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A Vanishing Theorem in Homological Algebra

DoNALD W. ANDERSON and DoNALD W. DAvis

1. Introduction

In this paper we shall study properties of modules M over the mod2 Steenrod
algebra & which are useful when using the Adams spectral sequence [1]. Our main
result is a vanishing theorem for Ext,, (M) in terms of H (M ; P;), where P; are certain
elements of &7 whose square is zero so that they act as differentials on M.

THEOREM 1.1. If M is an &/-module and P,? is the lowest degree P; with s<t
such that H (M ; P;)+#0, then Ext®*(M, Z,)=0 for ds>t + ¢, where d =deg(P,?) and
¢/(d —1) is approximately t,—2.

All modules in this paper are understood to be positively graded.

Vanishing theorems of this type were first proved by Adams [2], the case of
Theorem 1.1 when d =3. In 1969 Anderson and Mahowald independently proved the
case d =6 — that the Adams spectral sequence of an 27,-free module vanishes above
slope s/(¢t —s)=41. This was related to Mahowald’s computation of the image of J [8],
for if S is the sphere spectrum with its zero degree homotopy group killed and P is
infinite real projective space, there is a map P— S [8], whose mapping cone has
Z,-cohomology free over &,. In this paper we shall employ the techniques which
Anderson used to prove this important case.

The effective use of P/-homologies was initiated by Adams and Margolis [4]. We
shall use our methods to obtain a proof of the main theorem of [4] which avoids de-
tailed computations using the Steenrod algebra.

THEOREM 1.2. If M is an &/-module such that H (M ; P})=0 for all s<t, then
M is a free s/-module.

The main tool is an exact sequence relating Ext,(Z,, Z,) and Extgz(Z,, Z,), when
A is obtained from B by addition of one generator. This is particularly useful if a
certain element in Ext} (Z,, Z,) can be shown to be nilpotent. We can accomplish this
for certain subalgebras of the Steenrod algebra by using a variation on the bar resolu-
tion. The Steenrod algebra is then constructed one generator at a time, using the
exact sequence to prove a vanishing theorem for the cohomology of each sub-
algebra.

We wish to thank the referee for many helpful suggestions, and particularly for
his very nice proof of Proposition 3.4, which is the one which we give here.
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2. The Bar Construction of a Hopf Algebra

If A is a graded algebra over k, and if M, N are two graded left 4-modules, we can
define bigraded groups Ext}‘(M, N) as follows. Let P — M be a projective resoluton
of M as an A-module, and let Hom} (P,, N) be the A-homorphisms from P, to N
which decrease degree by s. Then Ext}'(M, N) is the ¢-dimensional homology of
Hom, (P, N).

Let A, A" be two graded modules over k, and let M, N (resp. M’, N’) be two
modules over A4 (resp. A’). Then M@M’' and N®N' are modules over A ®A’. If
P - M, P'> M’ are projective resolutions, so is P@P’'—» M ® M'. This gives us a
pairing

Hom®, (P, N) ® Hom?, (P’, N') - Hom%s. (P ® P, N® N'),
and consequently a pairing
Ext5;' (M, N) ® Exts" (M, N') = Exti/5:// " " (M@ M', N® N').

If 4 is a co-commutative connected Hopf algebra over k in the sense of [9], the
diagonal 4: 4 - A® A is a map of algebras, and thus makes every 4A® A-module into
an A-module. Since Ext is contravariant in the ring variable, 4, together with the
pairing above, induces a pairing

Ext5' (M, N) ® Exty'" (M, N') - Exti}*""**" (M@ M, N® N').

This pairing turns Ext*(k, k) into an algebra, where A acts on k through the aug-
mentation &: A — k. This product is the product used by Adams in [3].

Notice that if M is any A-module, M is naturally isomorphic to k® M. Since
e:A—k is A-linear, so is e®M : AQM — M. Also, 4: A — A is A-linear, since it is an
algebra map. Thus we can form an augmented simplicial 4-module # , (M ) which in
degree n is A"t ' ® M, with face and degeneracy maps given by d;=A'®e@A4" '@ M,
5;=A'®ARA" ‘@M. The degeneracy s_,=n®A"®M is a k-linear contracting
homotopy, so we see that augmented simplicial 4-module 5 (M )— M is acyclic.

To show that the associated chain complex of 5, (M) is always a free resolution
of M, it is necessary and sufficient to show that for any M, AQ M is free as an
A-module.

Let .M be the A-module obtained from the k-module structure of M and the alge-
bra map ¢:4—k. Then A® (,M) is certainly free, for 4 acts on it by the formula
a(a' @m)= (aa')®m. We define two maps ¢:AQ,M > AQM, y:AQM - AR M.
The map ¢ is the following composition:

4A0M A®a

AQMZTS ARAQ M-S AQM
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where « is the action of 4 on M. Both maps are A-linear, so ¢ is A-linear. The map y
is the following composition:

AMZE A 4M 222 s A M2 A M

where y: A — A is the canonical antiautomorphism. The following proposition follows
from the formula u(x®A)A=ne=p(A®y)4 and the usual associative laws. The
proof is elementary and is left to the reader.

PROPOSITION 2.1. ¢ and y are inverse to one another. Thus y is A-linear.

Notice that (2.1) implies that each term of J# , (M) is free, so the associated chain
complex is a free resolution of M. We call 5 (M ) the Hopf bar construction of 4 for
M. One can use (2.1) to show that #, (M) is isomorphic to the usual bar construc-
tion, though we shall not show this as we shall not need it.

Let M*=Hom, (M, k). Since there is a natural isomorphism Hom,(4® M, k)=
=~ M*, we have, via ¢, a natural isomorphism t:Hom,(4A® M, k)— M*. Since 7 is
natural, if 1: M — N is A-linear, t Hom,(A®A4, k)=A*z.

PROPOSITION 2.2. Under the isomorphism t above,  @QARQM :AQARM - AQ®
®M has (as its dual (y@M*)a*: M* — A*Q M*, where a: AQ M — M is the action of
Aon M. Also, AQM :AQM - AQARM has as its dual n*QM*: A*QM* > M*.
Thus Hom, (¢ ,(M), k) is isomorphic to a cosimplicial k-module which in codegree n
is (A*Y'®M*, and with coface and cogeneracy maps given by:

di=(A*)i-'1®8*®(A*)n—i+1®M* i>0
Si___(A*)i—1®A*®(A*)n—i—1 i>0
S0=ﬂ*®(A*)"®M*

dO — ((X(ArH- 1)*) ® (A*)n ® M*) Tn+1 ((“*)n ® a*)

where A"t1:A— A"t is the iterated diagonal, and T"*' is the signed inter-
g
change

T (0, 001® Qs ®m)=+3,0a,®®0,:; ®3®®a,Om.

Given any simplicial abelian group G, Moore has shown how to define an associated
chain complex G with homology the same as that of G. Let G, =G, be Ker(d;)n...
...nKer(d,), and let d:G,— G,_; be d,. Then d*=0 on G, and the obvious map
H,(G)— H,(G) is an isomorphism. Similarly, if G is a cosimplicial abelian group, let
G,=G,/I,(d")++1,(d"), and let d:G,— Gn,, be d°. Then H"(G)— H"(G) will
be an isomorphism.
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Let G,=Hom, (s ,(k),, k). Then every element of G, can be represented in the
form (oy]...|x,) where a;eA* all i. In G, we set equal to 0 all (o]...|a,) with any
a; €Im(e*), which is to say deg(a;)=0. Notice that

d(og| .. foty) =Y & (x (e, - ony,) o], 1o lomy,)  where  p* (o) =3 oy, @ afy, .

Since the degreewise tensor product of .3, (M) with 5 (M) is # 4o, (M @M'),
we can use the Alexander-Whitney map to define a chain homotopy equivalence
H yoa(MOM') > H# (M)®HF (M'). Recall that the Alexander-Whitney map is
defined, for x, y of degree n, by AW (x®y)=Y (d! """ 'x)® (dgy). By direct calcula-
tion, it is easy to verify that the composite with the diagonal #, (k) = ;& 4 (k) gives
us a map in degree » which is the product of the maps A"*! —» A" 1@ 4"~ *1 given by
A'®A® A" for 0<i <n. If we apply (2.1), we obtain the following.

PROPOSITION 2.3. The product in Ext,(k, k), relative to the basis of cochains
given before, is given by

(“1| |°‘i) (“i+1| [“n) = Z(“ﬂ |“i—1|“i%(“;+1,vi+, “;,v,,) |a§’+1,v,+,| i“;:,v,,)

where
I (o) = Z o, vy ® 0y,

COROLLARY 24. If o;44,..., %, are primitive in A*, then for any a,,..., a;,
(otq |- fo;) (ot gl loty)= (ayl... |an). Inn particular, if a is primitive, (a)*= («f... |o).

DEFINITION 2.5. [4] Let P, be the Milnor basis element Sg(0,..., 0, 2°,0,...)
with the 2° in the tth position.

PROPOSITION 2.6. [S] The sub-Hopf-algebras of < correspond bijectively to
sequences of nonnegative integers py,... p; (possibly equal to o) satisfying p,=min(p;,
Pi—j— j) wherever i > j. The algebra A(py,...) corresponding to such a sequence has
as Z,-basis all Sq(ry,...) with ry <2P;.

We will find it convenient to use {;=yx(£;) as the generators of =/*. A({,)
=Yi_o {;®C% ;. The dual of A(py,...) is Z,[{4,...]/CP =0.

THEOREM 2.7. Suppose m and n are nonnegative integers and A =A(p,,...) is a
sub-Hopf-algebra with p;<n for all i<m, p,,,=m+n+2, and p,,+,=2n+1. Then
[(27" 1] is a nilpotent element of Ext,(Z,,Z,).

Proof. Ay ) =020 &7 @GS =G ®141®L ) sinee (T

2m+n+1

=0 for j<m. Thus in the dual of the Hopf bar resolution d*([{,+; ])=0, and
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hence [(27}"""] eExty(Z,, Z,). To show its nilpotence, we shall write [C,f,Tl"“]z'”’

-[ 2  as a boundary Let T be the element of 4**""*~! in which
¢%" ., occurs in the first 2n positions and {27 ;"* " occurs in the rest. Since 4 (¢ 2:',,+2)

2m+n+1

=2 @I+ 1@+ 1R, T, d*(T) is the sum of all terms having y ({2} ,)
(i=1) in the first position, {3, ,, in some 2™*! —; of the next 2™*! positions, and
27"""" in all other positions. Let S be the sum of all (3m+:~*) terms having (2., , in
2m*+1 positions and {25""" in 2"*1—1 positions of an element of A**"**~!. Then
d*(S)=[3"".. 3,"1:1"“] To see this note that [ (27" ... 1254 '] occurs

an odd number ((§:+f 1)) of times in the sum, and

uﬁ?%wmmww“@mmmgwgwm“

am4n+1 +n+1 am+n+1 +n+t
= T @ B = Y

Any term having (27" in some fixed 2"*1—14i(0<i<2"*!) of the positions

. . m+n+1, .
occurs in the image under d* of each term having its 2" *1 —1¢27"""'s in some of
1—14§

these positions; there are (zmﬂ 17" such terms, and this is an even number.
. m 1 n+1 n
This also shows [£27."" '] nilpotent, since €27, )" = (£ =027

3. Techniques that Will be Used to Prove the main Theorems

DEFINITION 3.1. If A4 is an algebra over k, M an A-module, and zeExt, (k, k),
we say z acts nilpotently on Ext, (M, k) if every element of Ext, (M, k) is annihilated
by some power of z.

Our main technique will be to build up the algebras by using

THEOREM 3.2. Suppose B is a subalgebra of A such that A is a free B-module on
two generators, 1, x, of degrees 0, n. Then there is a long exact sequence for any A-
module M

- Ext ™" (M, k) - Exty'*" (M, k) - Ext}* (M, k) > [x] Ext (M, k) -,
where [ %] eExty "(k, k) corresponds to the extension

0 - k - Homg(4, k) - k > 0.
Moreover, if [X] acts nilpotently on Ext, (M, k), then

(1) If M is a free B-module, then M is a free A-module.

(i) If Extz' (M, k)=0 for ds>t+c withn<d, then Ext};' (M, k) =0 for ds>t+
+c+n.
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Proof. The exact sequence follows from the exact sequence

— Ext§‘ " (M, k) - Ext§'*"(M, Homg (4, k)) — Ext5* (M, k)
— Ext (M, k) -

and the change-of-rings isomorphism [6; Proposition 4.1.4] Ext, (M, Homy (4, k))~
~Extg(M, k). The differential is due to [3; Theorem 2.6.1.] If yeExt}' (M, k),

st+m,t+nm

then for some m>0[£]"y is a nonzero element of ker(Ext} (M, k)

Exts ™+ L+ D ar k) and hence pulls back to an element of Exty" ™ *" ™+ D(pf k),
(i) If M is B-free, Exty ™**"™ (M, k)=0 for s+m>0. Thus y cannot exist unless
s=0. Thus M is A-free.
(ii) If the element induced by y is to exist, we must have t +n(m+1)+c=d(s+m).
Therefore t +c+n>ds+m(d—n)>ds. |
Theorem 3.2 will be applied both to the nilpotent elements found in Theorem 2.7
and to elements which will be seen to act nilpotently due to the following result.

PROPOSITION 3.3. If Ext§’ (M, k)=0 for ds>t+c and x€Exty"(k, k) with
n<d, then x acts nilpotently on Ext,(M, k).

Proof. If y eExt}* (M, k) and m> (t —ds+c)/(d—n), then x™ y=0. |

The hypothesis of Proposition 3.3 will often be verified using Proposition 3.4
below, which has as corollary that vanishing theorems of the type which we are seeking
hold for modules over exterior algebras on generators of distinct degrees.

PROPOSITION 3.4. Assume that A is free as a left module over the subalgebra B,
with a B-base consisting of 1 and other elements a, of degree at least d. Suppose also
that M is a B-free module over A and that M,=0 for t <c. Then Ext}'(M, k)=0
Jor t <ds+c.

Proof. By induction over s. Form the exact sequence

0-K->AQ ;M ->M->0.

Let {m,} be a B-base for M; then A®zM has an A-base {I®@m } and a B-base
{1®m,, a,®m,}. So K has a B-base {a,®@m,—1®a,m,}. Thus K,=0 for t <d +c.
The inductive hypothesis shows that Ext '*(V, k)=0fort <d(s—1)+d +c. Since
ExtS” ''*(K, k) maps onto Ext;’ (M, k), the latter is zero for ¢ <ds+-c. |

We shall apply Proposition 3.4 in cases when B is a sub-Hopf-Algebra of 4, so
that the first hypothesis is fulfilled by [9; Theorem 4.4].

If E is an exterior algebra on generators x; of distinct degree, and M is an E-
module, then the x; act as differentials on M.
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COROLLARY 3.5. If E and M are as above and
d = min {degx;: H(M; x;) # 0},

then Exty’ (M, k)=0 for ds>t.
Proof. By [4; Theorem 2.1] both M and E are free over E [{x;:degx;<d}], so the
corollary follows from Proposition 3.4. |
We shall prove vanishing theorems over finite sub-Hopf-algebras and then con-
clude vanishing theorems over the entire Steenrod algebra by applying

PROPOSITION 3.6. Suppose A is a sub-Hopf-algebra of </ and <]/ A begins in
degree n. Suppose Xi,..., x,, are elements of A such that whenever H (M ; x;)=0,
i=1,...,m, Ext{(M, Z,)=0 for ds>t+c with d<n. If M is an s/-module such that
H(M; x;)=0,i=1,..., m, then Ext,(M, Z,)=0 for ds>t +c.

Proof. Let W =27/ A. The exact sequences

0> WRW ' '@M->WRW '@M>b5 W '@M-0
(diagonal o7-action, f(w® p)=¢(w)p), yield exact sequences

- Exti, "' (W' ®M, Z,) - Ext’; " (W1 M, Z,)
- Ext (W M, Z,) -,

where the Ext,-group has been obtained because Ext,(w®N, Z,)~Ext, (N, Z,).
Thus an element of ExtS,’ (M, Z,) must come from an element of Extl "' (W' ®@M, Z,)
for some i. Since M is x-acyclic, the same is true of W'® M ; this is easily seen even if
x; is not primitive. Since W'®MN begins in degree in Ext, ** (W'QM, Z,)=0 for
d (s—i)>t —in+ c and hence makes no contribution to Ext}’ (M, Z,) whends>t +c. |

4. Freeness and Vanishing Theorems

In this section we shall prove the freeness theorem 1.2 and a vanishing theorem
slightly weaker than Theorem 1.1. The proofs are done similarly, proving them first
over an exterior algebra, and then building up the algebra one generator at a time, in
an order such that new generators act nilpotently, until we have proved it over a
sufficiently large finite subalgebra.

Let A(O', pis1> Pi+2,---) denote the algebra corresponding by Proposition 2.6 to a
sequence beginning with i zeros. Let B; ; ,=A(0', j,n—i,n—i—1,...,1)if i+ j<
<n+1.

LEMMA 4.1. Suppose M is an &/-module and suppose we are given integers i, j, n
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such that i+ j<n. Also, suppose that if j<i+1, then H (M ; p7)=0 for all P such
that s<t, s+t<i+j+1,t=i+1. Then

() If M is free over B, ; ,, then M is free over B; ;,, ,.

(ii) If Exty, , (M, Z,)=0 for ds>t+c with d> (2"*' —=1)27, then Extj, ,,,  x
x (M, Z,)=0 for ds>t+c+ (2'*1—1)27.

Proof. If j=i+1, then Theorem 2.7 shows [¢7},] is nilpotentin H*(B; ;,,.,)and
the lemma follows from Theorem 3.2.

If j<i+1, then (since [P/}, P;2,]=0 whenever s,,5,<t,1,) B; j4y ;+; IS an
exterior algebra on generators of distinct degree with respect to which M is acyclic.
By [4; Theorem 2.1] M is free over B; ;. ;. ;. Hence by Proposition 3.4 Extgh”l, .
(M, Z,)=0 for t<2/(2*2—1)s. Thus by Proposition 3.3 [¢Z; ,] acts nilpotently on
Extg, ... .(M, Z,). The lemma now follows from Theorem 3.2.

Proof of Theorem 1.2. We shall show that if 4,=A(n+1,n,...,1), then M is a
free A,-module. Hence by Proposition 3.4, Ext})/ (M, Z,)=0 for 2"*'s>t. Since this
is true for all n, Ext}/ (M, Z,)=0 for s>0. Thus M is </-free.

If n=2m, then [4; Theorem 2.1]implies M free over the exterior algebra B,, .1 2m
Repeated application of Lemma 4.1 shows ““M free over B; 3,41—i,2m=Bi—1,0,2m
implies M free over B;_; ;m+1-(i-1),2m- Thus by induction M is free over
B, am+1,2m=A2m:

If n=2m—1,M is free over the exterior algebra B, _{ ,, ,»,—; and by Lemma 4.1
it is free over B, _; ,+1,2m-1- By the same induction as above it is free over
Bo,zm,zm—1=A2m—-1- |

We can now use exactly the same method to prove a vanishing theorem similar
to Theorem 1.1 but with slightly larger value for the y-intercept ¢/(d—1). In the next
section we will consider several methods of decreasing the y-intercept. The result
proved here will be necessary to prove the stronger result.

THEOREM 4.2. If M is an s/-module and P;? is the lowest degree P; with s <t such
that H(M; P;)#0, then Ext}, (M, Z,)=0 for ds>t+c, where d=deg P,°=2"(2""—1)
and c is defined as follows. If so+ty=2m+1, then c=(m—1)2>"*2 42" 4 m+2.
If so+1to=2m, then c=(m—3/2)2*"* 1 +2™* 1 t m+1. Thus c/(d—1) is approximately
So+ 1.

Proof. Suppose sy+t,=2m+1. By Corollary 3.5, Extj (M, Z,)=0 for

Bm, m+1, 2m

ds>t. Repeated application of Lemma 4.1 shows *If Extj (M, Z,)=0

Bi, 2m+1 -1, 2m

for ds>t+c, then Extj (M,Z,)=0 for ds>t+c+(2°=1)

Bi-1,2m+1 - (i-1), 2m

(2m*2-1._1).” Thus by induction Ext (M, Z,)=0 fords>t+Y 1, (2'—1)

BO, 2m+ 1, 2m

(22™*27f_1). The theorem now follows from Proposition 3.6.
If so+t,=2m, then Corollary 3.5 shows Extj (M, Z,)=0 for ds>t.

Bm-—l, m, 2m-1

Lemma 4.1 shows Extj (M, Z,)=0 for ds>t+(2"—1)2". Proceeding

Bm-l, m+1i,2m-=-1
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as above, we find Exty , . = (M,Z,)=0 for ds>t+(2"—1)2"+Y ' (2'~1)
(2™**1~i—1). The theorem follows from Proposition 3.6. |

Although we make no claims about our y-intercept being minimal, the slope is
certainly minimal. Indeed,

THEOREM 4.3. If A is an algebra over Z,, and xcA, satisfies x>*=0 and
H(M; x)#0, and if D>d and C is arbitrary, then there exists s, t such that Ds>t+C
and Ext (M, Z,)#0.

Proof. If

O@M‘-CO(—‘CI‘—Cz‘—'"'
NSNS
K, K,

S NN
0o 0 0

is a minimal A-resolution, then the x-homology groups satisfy
0# H;(M)~H;,4(Ko)~ -~ Hjyy(K;-1)-

Thus C; has an element in degree <j+sd. Thus for all s there is a t<j+sd such
that Ext}(M, Z,)# ;. For large s j+sd< —c+sD. |

5. Lowering the Vanishing Line

In order to see the problems involved in lowering the vanishing line, let us con-
sider an example. Suppose the first P¥ with respect to which M has homology is P;
of degree 14 (so M is a free «7,-module). Theorem 4.2 showed that Ext, (M, Z,)=0
for 14s>t+12+1+2+4+8 by building up the algebras in the order 4(0, 2, 2, 1),
A0,3,2,1),4(1,3,2,1), 4(2,3,2,1), 4(3,3,2,1), A(4, 3,2, 1), &. Since M is free
over A(3, 2, 1), the increments of ¢ when adding the generators Py, P}, and P? may
have seemed somewhat unnecessary. Indeed Proposition 3.4 shows that Ext} 3 5 1,1,
(M, Z,)=0 for 145>t so that if we can build the algebras in the order 4(3, 2, 2, 1),
A(3,3,2,1), A4, 3,2, 1), o, we would show Ext}, (M, Z,)=0 for 14s>¢+20. The
only problem is the addition of the generator PZ, for [{3] may not be nilpotent in
H*(A(3, 3, 2, 1)) despite the fact that it was nilpotent in H*(A4(0, 3, 2, 1)). Nor does
the argument used before to show that elements act nilpotently apply, for P? need
not lie in a subalgebra of 4(3, 3, 2, 1) over which M is free and which contains all of
A(3, 3,2, 1) through deg(P2?). However, we are saved by Theorem 4.2, for it gives
us a vanishing line for Ext,(s, 3,2 ,1)(M, Z,) which with Proposition 3.3 enables us
to conclude that [{3] acts nilpotently. Thus we can prove Theorem 1.1, where the
precise value of ¢ is (to—2)2"°*% 42071,
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Proof. Let n=ty+s,. Let B;=A(n—1, n—2,...,i+2,i+1,i+1,i,...,1). By
Theorem 1.2 M is free over A(n—1,n—2,...,1), and by Proposition 3.4 Exty
(M, Z,)=0 for ds>t. Suppose Ext} (M, Z,)=0 for

ds>t+c(i=s) with ¢= Y 2/(2"7-1).
j=so+1
Since 2'*1(2"7i"1 1) 2% (2" —1), Theorem 4.2 and Proposition 3.3 apply to show
[271,] acts nilpotently in Extp,,,(M, Z,) and Theorem 3.2 then shows Exty
(M, Z,)=0 for ds>t+c;+2'*1(2""1"1—1), extending the induction hypothesis.
Hence Ext} , ,—i....1,(M, Z,)=Exty _ (M, Z,)=0 for ds>t+c,_, where
n—1
Coor1= Y ("=2)=(n—50—1)2" = 2% (1 4ee 4 2"75072)

j=sot+1

=(to —2) 2" + 2%,

Since 2" >2% (2" —1), Proposition 3.6 applies to give the desired result for Ext (M, Z,).
|

For small values of ¢+ we can get better results by sacrificing slope for intercept.
For example, suppose the first nonacyclic P; is P of degree 31. M is free over
A(4,3,2,1). Hence by Proposition 3.4 Ext} s 4 3, 2,1, (M, Z,)=0 for 16s>¢ and
EXt} 4, 4,3, 2, 1y(M, Z,)=0 for 24s>¢t. Thus by Theorem 2.7 and Theorem 3.2 applied
to [£1®] and Proposition 3.6, Ext (M, Z,)=0 if 165>t or if 24s>¢+16. Similarly
Proposition 3.4 shows Ext} 4 3, 3, 2, 1) (M, Z,)=0for 285>t and hence two applications
of Theorem 3.2 to build it up to 4 (5, 4, 3, 2, 1) followed by 3.6 shows Ext, (M, Z,)=0
for 28s>¢+40. Thus we see that for such modules M Ext}, (M, Z,)=0 for
t>max (16s, 24s— 16, 285—40, 305 —68).
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