥ von Q und eine Menge K =771 (V)
gibt, so daB t | K:K— V eigentlich ist und so daB fiir alle Q’eV gilt: Ist B eine
irreduzible Komponente von t~*(Q’) und ist C eine irreduzible analytische Teilmenge
von B mit dim B—dim C<k, so ist Cn K #0.

e. Die in a. zitierten Sdtze und Definitionen gehen auf K. Stein zuriick (vgl. [8], [9],
[12], [5], [6]). Die Aussagen und Begriffe in b. gehen auf R. Remmert zuriick; eine
zusammenfassende Darstellung findet sich z.B. in [2]. Aufwen der Begriff der
semieigentlichen holomorphen Abbildung zuriickgeht, weiBl ich nicht. — Der Ab-
bildungssatz fiir semieigentlich holomorphe Abbildungen wurde von mir zuerst 1964
bewiesen; inzwischen sind mehrere Beweise bekannt (vgl. [2]). — Die Begriffe der
quasieigentlichen holomorphen Abbildung und der quasieigentlichen holomorphen
Abbildung der Kodimension k& werden in [2] eingefiihrt.

3. Beweis von Satz 1; Zusiitze

a. Da 7 semieigentlich ist, ist 7(X) in Y analytisch. — Daher diirfen wir auf Grund
bekannter Sidtze der lokalen Theorie analytischer Mengen fiir unsere Zwecke 0.B.d.A.
annehmen, daB Y eine zusammenhidngende komplexe Mannigfaltigkeit und die
Abbildung 7: X — Y surjektiv ist.

Nach einem bekannten Satz von R. Remmert ist 7(E,) von einer Dimension
<dim Y-2.

Essei ¥=Y—1(E,), X=X—-1"'(z(E)), t:=1| X:X > ¥. Nach Satz 2 besitzt
eine komplexe Basis (Z, ¢), so daB die durch o =7 definierte holomorphe Abbil-
dung ¢ : Z — Y eigentlich, diskret ist. Z ist ein normaler komplexer Raum.

Nach [3] (vgl. auch [5], Satz A) existiert ein (durch die folgenden Eigenschaften
bis auf Biholomorphie eindeutig bestimmter) normaler komplexer Raum Z* mit
einer diskreten eigentlichen, surjektiven, holomorphen Abbildung y*:Z* — ¥, so
daBgilt: Z liegt dicht in Z* und stimmt mit §*~* (¥) iiberein; iiberdies ist ¥ =y* | Z.
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b. Wir zeigen: Die holomorphe Abbildung ¢: X — Z 148t sich zu einer holomorphen
Abbildung ¢*: X —» Z* fortsetzen, so daB t=y*o ¢* gilt.

Es seien i: X — X die identische Abbildung, G= X x Y der Graph von 7, Ge X x Z
der Graph von ¢, 1xy*: XxZ*—>Xx Y die durch (1xy*) (P, Q)=(P, y*(Q))
definierte holomorphe Abbildung, G, = (1 x y*)~!(G).

Es gibt eine irreduzible Komponente G* von G, mit G* n (X x Z )= G. Dies folgt
aus: H und G seien analytische Mengen eines komplexen Raumen W. Dann ist

(W—M)n G auf W analytisch (vgl. etwa [5a], Seite 224, Abschnitt b). ~ Die Projek-
tion n: G* — X ist eine eigentliche, diskrete Modifikationsabbildung. Da X normal ist,
ist 7 nach dem sogenannten Hauptsatz von Zariski biholomorph.

n,:G* - Z* sei die Projektion auf die 2. Komponente; m,on™!=¢*: X - Z* ist
von 7 strikt analytisch abhidngig; 7 ist strikt analytisch von ¢* abhingig. ¢*: X — Z*
ist ebenfalls N-quasieigentlich. ¢* ist die Fortsetzung von ¢ auf Z*. Da Z auf Z*
dicht liegt, ist ¢* eindeutig bestimmt.

c. Wir zeigen: u:X—7T sei eine von 7 strikt analytisch abhédngige holomorphe
Abbildung. Dann gibt es (genau eine) holomorphe Abbildung u*:Z*—>T mit
p=p*od*.

G,c X x T sei der Graph von p. Da p von 7 und damit von ¢* strikt analytisch
abhingt, ist die holomorphe Abbildung ¢*x u:X—>Z*xT, P—(¢*(P), u (P)),
N-quasieigentlich, wie wir uns tiberlegen:

Es sei ndmlich V*cZ* eine Umgebung von ¢*(P)=Q*eZ*, PeX, mit einer
Menge K*cg¢*~1(V*), so daB ¢* l K*:K* - V* eigentlich ist und so daB jede
Zusammenhangskomponente von ¢* ! (Q*'), Q* e V*, in K* eindringt.

Die Abbildung ¢* x u | K*:K*—> V*xT ist eigentlich. Da p von ¢* strikt
analytisch abhdngt und fiir alle Q* eV jede Zusammenhangskomponente von
¢*~1(Q*) in K* eindringt, dringt fir alle (Q*', Q*")e V* x T jede Zusammenhangs-
komponente von (¢* x u) ™! (Q*, Q*") in K* ein.

Also ist ¢* x u: X — Z* x T insbesondere semieigentlich und G**=(¢* x ) (X)
ist in Z* x T analytisch. n**:G** —» Z* sei die Projektion auf die 1. Komponente.
Uber Z ist n}* biholomorph, da (Z, ¢) eine komplexe Basis von 7 ist; es gibt nimlich
eine holomorphe Abbildung f:Z— T mit fod=p|X; G**n(ZxT) ist der Graph
von f.

Da ¢* N-quasieigentlich ist, ist 7} *:G** - Z* eigentlich. Da mit X auch G**
irreduzibel ist, ist somit n}* eine eigentliche Modifikationsabbildung.

Da p von t strikt analytisch abhingt, ist n}*:G**— Z* diskret; nach dem
Hauptsatz von Zariski ist n1* biholomorph. n3*:G** > T sei die Projektion
auf die 2. Komponente. Fiir p*=n3*ont*"1 gilt p=p*og*. — Damit ist Satz 1
bewiesen.
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d. In Abschnitt c. haben wir u.a. gezeigt:

ZUSATZ 1. 1: X - Y sei eine N-quasieigentliche holomorphe Abbildung; die holo-
morphe Abbildung u:X — T hdnge strikt analytisch von T ab. Dann ist die Abbildung
txu:X— YT, P (t(P), n(P)), N-quasieigentlich.

e. Aus den Uberlegungen zu Satz 1 und (4), S. 12 in [6] ergibt sich der

ZUSATZ 2. Es mogen die Voraussetzungen von Satz 1 gegeben sein. A sei eine
analytische Teilmenge von Y, so daf B=1""(A) in X diinn liegt. Dann ist (Z* —y*~1 (4),
¢* | X— B) eine komplexe Basis von t | X~ B.

f. Eine meromorphe Abbildung u:X — T heiBt analytisch abhidngig von der holo-
morphen Abbildung 7: X — Y (oder kurz: t-abhingig), wenn auf X eine offene und
dichte Menge X existiert, auf der u holomorph ist und von 7 strikt analytisch ab-
hingt.

ZUSATZ 3. Es mogen die Voraussetzungen von Satz 1 gegeben sein. Die mero-
morphe Abbildung f:X —P! sei 1-abhdngig. Dann existiert (genau) eine meromorphe
Abbildung f*:Z* - P! mit f*A¢p* = 1.

Bemerkung. Beziiglich der Komposition meromorpher Abbildungen vgl. etwa [2]
oder auch [6], §1,4. Unter f *A¢* verstehen wir die Komposition von ¢* und f *.

Beweis von Zusatz 3. Es sei A=1(E,), B=1"1(4), X=X—B. Nach [6] existiert
(genau) eine meromorphe Abbildung f*:Z-P!' mit f*4d=f|X. Wegen
dimy* 1 (4)<dimZ*—2 ist f* zu einer meromorphen Abbildung f*:Z* P!
fortsetzbar. Es gilt f=f*A¢*.

4. r-konkave holomorphe Abbildungen

a. Es seien D ein Gebiet im C"(z, ..., z,), geN, g>1, k: D >R eine €*-Funktion.
x heiBt streng g-pseudokonvex, wenn die hermitesche Form

~ %K
L(%): =Z ®ugi,

02,02,

(wenigstens) n— g + 1 positive Eigenwerte in jedem Punkte xe D aufweist.

Ist V=D ein komplexer Unterraum von D, so nennen wir i } V eine streng
g-pseudokonvexe Funktion auf V.

X sei ein komplexer Raum. Ist x: X — R eine Funktion, die lokal von dem soeben
beschriebenen Typus ist, so heiBt x eine streng g-pseudokonvexe Funktion auf X.
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b. X und Y seien komplexe Riume, es sei r>0, 7: X' — Y sei eine holomorphe Ab-
bildung.

7 heiBt r-konkav, wenn zu jedem Punkte Qe Y eine Y-Umgebung mit der folgenden
Eigenschaft existiert: Es gibt ein ae{— 0} UR, ein a’eR, &’ >a, und eine Abbildung
k:171(V)— (a, ) der Klasse €, so daB gilt: Ist r=0, so ist {Pet™ ' (V) |k (P)<
<a'}=0.Istr>1undist {Pet™1 (V)| k(P)<a'} #0,s0istx | {Pet™ (V)| x(P)<a’}
streng r-pseudokonvex. Fiir alle a”, a">a, ist t | {Pet™* (V) | x(P)>a"} eigentlich.

x heiBt eine Ausschdpfungsfunktion von ™! (¥), a’ eine Konkavitdtsschranke

von K.
Der Begriff der r-konkaven holomorphen Abbildung geht auf [7] zuriick.

c. 7:X— Y sei holomorph und r-konkav. x:X— (@, c0) sei eine Ausschépfungs-
funktion mit einer Konkavititsschranke a’. Fiir a">a sei B,.={PeX |x(P)>d"}.
Fiir alle a”>a und fiir alle Qe Y liegt somit t~*(Q) N B,. relativkompakt in = (Q).
Im folgenden sei a<a’ <a'.

Es sei O0<profOy,p—r—rangt, prof . p).,0x,p=>rangt fir alle PeX mit
k(P)<a'. Hierbeisei A (Q) fir Qe Y die maximale Idealgarbe < 0y mit der Nullstellen-
menge Q.

SATZ 4. Unter diesen Voraussetzungen ist T N-quasieigentlich.

d. Bevor wir diesen Satz beweisen, treffen wir einige Vorbereitungen:

X sei ein komplexer Raum mit einer kohdrenten Garbe . Es sei S,(<):=
={PeX | profy, ,#p<¢}. Nach G. Scheja (vgl. z.B. [11]) ist S, () eine auf X
analytische Menge der Dimension <g. Es gilt ([11]): 1, ..., fx€ ' (X, Ox) seien Nicht-
einheiten in Pe X, Dann bilden f,..., f; genau dann eine & p-Folge, wenn fiir alle
020 dimp[(fi=--=/,=0)nS,(¥)]<eo—k ist. - Mit Hilfe dieser Aussage folgert
man: ¢:X—- C"(xy,..., x,,) sei eine holomorphe Abbildung vom Rang k. Fiir
Qeo(X) sei A (Q)=0c die maximale Idealgarbe mit der Nullstellenmenge Q. -
Genau dann ist prof g, p >k fiir alle Pes ™' (Q), wenn eine (m—k)-dimensionale
Ebene E,,_, des C™ durch den Punkt Q liuft, fiir die gilt: Fiir alle Peo~* (Q) und fiir
alle >0 ist dimp (¢~ (E,, - 1) N S,(&))<g—k. - Diese Aussage diirfte bekannt sein;
wir verzichten daher auf den Beweis.

Wir wenden dieses Resultat unter den Voraussetzungen von c. auf & =0y an und
erhalten:

Es sei Qe€Y, d=rangt. Dann gibt es in Oy o, Elemente x,,..., x4, die fiir alle
Petr™!(Q) mit x(P)<a’ eine Primfolge in 0y p bilden. O.B.d.A. wollen wir (aus be-
zeichnungstechnischen Griinden) annehmen, daB x;, ..., x, von Schnitten aus I' (Y, 0y)
herriihren, die wir ebenfalls x,,..., x, nennen wollen; t*(x,),..., t*(x,;) bezeichnen
wir auch mit x, ..., X,
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Der Punkt Q ist ein isolierter Punkt von {x,=---=x,=0}n1(X). T~ (Q) ver-
schen wir mit der Strukturgarbe 0,-ig):=0x/(xy,...,x,)"Ox| 77" (Q). Es gilt
0<prof0,-1 g, p—r fiir alle Pet~'(Q). Nach [1] ist somit fiir alle a”, a<a" <a’, die
kanonische Abbildung

r'(t™(Q), 0,-1)) = I'(z7(Q) N By, O,-1¢g))
bijektiv.
a",a<a’<a', sei fest gewdhlt. — Angenommen, es gibe eine Zusammenhangskompo-
nente N von t~'(Q), die nicht in B,. eindringt. s sei das Element aus I'(z~*(Q),
0,-1) mit s | N=1, s| t7!(Q)—N=0. s ist #0, liegt aber im Kern von . Da ¢
bijektiv ist, kann es kein derartiges s geben. Also dringt jede Zusammenhangskompo-
nente von 1~ (Q) in B,. ein.

Mit Hilfe von [1] (Bijektivitit von g) folgt sofort: Es ist t(X)=1(B,.); da
T | B,.:B,.— Y eigentlich ist, ist somit (X ) in Y abgeschlossen. — Wir haben bewiesen:
7: X — Y ist N-quasieigentlich.

e. Es gelten weiterhin die Voraussetzungen von Satz 4. — Fiir alle Pet™!(Q),
k(P)<a', ist dimpr~'(Q)=dim X —rangt. 7 ist also in diesen Punkten PeX mit
k(P)<a' nicht entartet. Die Entartungsmenge E, von 7 liegt somit in B, =
={PeX | k(P)>d'}. t | E, ist somit eigentlich und nach dem Remmertschen Ab-
bildungssatz ist 7 (E,) eine analytische Teilmenge von Y der Dimension <rangt—2. -
Somit haben wir

SATZ 5. Unter den Voraussetzungen von Satz 4 ist das Bild t(E,) der Entartungs-
menge E, von t in Y analytisch.

Somit sind (falls X normal ist) fiir : X — Y die Voraussetzungen von Satz 1 erfiillt
und 7 besitzt eine komplexe Basis (Z*, ¢*), so daB die kanonische Abbildung
Y*:Z* - Y eigentlich und diskret ist.

f. Es mogen weiterhin die in c. gemachten Voraussetzungen gelten. X sei normal.
Wir nehmen zusétzlich an, daB fiir alle Pe X mit x(P)<a’ 0<profOy p—r—2-rangz
gelte.

Nach [7] ist fiir alle a”, a<a”<a’ (es sei t": =1 | B,.) die Bildgarbe t(5, Oy eine
kohirente 0y-Algebra und fiir alle offenen steinschen Mengen ¥ von Y ist die kano-
nische Abbildung I'(t71(V), Ox)->T (z7'(V)n B, Ox) ein 0y-Algebra-Isomor-
phismus. Also gibt es bekanntlich einen komplexen Raum Z’ mit einer diskreten,
eigentlichen Abbildung 1':Z'—> Y, so daB 1(0) Oz zu 15, Ox als Oy-Algebra iso-
morph ist; es gibt eine holomorphe Abbildung ¢': X — 2’ mit t=1o¢". (Z', §’) ist
eine komplexe Basis von 7. — Die obigen IsomorphismenI' (™1 (V), Ox) > T (7' (V)n
N B,., Oy) und die Uberlegungen in d implizieren, daB die Fasern von ¢’ zusammen-
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hingend sind. — Z’ diirfen wir somit mit dem Niveaumengenraum von 7z und ¢": X — Z’
mit der Abbildung, die jedem Pe X die durch P laufende Zusammenhangskomponente
von t~!(t(P)) zuordnet, identifizieren. — Da X normal ist, ist natiirlich Z' normal
und wir diirfen (Z*, ¢*) mit (Z’, ¢’) identifizieren.

Derartige Isomorphismen I'(t~!(V), 0x) - I' (z~' (V) B,., Ox) erhilt man bei
geeigneter Wahl von V auch unter der schwicheren Voraussetzung 0 <profOy p—r—
—rangz fiir alle Pe X (unveroffentlichtes Resultat). — Hieraus folgt leicht, daB der
Niveaumengenraum von t hausdorffsch ist. — Mit Hilfe dieser Aussage zeigt man dann
sofort, daB (sogar unter der schwicheren Voraussetzung 0 <prof Oy ,—r—rangt) bei
normalem X die Fasern von ¢*: X — Z* zusammenhéngend sind, Z* normal ist und
0, die durch ¢*: X — Z* definierte Quotientenstruktur auf Z* ist, wenn man die
Resultate von [5] beriicksichtigt.

5. Funktionenkirper

a. Es seien X ein irreduzibler normaler komplexer Raum. 7: X — Y eine surjektive,
N-quasieigentliche Abbildung; mit X ist auch Y irreduzibel. Das Bild 7(E,) der
Entartungsmenge E, von 7 sei in Y analytisch. — Jede auf Y meromorphe Funktion
f:Y— P! 148t sich zu einer meromorphen Funktion 4 f=f47: X — P! , liften*. Die
Abbildung t4: R(Y) - R(X) des Kérpers R(Y) der auf ¥ meromorphen Funktionen
in den Kérper R (X) der auf X meromorphen Funktionen ist injektiv.

Entsprechend sind die injektiven Abbildungen y*4:R(Y)—> R(Z*), ¢**:
R(Z*)-> R(X) definiert; hierbei seien (Z*, ¢*) die (nach Satz 1 existierende)
komplexe Basis von 1, y*:Z* — Y die kanonische Abbildung Z* - Y mit 1=y *o¢*
und R(Z*) der Korper der auf Z* meromorphen Funktionen.

Nach Abschnitt 3, Zusatz 3, ist R(Z*) isomorph zum Korper R, (X) der auf X
von 7 analytisch abhédngigen meromorphen Funktionen. Da y*: Z* — Y eigentlich und
diskret ist, ist R(Z*) eine endliche, algebraische Erweiterung von y*4(R(Y)). Der
Grad[R(Z*):¢y*4(R(Y))] ist < der Blitterzahl von Z* iiber Y. Somit folgt, wenn
wir R(Y) mit seinem Bild 4 (R (Y)) in R, (X) identifizieren,

SATZ 6. Der Korper R.(X) der auf X von t analytisch abhingigen meromorphen
Funktionen ist eine endliche algebraische Erweiterung von R(Y). Der Grad[R,.(X):
:R(Y)] ist < der Blitterzahl von Z* iiber Y.

b. Wir benutzen weiterhin die Voraussetzungen und Bezeichnungen von a.

) Es seien V eine nichtleere, offene Teilmenge von Y, U=1"*(V),1o=1| U, f:X > P
eine meromorphe Funktion, g,:V— P! eine auf V meromorphe Funktion mit
1980 =/, | U. Dann gibt es (genau) eine auf Y meromorphe Funktion g:Y— P' mit

tig=7.
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Beweis. Nach bekannten Sitzen ist wegen 75 go =1 ] U fvon t analytisch abhéngig.
Also gibt es (genau) eine meromorphe Abbildung f*:Z* > P! mit ¢*4f*= f.
G;scZ* x P! sei der Graph von f*; G . ist irreduzibel. — Es sei G=(y* x 1) (G,.)=
< Y x P!; hierbei sei 1: P! — P! die identische Abbildung. Da * x 1 eigentlich ist,
ist G eine irreduzible analytische Teilmenge von Y x P!. (V¥ x P')n G ist der Graph
von g,. Also ist die Projektion (V'xP!')nG— V eine eigentliche Modifikations-
abbildung. Da G irreduzibel ist, ist somit auch die Projektion G — Y eine eigentliche
Modifikationsabbildung und der Graph einer meromorphen Funktion g: Y — P! mit
g | V=go. t"g stimmt auf U mit f iiberein. Da X irreduzibel ist, ist t%g=/ q.e.d.

B) Es seien V#0 eine offene Teilmenge von Y, U=t~ (V). to=1 | U bilde U biholo-
morph auf V ab. Dann ist die Abbildung *:Z* — Y eine eigentliche Modifikations-
abbildung. Insbesondere ist R(Z*)~R(Y).

Beweis. y*:Z* > Y ist eigentlich, diskret, surjektiv. ¥ und Z* sind irreduzibel.
Da y* |y* ' (V):y* ! (V)> V biholomorph ist, ist somit y* eine eigentliche
Modifikationsabbildung. q.e.d.

Bemerkung. o) und B) hdngen zusammen mit [2], Theorem 9.3 und Prop. 9.4
(die sich auch aus @), ) herleiten lassen).

¢. X', Yseienirreduzible komplexe Rdume, 1’: X’ — Y sei eine surjektive, holomorphe,
quasieigentliche Abbildung. v:X— X’ sei die Normalisierungsabbildung, es sei
=10y, R(X), R(X’), R(Y) seien die Korper der auf X bzw. X’ bzw. Y mero-
morphen Funktionen; R, (X) sei der Korper der auf X von 7 analytisch abhingigen
meromorphen Funktionen, R, (X') sei der Korper der auf X' von 1’ analytisch
abhingigen meromorphen Funktionen. Jede auf ¥ meromorphe Funktion g: Y — P1
koénnen wir zu einer auf X’ meromorphen Funktion 7'4g , liften‘. Da 1’ surjektiv
ist, ist die Abbildung 7’4: R(Y)— R (X"’) injektiv. — Entsprechend seien die injektiven
Abbildungen t4: R(Y) - R(X), v*: R(X’") > R(X) definiert. v4 ist ein surjektiver
Isomorphismus und bildet R, (X") auf R, (X) ab.

7: X > Y ist N-quasieigentlich; auf 7 treffen somit die Voraussetzungen von Satz 1
und Satz 6 zu (Satz 3). Identifizieren wir R(Y) mit seinem Bild in R,(X), so folgt

(vgl. [2], 9.2).

SATZ 7. R.(X’') ist eine endliche algebraische Erweiterung von R(Y). Der
Grad[R.(X'): R(Y)] ist < der Blitterzahl von Z* iiber Y. — Hierbei sei (Z*, ¢*)
die komplexe Basis von .

d. X und Y seien irreduzible komplexe Riume. 7: X — Y sei' eine surjektive, quasi-
eigentliche holomorphe Abbildung der Kodimension k; E, sei die Entartungsmenge
von 7, es sei E=1(E,). Da t | E. semieigentlich ist, ist E in Y analytisch. Es gilt
dim E<dim Y-2.
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f1s---» fi seien t-unabhingige meromorphe Funktionen auf X (zu diesem Begriff
vgl. 2], S. 83). P, i=1,..., k, sei die Polstellenmenge von f;, U; die Unbestimmtheits-
menge. " sei der Graph der Abbildung X— (P, u...uUP, VU, U...0U,)—~ C
P> (fi(P),..., fi(P)). I sei die in X x P* abgeschlossene Hiille von . — Die Pro-
jektion m,:I' > X ist eine eigentliche Modifikationsabbildung. Es seien n,:I" — P*
die Projektion, A: I' » Y x P* die durch P— (t (n, (P)), n, (P)) definierte holomorphe
Abbildung.

Es ist leicht einzusehen (wir verzichten auf den Beweis; vgl. etwa in [2], S. 211, die
Ausfiihrungen zu 2.), daB i|I'—A""(«(E,) x P¥) quasieeigentlich ist. A':I*>T sei
die Normalisierungsabbildung. 1*:=101":I'*— ¥ x P* ist N-quasieeigentlich. Wegen
RYU (M ~R,.(I'™) ergibt Satz 6

SATZ 8. ([2], 10.5). Der Kirper R,(I') der auf I von A analytisch abhiingigen
meromorphen Funktionen ist eine endliche algebraische Erweiterung von R (Y x P*),
dem Korper der auf Y x P* meromorphen Funktionen. Da R(Y x P*) eine rein trans-
zendente Erweiterung von R(Y), dem Kirper der auf Y meromorphen Funktionen,
vom Transzendenzgrad k ist ([2], §6), ist R, () ein algebraischer Funktionenkdirper
iiber R(Y) vom Transzendenzgrad k.

Hierbei haben wir R(Y) und R(¥xP*) mit ihren kanonischen Bildern in
R, (I) identifiziert.

6. Komplexe Basen von N -vollen holomorphen Abbildungen

a. Es seien X ein (irreduzibler) normaler komplexer Raum, 7: X — Y eine holomorphe
Abbildung, E, die Entartungsmenge von 7. 7 heiit N-voll, wenn es zu jedem Q€Y
eine Umgebung ¥ von Q mit der folgenden Eigenschaft gibt: Es existieren offene
Mengen U,, veN, in X mit t~} (V)= |, U,, so daB fiir alle veN 7,:=1 | u,Uu,-»V
N-quasieigentlich und t(E,n U,) in V analytisch ist.

Axf 7,: U, - V ist somit Satz 1 anwendbar. — Wir zeigen

SATZ 9. Die holomorphe Abbildung t:X — Y des normalen komplexen Raumes X
sei N-voll. Dann besitzt t© eine komplexe Basis (Z, ¢); Z ist ein normaler komplexer
Raum, die durch t=\{ ¢ definierte holomorphe Abbildung y:Z—>Y ist diskret;
¢: X — Z ist N-quasieigentlich.

b. Zwei Punkt x;, x,€X heiBen dquivalent, wenn fiir alle von 7 strikt analytisch
abhingigen holomorphen Abbildungen ¢:X— T o(x,)=0(x,) gilt. Z sei der Raum
der Aquivalenzklassen, ¢:X—Z die Abbildung, die jedem xeX die zugehorige
Aquivalenzklasse zuordnet.

Z versehen wir mit der durch ¢ gegebenen Quotientenstruktur: Eine Menge
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WeZ heiBe offen, wenn ¢ ~! (W) in X offen ist. Damit tridgt Z eine Topologie. — Eine
auf einer in Z offenen Menge W gegebene holomorphe Funktion f: W — C heiBe
holomorph, wenn fo(¢ | ¢~ (W)) auf ¢~* (W) holomorph ist. - O sei die Garbe
der holomorphen Funktionskeime auf Z. — Wir zeigen: Z, versehen mit der Struktur-
garbe 04, ist ein normaler komplexer Raum, ¢: X — Z ist holomorph.

c. Es sei Q€Y ein Punkt mit einer Umgebung V von Q, so daB gilt: Es existieren
offene Mengen U,, veN, in X mit (V)= ,n U,, daB so fiir alle veN 7,:=
:=1 | U,: U, > V N-quasieigentlich und t (E,n U,) in V analytisch ist. - Hierbei sei
E, die Entartungsmenge von 7.

Es sei Qe_r_(?(—j; in diesem Fall diirfen wir U, #0, veN, annehmen. O.B.d.A. seien
die U, zusammenhingend und damit irreduzibel, da X normal ist. Nach Satz 1
besitzt ¢ | U,:U,— V eine komplexe Basis (Z,, ¢,); es sei y,:Z,— V durch 7 | U,=
=, ¢, definiert.

d. & sei die Familie aller strikt von 7 analytisch abhidngigen holomorphen Abbil-
dungen, ¥, sei die Familie aller strikt von t analytisch abhingigen holomorphen
Abbildungen ¢:X— Z, die v majorisieren (d.h. zu denen genau eine holomorphe
Abbildung {: Z — Y mit t= -  existiert). - Ist fe F, f: X > T, soisttx f: X —» Y x T,
P— (t(P), f(P)), eine strikt von 7 analytisch abhingige holomorphe Abbildung,
die © majorisiert. — Somit gilt

(1) Fir alle ae X ist (o5 (£ @)= Nseg.S " (f @).

Nun sei fe EA}I, f:X—Z. f(U,) ist fiir veN eine irreduzible, lokal-analytische
Teilmenge von Z der Dimension rangz; es sei nidmlich f; =ho f, h: Z - Y; die Abbil-
dung /| U,:U,—~h™* (V) ist semieigentlich und f(U,) ist in A~* (V) analytisch und
irreduzibel, da U, irreduzibel ist. - Da Qe Y beliebig gewdhlt war und somit ganz X
durch Mengen des Types U, iiberdeckbar ist, folgt aus [12], S. 334, Aussage (6), die
Existenz eines normalen komplexen Raumes Z’ mit den folgenden Figenschaften:
Es gibt eine f majorisierende, strikt von 7 analytisch abhidngige, fast iiberall offene
holomorphe Abbildung f’':X—Z’ und eine diskrete holomorphe Abbildung
1:Z' > Z mitf=1"of".

Es sei ¥, die Familie aller fast iiberall offenen, T majorisierenden fe i’}l in
normale komplexe Rdume. Nach dem voraufgehenden gilt

(2) FiralleaeXist Nsegf  (f(@)=Nyes, f 1 (f(a))

Wir wihlen nun ein festes U, und behaupten:

3 Nyeg. S 1(f(U,))ist in X offen.
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Beweis. Es seien xe () ;g f "' (f(U,)), xeU,, fe &y, f:X>Z, h:Z - Y sei die
durch ho f=1 definierte holomorphe Abbildung. A~ (V') ist normal und von der
reinen Dimension rangz; die irreduziblen Komponenten von A~ (V) sind genau die
Zusammenhangskomponenten von A~ (V).

f| U,:U,—»h~* (V) ist semieigentlich, somit ist f(U,) in A~ * (V') analytisch und
irreduzibel (U, ist ja irreduzibel!). Da fund 7 denselben Rang besitzen, ist dim 1 (U,)=
=dim f(U,)=rangz. Wegen f(x)e f(U,)n f(U,) ist f(U,)=f(U,) (f(U,) ist ja
ebenfalls eine irreduzible, analytische (rangt)-dimensionale Teilmenge von A~ (V),
also eine Zusammenhangskomponente von 2~ (V)). — Hieraus folgt (3).

Nun ist aber offensichtlich (,;.z/ "' (f(U,))=¢""(¢(U,)), also ist wegen (1),
(2), (3) 7' (¢(U,)) in X offen und ¢ (U,) ist somit offen in Z.

e. Wir haben eine eindeutig bestimmte surjektive Abbildung A,:Z,— ¢ (U,) mit
¢ | U,=A,o¢,. — Wir nennen zwei Punkte x,, x, auf Z, dquivalent, wenn fir alle
feFmit | U=f,o¢, f,(x;)=1,(x,) gilt. Z, sei der Raum der Aquivalenzklassen
von Z,; wir kénnen Z, mit ¢ (U,) identifizieren. Z; entsteht aus Z, ,,durch Identifizie-
rung gewisser Blitter von Z, iiber ¥, (Z,)*“. — Mit Hilfe des Hauptresultates von [3]
folgt leicht, daBB Z,=¢ (U,) ein normaler komplexer Raum ist.

Nun ist ferner Z trivialerweise hausdorffsch, weil sich die Punkte in Z durch
holomorphe Abbildungen in komplexe R&dume, also insbesondere durch stetige
Abbildungen in Hausdorffriume trennen lassen.

Damit ist Satz 9 im wesentlichen bewiesen; die restlichen Behauptungen von
Satz 9 sind aber trivial.

Bemerkung. Der Beweis von Satz 9 ist dem Beweis von Satz 1 in [12] nach-
modelliert.

f. Der Begriff der N-vollen holomorphen Abbildung ist eine Variation des Begriffes
der vollen holomorphen Abbildung, der in [2], §11, eingefiihrt wird:

X und Y seien komplexe Rdume (X sei nicht notwendig normal), t: X — Y sei
eine holomorphe Abbbildung. t heiBt voll, wenn es zu jedem Qe Y eine Umgebung V'
von Q mit der folgenden Eigenschaft gibt: Es existieren offene Mengen U,, veN, in
X mit == (V)=U), U,, so daB fiir alle veN 7,:=t | U,: U, - V quasieigentlich ist.

Ist 7: X — Y eine volle holomorphe Abbildung und ist ¢: X — X die Normalisie-
rungsabbildung, so ist £=7.9:X — ¥ nach Satz 3 N-voll.
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