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Die Existenz einer Greenschen Funktion auf

Riemannschen Mannigfaltigkeiten

von SEBASTIAN KELLER, Basel

Ergebnisse

Auf jeder Riemannschen Mannigfaltigkeit (Abkiirzung: RMF) ist der Laplace-
operator A4 erkldrt; Losungen der Laplacegleichung Au=0 heissen harmonische
Funktionen. Greensche Funktion der RMF M (zum Aufpunkt ge M) nennen wir
jede in M —{q} positive und harmonische Funktion g,, welche in ¢ die Singularitit

lim 8q (pz -
p—a S (D, q)

hat; dabei bedeutet n die Dimension von M, s(p, q) die geoditische Distanz auf M
(fiir n=2 ist s(p, ¢)*~" durch —logs(p, q) zu ersetzen). Die Existenz bzw. Nicht-
existenz einer Greenschen Funktion ist eine vom Aufpunkt ¢ unabhingige Eigen-
schaft der RMF M, welche unter isometrischen Abbildungen von M invariant bleibt.
Es stellt sich die Frage, welchen Einfluss das Verhalten von geometrischen Grossen
wie der Riemannschen Schnittkriimmung auf diese Eigenschaft einer RMF hat. Dar-
auf bezieht sich das folgende Hauptergebnis dieser Arbeit:

=1

SATZ A. Auf einer einfachzusammenhdngenden vollstindigen RMF M mit Di-
mension n und Schnittkriimmung K existiert eine Greensche Funktion

1) wenn K durch eine negative Zahl nach oben beschrdnkt ist,

2) wenn K nirgends positiv und n=3 ist.

Im Fall 2) kann man auf die Bedingung n=3 nicht verzichten, wie das Beispiel der
komplexen Ebene zeigt.

Eine Riemannsche Fldche besitzt genau dann eine Greensche Funktion, wenn
das harmonische Mass der Flidche nicht die Nullfunktion ist. Dieses Kriterium gilt
unverindert auf Riemannschen Mannigfaltigkeiten (Satz 3.2) und dient als Ausgangs-
punkt des Beweises von Satz A. Wenn das harmonische Mass einer RMF M die Null-
funktion ist, so wird auch der Limes der Dirichletintegrale D () der gegen das
harmonische Mass konvergierenden Folge u; gleich null (Satz 3.3). Demnach gilt es,
fiir die Integrale D (u;) eine positive untere Schranke zu bestimmen. Wir verwenden
dazu die Idee von Szegd [9] zur Abschdtzung der Kapazitit eines Kondensatos im
euklidischen R3. Bei der Ubertragung auf die RMF M stellt sich das Problem, fiir
die im R? giiltige isoperimetrische Ungleichung, die in der Szegdschen Abschitzung
eine entscheidende Rolle spielt, und in welcher die spezielle Geometrie des R* zum
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Ausdruck kommt, einen geeigneten Ersatz zu finden. Die Losung dieses Problems
liefert nebenbei

SATZ B. Auf einer einfachzusammenhdngenden volistindigen n-dimensionalen RMF
M, deren Schnittkriimmung K durch eine negative Zahl —b*(b>0) nach oben be-
schrinkt ist, besteht zwischen dem Mass m(G) jedes reguliren Gebiets G von M und
dem Mass m(0G) des Randes von G die lineare Ungleichung m(6G)=(n—1)-b-m(G).

Herrn Professor Heinz Huber, der die Anregung zu dieser Arbeit gegeben und mir
mit wichtigen Ratschldgen geholfen hat, spreche ich an dieser Stelle meinen herz-
lichen Dank aus.

Bezeichnungen

Alle vorkommenden RMF gehoren der Klasse C® an und sind, sofern nichts anderes
gesagt wird, unberandet und nicht notwendig zusammenhdngend. ,,Differenzierbar*
heisst stets beliebig oft differenzierbar. Folgende Bezeichnungen werden in der
ganzen Arbeit verwendet:

M, Tangentialraum der RMF M im Punkt pe M

O Differentialabbildung einer differenzierbaren Abbildung ¢

{, > Masstensor von M (Bilinearformschreibweise)

* grad f Gradient einer differenzierbaren Funktion f

1Xy .. Xl =</det {Xp, XD =1 . fUr X;...X,eM,
(fir k=1 ist | X]| die Norm des Skalarprodukts (X, ¥ auf M,).

1. Integration

Bekanntlich ldsst sich auf jeder RMF M in natiirlicher Weise ein Integral von Funk-
tionen erkliren, welches im Fall M=R"” mit dem Lebesgueintegral iibereinstimmt
([2], p- 10). Zum einfacheren Verstindnis stellen wir hier drei im folgenden wichtige
Integralformeln zusammen.

1.1. Fiir Diffeomorphismen ¢: M — M’ zwischen zwei RMF besteht die

Transformationsformel : f h= f (hood) J (&)
o(4) A
(A< M messbar, h iiber ¢ (A) integrierbar); dabei bedeutet J(¢) die

lPuXy ... psXall

Jacobideterminantevon ¢: J (¢) (p) = 1Xs... X,
1 ceoe n

’

X, ... X, eine (beliebige) Basis von M,
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1.2. Fiir eine berandete RMF M und zwei auf M differenzierbare Funktionen u
und v gilt die

0
Greensche Formel: -— J v 53 = J‘ v Au + {gradv, gradu) ;
n

oM M

hier bezeichnet 0/0n das innere Normalenfeld 14ngs dem Rand M.

1.3. M sei jetzt eine RMF der Dimension n. Fiir den Rest von Abschnitt 1 gelten
folgende Voraussetzungen: ‘

O offene Teilmenge von M mit kompaktem Abschluss O

I offenes Intervall in R

f reellwertige Funktion auf O mit den Eigenschaften

(1) f stetig auf O, f differenzierbar auf O
(2) £(80)N I leer, f (O) NI nichtleer
(3) (grad f) (p)#0 VpeO.

Wir setzen: X=grad f, G={peO | f (p)el} und F,={pe0 | f (p)=t} fiir tel.
Wegen (3) sind die Niveauflichen F, kompakte Hyperflichen in M. Zu jedem pe G gibt
es genau eine maximale Integralkurve c, des auf O differenzierbaren Vektorfeldes
IX~2 Xmit c,(f (p))=p. Wegen (2) ist ¢, auf ganz I definiert, und es ist ¢, (¢ )€ F, fiir
tel. Wir wihlen eine feste Fliche F=F,(sel) und definieren die Abbildungen

$:FxI—>G durch ¢(p,t)=c,(t)
¢ F > F, durch ¢,(p)=c,(t) (tel).

¢ und ¢, erweisen sich als Diffeomorphismen.

1.4, LEMMA. Fiir jede auf G(a, b):={peO | a< f (p)<b} (a, bel) stetige Funk-
tion hist (i, h/|| X | eine stetige Funktion von t auf [a, b], und es gilt

[ ([

G(a, b) a

Beweis. (V, y) sei eine Karte von F, dann ist (V' x I, z) mit z(p, t)=(y(p), t)eR"
(peV, tel) eine Karte der RMF Fx I. Verwendet man zur Berechnung der Jacobi-
determinante von ¢ die Basis d/0z,, ..., 0/0z,, so ergibt sich

J(¢:) (p)

XG0 PehtED: ()

J (¢) (P, t) =
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Nach der Transformationsformel ist daher

h h
J”X" =j|IX||°¢t'J(¢t)= L(hod»-J(tb)) (ps 1). )

Wegen G(a, b)=¢ (Fx[a, b]) ist (hop) J(p) stetig auf Fx[a, b], daher wird das
Integral (2) eine stetige Funktion von t€[a, b]. Nach der Transformationsformel und
dem Satz von Fubini ist ferner

h= f ho¢-J(¢)=}(f(ho¢-J(¢))(p,t))dt,

G(a, b) F x[a, b}

daraus folgt mit (2) die angegebene Formel.
2. Harmonische Funktionen

Die Haupteigenschaften der harmonischen Funktionen im euklidischen R? und R3
(Mittelwertsatz, Maximumprinzip, Harnacksche Sitze) gelten auch fiir die harmo-
nischen Funktionen auf einer RMF [4]. Wir geben zunédchst den etwas vereinfachten
und invariant formulierten Beweis des Mittelwertsatzes von Feller [4] wieder. Dann
leiten wir eine Abschdtzung der Richtungsableitungen Xu einer harmonischen
Funktion # durch die Funktionswerte von u her. Schliesslich zeigen wir, wie sich die
Harnacksche Ungleichung direkt aus dem Mittelwertsatz ergibt; damit ldsst sich eine
Schwierigkeit des urspriinglichen Beweises in [4] (die Stetigkeit des Poissonkerns)
umgehen.

2.1. Entscheidend fiir die Theorie der harmonischen Funktionen ist die Existenz
von Grundlésungen der Laplacegleichung Au=0. In lokalen Koordinaten ist Au=0
eine elliptische Differentialgleichung; die Grundlosungen solcher Gleichungen sind
von Miranda in [7] untersucht worden. Aus den Sdtzen 19.1, I und IV, pp. 49 in [7]
erhdlt man den folgenden

SATZ. M sei eine RMF der Dimension n, s(p, q) die geoditische Distanz auf M.
Zu jedem Punkt von M gibt es eine offene Umgebung U mit kompaktem Abschluss U
und eine auf U x U stetige Funktion r(p, q) mit den Eigenschaften:

1) r,(q):=r(p, q) ist differenzierbar in U—{q} VqeU

2) r,>0und Ar}™"=0in U-{q} VqeU

3) lim,(, o-or (P, 9)/s(p, 9)=1 gleichmdssig in U x U—d, wo d die Diagonale von
UxU, und r(g, q)=0.

4) 3C<0, sodass |r(p,a)—r(p, q9)|SC-s(q,a)Vp, g, acU.
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5) Die Funktion L, L(p, q)=|(gradr,) (p)I?, ist stetig in U x U — d;

lim L(p,q)=1

s(p, 9)—0

gleichmdssig in U x U—d, also L stetig fortsetzbar in U x U durch L(p, p)=1.
6) 3C>0, sodass [, .y |L(p,a)—L(p,q)|SC-s(q,a) Vg, aeU.

Fiir n=2 hat man in 2) r/ ™" durch logr, zu ersetzen. Um die daraus entstehenden
Fallunterscheidungen zu vermeiden, schreiben wir die Beweise in diesem Abschnitt
stets fiir n=>3 auf; die Modifikationen fiir den Fall n=2 sind offensichtlich.

2.2. Die Umgebungen von Satz 2.1 nennen wir Grundumgebungen. U, (b) bezeichnet
immer die metrische Umgebung {pe M | s(p, ) <b}; U,(b)=U,(b)—{g}. Aus 3) und
5) in Satz 2.1 folgt:

LEMMA. Zu jedem Kompaktum K in der Grundumgebung U gibt es eine Zahl
b>0 mit der Eigenschaft: Fiir alle qeK gilt

r(p, q)
s(p, q)

2) Das Tripel 0=U (2b), I=(0, b) und f=r, erfiillt die in 1.3 genannten Voraus-
setzungen.

1) >4 und [|(gradr,) (p)I*>= % VpeU,(2b)

2.3. U sei eine Grundumgebung des Punktes ge M, b,>0 eine Zahl wie in Lemma
2.2 fir K={q}. Dann ist V, (¢):={peU,(2b) | r,(p)<t} fiir jedes r€(0, b,) ein
reguldres Gebiet (dh. der Abschluss Vq—(—t-) ist eine kompakte berandete Untermannig-
faltigkeit von M) mit der Hyperflidche F,,={pe U, (2b) | r,(p)=t} als Rand.

MITTELWERTSATZ. Ist u harmonisch in einer Umgebung V ,(b) von g (be(0, b,)),
so hat u die Mittelwerteigenschaft

u(q) f 1 X0 = f u-|X,|?, X,=gradr,.

Vaq (b) Vq ()

Beweis. Den Index q lassen wir weg und setzenv=r2""—b2"" G,=V(b)— V (¢) fiir
te(0, b). G, ist ein reguldres Gebiet mit Rand 0G,=F, U F,, u und v sind harmonisch in
G,. Daher wird nach der Greenschen Formel

ov au_O 60__
il e e

6G¢ 6G¢
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Weil 0/on=X/| X | auf F,, 0/on= — X/|| X || auf F,, Xr=| X ||*> und v=0 auf F;, folgt dar-

aus
1-n Ou 1—-n
@=m | uwlXl-r'™" = J oo = (2= n) | ulX]r (1)
Ft Ft Fyp
jllxll'rl_"= ~[llxll"’l_"- (2)
t F»

Die beiden Integrale auf der linken Seite von (1) bezeichnen wir mit 7, (¢) und I,(¢),
das Integral rechterhand in (2) mit I. Fiir 7,(¢) hat man die Ungleichung

2—mn)-I'minu(p)=<1,(t) < (2 —n)-I-maxu(p). (3)

peF, peF;

Weil auf V' (b) |0u/on| £ ||gradu|| £ C (C eine positive Konstante) und nach Lemma 2.2
O<v<r?™"<./2¢|X|-r*"" gilt, erhalten wir fiir 1,(¢) die Abschitzung

IL,(H) < {J2:C-It. 4)

Fiir 1 — 0 konvergieren die Punkte von F, gleichmadssig gegen g, da nach Lemma 2.2
s(p, q) <2t fur peF,. Deshalb folgt aus (3) und (4)

limI,(t)=Q2—-n)I-u(q), limI,(t)=0.

t-0 -0
Mit (1) ergibt sich
u(g): | I1XI= 1| u-lXI. (5)
Jr)

(5) gilt fiir jedes be(0, b,). Ersetzt man b durch ¢ und integriert (5) iiber €[, b]
(0<e<b), so erhilt man mit Lemma 1.4 die Behauptung durch Grenziibergang ¢ — 0.

2.4. SATZ. Ist G eine offene Teilmenge der RMF M und K ein Kompaktum in G,
dann gibt es eine Konstante C>0, sodass fiir jede in G harmonische Funktion und alle
XeM,, acK, die Abschitzung |Xu| < C- || X|-sup,.qlu(p)| gilt.

Es geniigt, den Satz fiir G=U, U eine Grundumgebung, zu beweisen. Ist ¢ die
Geoddtische mit ¢ (0)=a und dem Tangentialvektor ¢ (0)=XeM,, so wird fiir kleines
t>0 die Distanz s(c(¢), @)=t | X| und

e 4e@) — (@)
Xu=EO)u=lm=C@ )

Daher geniigt es zu zeigen: Es gibt Zahlen C >0, ¢>0, sodass
lu(g)—u(a)|£C-s(q, a)-sup, ylu(p)l fir alle acK, qe U,(¢).

I1X1
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Beweis. 26 sei die Distanz von K zu M—U, K;=\,.x U, (), b>0 eine Zahl wie
in Lemma 2.2 fiir das Kompaktum K; in U, C die Konstante aus Satz 2.1, 4) und
e=min (b, b/2C, ). Fiir ge K; setzen wir

b
r@= [ 1% wmd h@)= [wlx, wo V=¥(3)
Vg Vq
(X, und ¥V, (z) wie in 2.3). Wir wihlen jetzt aeK, qe U, (¢)< K,. Nach dem Mittel-
wertsatz ist

h(g) _h(a) _h(a)(f(a)~ f(q))  h(g)~ h(a)

T R P T A B () @
Es sei
I= WX = 1Xa*l, 1, = IX01%, I = 1X,01%.
V;r[Va quv., Va[Vq
Dann gilt
If(@—f@IsI+1,+1, ()
|h(q) — h(a)| S a(I +1,+1,) mit a=suplu(p),
pelU
Iu(Q)—“(a)l=f()(I+1 +1,). (2)
Die drei Integrale schidtzen wir einzeln ab. Nach Satz 2.1, 6) ist
I1=C,s(q, a). (3)
V,-V,cV (b v, (b -C- ) 4
= V.V, _2_)- A s(q,a). 4)

Begriindung: Wenn peV,—V,, so ist s(p, ¢)<2-r(p, ¢)<b nach Lemma 2.2; mit
s(gq, a)<e<b folgt peU,(2b)—V,, also muss r(p, a)=b/2 sein, und mit Satz 2.1, 4)
ergibt sich r(p, ¢)=r(p, a)—C-s(q, a)2b/2—C-s(q, a).

Wegen der Inklusion (4) hat man nach Lemma 1.4

b/2
< j ( J uxqu) d, )
b/2—-C- s(q, a) qt

F,, die Niveaufliche r,=¢. Nach (2) im Beweis des Mittelwertsatzes ist

Fgqe Fgas
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Integriert man diese Gleichung iiber se(0, b/2), so erhdlt man wiederum mit Lemma

1.4
1/6\" R 2 b ”—1. 2
5 nsere s o
Fge Vq v

fiir jedes te (0, b/2). Mit Satz 2.1, 5) folgt daraus, dass der Integrand in (5) gleichmdssig
in ¢ und ¢ beschrinkt ist, daher wird I,<C, s(q, a). Genau gleich zeigt man
I,<C,-s(q, a). Mit (3) zusammen ergibt sich

I+1,+1,£C;y5(q,a).

Daraus folgt zunéchst mit (1), dass die Funktion f (¢) auf K stetig ist und daher auf
K ein positives Minimum C, annimmt. Mit (2) folgt |u(g)—u(a)| <« (2C;/C,)"s(q, a),
also die Behauptung.

2.5. HARNACKSCHE UNGLEICHUNG. Zu jedem Punkt a der RMF M gibt es
eine Umgebung U von a und positive Konstanten C, C’, ¢ so, dass fiir jede in U harmo-
nische nichtnegative Funktion u die Ungleichung C-u(a)<u(q)<C’-u(a) YqeU,(¢)
besteht.

Beweis. Wegen Satz 2.1, 5) ldsst sich eine Grundumgebung U von a so klein
wihlen, dass | X,[|2>0 auf U und die Funktion H(p, g):= | X, (p)I* | X,(p)| 2 auf
U x U stetig ist. Da H(p, a)=1, findet man eine abgeschlossene Umgebung X von a in
U, sodass $<H(p, 9)=<3% V(p, 9)e Ux K oder

PIX? S X £31X,0*  auf U VgeK. )

b>0 sei eine Zahl wie in Lemma 2.2 fiir das Kompaktum K in U; >0 so klein, dass
U, () in K liegt und e<min (b/2, b/4C), C die Konstante aus Satz 2.1, 4). Fiir ge U, (¢)
gilt dann

()-r(erCl)
4 2 4

Begriindung: Wenn peV,(b/4), so ist nach Lemma 2.2 s(p, a)<2-r(p, a)<b/2,
mit s(g, a)<e<b/2 folgt s(p, g)<b. Nach Satz 2.1, 4) ist r(p, g)<r(p, a)+C-s
(9, @) <b/4+ C-e<b[2, mithin peV,(b/2). Die andere Inklusion zeigt man gleich.

Wir multiplizieren jetzt die Ungleichung (1) mit der gegebenen Funktion # und
integrieren iiber ¥, (b/2) bei festem geU,(e). Da u=0 in U, ergibt sich mit den
Inklusionen (2)

3 f ul|X,l* < f u X < 3 f u | X%

Va(b/4) Vq(b/2) Va(3b/4)
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Wendet man auf jedes der drei Integrale den Mittelwertsatz an, so folgt

Ciu(a)=f(q)u(q) £ Cu(a), (3)
wobeli
cl=%-f IX.2, Co=3 f X%, f(a) = f 1X,012.
Va(b/4) Va(3b/4) Va(b/2)

Die Funktion f ist, wie im Beweis von Satz 2.4 gezeigt wurde, auf K stetig und positiv
und nimmt daher auf K ein Maximum C;>0 und ein Minimum C,>0 an. Aus (3)
erhalten wir

Cy C,
—-u(a)= & .
cr@su@s ul)
Das gilt fiir jedes ge U, (¢), und die Konstanten C; ... Cy, ¢ sind von » unabhingig.
Damit ist die Ungleichung bewiesen.

2.6. Aus dem Mittelwertsatz folgt in bekannter Weise das Maximumprinzip: eine
im Gebiet G = M harmonische nicht konstante Funktion ¥ nimmt in G kein Maximum
an. Weil das Dirichlet problem fiir reguldre Gebiete 16sbar ist ([7] p. 60, [6] p. 264),
gilt auch das Harmonizitditskriterium: eine im Gebiet G = M stetige Funktion  ist in
G harmonisch genau dann, wenn u die Mittelwerteigenschaft aus 2.3 fiir jedes ge G
besitzt. Aus der Harnackschen Ungleichung ergibt sich damit wie im klassischen Fall
der Harnacksche Satz: Eine Folge monoton wachsender, im Gebiet G harmonischer
Funktionen, welche in einem Punkt geG beschrdnkt bleibt, konvergiert in G lokal
gleichmadssig gegen eine in G harmonische Grenzfunktion.

3. Greensche Funktion und harmonisches Mass

Wie in der Klassifikationstheorie der Riemannschen Flichen hat man auf einer RMF
als Kriterium fiir die Existenz einer Greenschen Funktion das Nichtverschwinden des
harmonischen Masses. Das Ziel des Abschnitts ist, eine hinreichende geometrische
Bedingung dafiir anzugeben.

3.1. Das harmonische Mass einer zusammenhdngenden RMF M ist folgendermassen
erklirt: Es sei {G,}i=, eine Ausschépfung von M durch regulire Gebiete (d.h.
G.=Gy 4y und Ui, G,=M), A eine zusammenhéngende abgeschlossene Teilmenge
von G, sodass G, —A (und damit G,— A) ein reguldres Gebiet, u, die Losung des
Dirichletproblems 4du=0in G, — A4, u=0 auf 04, u=1 auf 0G,. Wegen des Maximum-
prinzips ist 0<u, <1 und u,=u,.,, daher konvergiert die Folge u, nach dem Satz
von Harnack gegen eine in M — A harmonische Grenzfunktion u,, diese heisst har-
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monisches Mass von M (beziiglich 4). u, ist unabhingig von der Wahl der Gebiets-
folge G,.

3.2. Nach dem Vorbild der Riemannschen Flichen nennen wir eine RMF M hyper-
bolisch, wenn es eine nicht konstante auf M negative subharmonische Funktion v gibt,
und parabolisch, falls es ein solches v nicht gibt; der Begriff der subharmonischen
Funktion ist dabei wortlich derselbe wie auf Riemannschen Flichen ([1] p. 135).

SATZ. Folgende Aussagen sind dquivalent:

(a) M ist hyperbolisch

(b) das harmonische Mass u, ist nicht die Nullfunktion auf M — A

(c) es existiert eine Greensche Funktion g, von M.

Die Giiltigkeit der Aussagen (b) und (c) ist demnach eine von der Wahl von
A< M bzw. ge M unabhingige Eigenschaft der RMF M.

Der Beweis des entsprechenden Satzes fiir Riemannsche Fliachen beniitzt aus-
schliesslich Eigenschaften der harmonischen Funktionen, welche auch auf einer RMF
gelten, und lasst sich daher wortlich auf den Fall einer RMF M iibertragen. Fiir
(a)<>(b) vergleiche man [1] p. 204; (c)=>(a) ist klar, da —g, auf M subharmonisch,
negativ und nicht konstant ist. Zum Beweis von (b)=>(c) verwendet man die Perron-
sche Methode ([1] p. 139) mit der Klasse IT der in M —{gq} subharmonischen Funk-

tionen v mit kompaktem Support und lim,_,(v(p)—s(p, ¢)> ") <co: aus (b) folgt,
dass g, (p):=sup{v(p) | veII} nicht konstant gleich + oo und daher harmonisch in
M —{q} ist; g, ist die gesuchte Greensche Funktion.

3.3. Die Funktionen u, aus 3.1, deren Limes das harmonische Mass u, ist, sind auf

der berandeten RMF G, — 4 differenzierbar ([6] p. 264). Daher existieren die Dirichlet-
integrale

D)= | lgradu”.

Gk—A
SATZ. Aus u,=0 in M — A folgt lim,_, , D (u,)=0.
Beweis. Nach der Greenschen Formel gilt

ou, ou,, 0
uk' —_— —_—= “
on’ on
2 (G~ A) 8 (Gr—G1)

Wegen u, =0 auf 04, u,=1 auf 0G, folgt daraus fiir £=2:

D (u) =—

du
D(u) = a_nk

0G¢
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Wir wihlen eine offene Menge G mit kompaktem Abschluss G = G, — 4 und 6G, = G.Da
0G; kompakt und ||d/dn|| =1, gibt es nach Satz 2.4 eine positive Konstante C, sodass

6uk

on

Somit wird D (u,)< C- o, - m, m das Mass der RMF 8G,. Die Folge u, konvergiert auf
M — A lokal gleichmissig, also auf G gleichméssig gegen u, =0, dh. esist lim,_, , o, =0
und damit lim;, ,, D (4,)=0.

S C-o, auf 0G, mit o, =sup|u,(p)l.
peG

3.4. Wir leiten jetzt eine Abschidtzung der Dirichletintegrale D (x;) nach unten her.
Der Index k wird festgehalten und im folgenden weggelassen. Vorgegeben ist also die
im reguldren Gebiet G— 4 harmonische Funktion ¥ mit Randwerten 0 auf d4, 1 auf
0G. Wir setzen u auf G stetig fort durch die Definition #=0 auf A.

Es sei X=gradu, P die Menge der reguldren Werte t€(0, 1) von u:G—A4 - (0, 1).
Fiir tePist | X|| >0 auf F,={peG ] u(p)=t}, also auch auf einer offenen Menge O in
G, die F, enthilt. Da ¢ nicht zum Kompaktum u (G — O) gehort, gibt es ein offenes
Intervall I= (0, 1) mit tel und u(G—0)nI=90. Das Tripel O, I, f=u erfiillt die in
1.3 genannten Voraussetzungen. Wegen u~! (I)c O ist Ic P, daher ist P eine offene
Teilmenge in R. Fiir z€[0, 1] setzen wir G,={peG | u(p)<t} (Go=4, G;=G). Wenn
teP, ist G, eine berandete RMF mit Rand F,.

3.5. Es sei a ein Punkt im Innern von 4, h eine auf M —{a} positive und stetige
Funktion, fiir welche das Integral

el O
Ge—Ua(e)

/,t(t)=fh2=lim B, teo,1],
Ge
existiert. Nach Lemma 1.4 ist u auf P stetig differenzierbar mit der Ableitung
’ h2
U (t)=im (teP).
Das Dirichletintegral von u berechnet sich aus der Greenschen Formel wie in 3.3 zu

pw=— [ W [E (% e,

(G- A4) 0Ge

Im letzten Integral ist 8/0n= || X|~! X zu setzen, also wird

D(u)= f 1.
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Mit der Cauchy-Schwarzschen Ungleichung ergibt sich

D@ =[x i (| h)z. ()

Fe

Wir machen jetzt die Annahme, dass sich bei geeigneter Wahl von 4 eine stetige Funk-
tion ¢:R* >R* (=(0, 0)) finden ldsst mit den Eigenschaften

(a) f hzo (] h2) fiir alle reguldren Gebiete G von M mit ae G

<>j < @>0)

Damit folgt aus (1):
D (u) ' (t)
o (n(1)

Integriert man diese Ungleichung iiber ein abgeschlossenes Intervall [a, b]<P und
macht die Substitution t=pu(t), so erhdlt man

=21 (teP).

u(b)

26 | Gzt @

u(a)

Da P offen in R, ist P=|Jj=,I; mit offenen disjunkten Intervallen I;, Wir wihlen
abgeschlossene Intervalle I;,=[ay, b;] in I; mit I <1, und gz, I=1; und
setzen Py =\~ I;;. Dann ist P,c Py, und \ ;> P,=P.

Weil u streng monoton wachsend auf [0, 1] und stetig auf P, sind bei festem k die
Bilder u(f;) die disjunkten Intervalle [u(aj), #(b;)], und ihre Vereinigung iiber
=1...k liegt in [1(0), u(1)]. Anwendung von (2) auf die Intervalle I, =[ay, b;]
und Summation iiber j=1... k ergibt daher

n(1)

b0 | G 5 P@ f GEOFE L

#(0)

Auf der rechten Seite steht das Lebesguemass m(P,) von P,; dieses geht fiir
k—o gegen m(P). Da (0, 1)—P gleich dem Bild der kritischen Punkte von u in
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G — A, also nach dem Satz von Sard ([8] p. 66) eine Nullmenge ist, wird m(P)=1.
Ersetzt man auf der linken Seite noch (1) durch oo, so folgt

r dt
D(“)'J‘Wzl- (3)

#(0)

Das gilt fiir jede Funktion u der das harmonische Mass u, definierenden Folge u,.
Wir haben also mit (3) eine positive untere Schranke fiir die Dirichletintegrale D (u;)
gefunden. Mit Satz 3.3 ergibt sich als Resultat:

SATZ. Wenn es Funktionen h und ¢ gibt, sodass die Bedingungen (a) und (b) erfiillt
sind, dann ist das harmonische Mass u, der RMF M nicht die Nullfunktion.

Das Hauptresultat Satz A werden wir jetzt erhalten, indem wir fiir die dort ge-
nannten RMF die Bedingungen (a) und (b) (mit sehr einfachen Funktion 4 und ¢)
nachweisen.

4. Abschiitzung der in Bedingung (a) auftretenden Integrale

4.1. Im ganzen Abschnitt ist M eine einfachzusammenhdngende vollstindige n-
dimensionale RMF mit einem Punkt ae M, in dem die Exponentialabbildung exp:
M, — M ein Diffeomorphismus ist. Durch Wahl einer linearen Isometrie y:R"—> M,
hat man dann Riemannsche Normalkoordinaten zum Zentrum a: x=(expcy)~ !, und
dazu die differenzierbaren Funktionen

. 1/2
0:M=M - {a} >R*, e(p)=(Z xi(p)Z) = 5(p, a),

i=1
&: M — S"~! (Einheitssphire im R"), f(p)=)il—’—),
e (p)
o o _,
fi=|l—,.., ox .
0x 0x,

Weil |gradg|| =1 auf M, sind die Sphiren Z,={peM | ¢(p)=t} (+>0) Hyperflichen
in M. Die Inklusion von X in M wird mit j, bezeichnet, der Teilraum j,,((Z,),)
(peZ,) mit E, Die geoditischen Strahlen c(t)=x""(t-u) (ueS"!,t>0) sind
Integralkurven des Vektorfeldes gradg, somit stehen die Tangentialvektoren ¢(¢)
senkrecht auf £, .

4.2. SATZ. &,:=E&oj,: X, — S" L ist ein Diffeomorphismus, und die Jacobideterminante
von &Y im Punkt ue S ist gegeben durch J(7 ') (w)=f (t-u) 1"~ .
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Beweis. Bezeichnet 1:S" !> R" die Inklusion, o,:R"—R" dic Homothetie
o,(u)=t-u (ueR"), so gilt

60108, =Xoj,. (1)

&,:Z,—~ 8" ! ist bijektiv; da x, und j,, injektiv sind, wird nach (1) auch ¢,,:
(Z.),— (8" 1)y injektiv (peX,). Somit ist &, ein Diffeomorphismus.

Zur Berechnung von J(& ') (#) nehmen wir eine Basis Y; ... Y,_; von (S"1),.
Nach (1) ist j,o &, ' =x""o0,01, folglich j ((x' (¥)) =@ X mitd=x""o0,und X;=
15 Y;. Daher wird

F ) () = Y s 18X B Xl

1Y1 .. Yoo illsn-s X1 wee Xoe gl

(2

(die Indices deuten an, auf welche RMF sich die Norm bezieht). Wir definieren
X,=0a(1), wo « die Gerade a(t)=7-u im R" bedeutet. X, hat die Norm 1 und steht
senkrecht auf X ... X, _, €1, ((S"1),). Eine kurze Rechnung zeigt, dass ¢, X, =1-¢(1),
¢ die Geoddtische c(t)=x""(z-u). Daher wird |¢4X,| =¢, und @, X, steht senkrecht
auf @, X; ... 04X, -1 €E, . Mit (2) folgt

[$aX 1 puXall _ 194X 1 uXyosll I$uXoll _
X, X, 1X i Xl X

J(&T) (u)-t. (3

Da die X ... X, eine Basis von (R"), bilden, steht links gerade die Jacobideterminante
J(¢) (1) des Diffeomorphismus ¢:R"— M. Berechnet man J(¢) (#) mit Hilfe der
Orthonormalbasis (D;), (i-te partielle Ableitung zur Stelle u, i=1...n) so ergibt sich
wegen 6,4 (D;),=t"(D;);., J(¢) (w)=1"-f (¢t u), und daher zusammen mit (3) die Be-
hauptung.

4.3. Im folgenden sei G ein reguldres Gebiet in M, das den ausgezeichneten Punkt
ae M enthilt, j: G — M die Inklusion und d/0n das innere Normalenfeld des Randes
von G, K die Menge der Punkte pedG mit {d/dn, gradg) (p)=0. Fiir festes >0 be-
zeichnet #n,: M — X, die Projektion n,(p)=x""(¢-£(p)) (pe M). =, ist differenzierbar;
auf X, ist m, die Identitét.

SATZ. Die Jacobideterminante von n,0j:0G — X, hat in einem Punkt pedGnZ,
den Wert J(r,o j) (p)=|{d/on, gradg) (p)|. Somit ist pe0G N X, genau dann ein kriti-
scher Punkt der Abbildung 7,0 j, wenn peK.

Beweis. Wegen g(p)=tist p=c(t), ¢ die Geoddtische c(t)=x""1(r-u), u=£&(p)
eS"~1. Die Vektoren N,=gradg(p)=¢(¢t) und N=(0/0n) (p) haben die Norm 1, N,
steht senkrecht auf E, und N senkrecht auf E=j, ((0G),). Die Abbildung ¢ = j o,
ldsst p fest. Wegen 7,0 j,=id ist @0 jix=Jj.x, also ¢, =id auf E,. Da n,oc=p kon-
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stant, ist ¢4 N,=/474¢(¢)=0, mithin ¢, =0 auf dem orthogonalen Komplement E j.
Man hat also

¢y =id auf E,, ¢, =0 auf E;. (1)

Zur Berechnung von J=J (=, j) (p) wéhlen wir eine Basis X ... X,_, in E: X, =/, Y,,
Y;...Y,_; Basis von (0G),. Wegen j, (7,0 )y Y, =@, X, wird

_ ”(“t°j)* Y, ... ”2, _ PxX ... DX,y
1Yy ... Ya_illog Xy ... Xpoull

Jetzt sind zwei Fille moglich: Entweder ist N= + N, dann wird E=E, und nach (1)
¢+ X=X, also J=1=[KN, N,»|. Andernfalls sind N und N, linear unabhingig. Den
von N und N, aufgespannten Teilraum von M, bezeichnen wir mit E,. Man hat
dimEy=2, dim(EnE,)=dim(E,nEy)=1, Ey=EnE, Wir wihlen Vektoren
XeEnE,und X,€E,n E, mit Norm 1, und eine ONB (Orthonormalbasis) X; ... X, _,
von Ey. Da X,, N, eine ONB von E, bilden, wird X=X, X,> X, + <X, N,> N,. Mit
(1) folgt ¢4 X=X, (k=1...n—2) und ¢, X=X, X,) X,. Verwendet man daher in (2)
die ONB X, ...X,_,, X von E, so erhdlt man unter Beachtung, dass X;...X,_,, X,
eine ONB in E,, J=|<X, X,>|. Da aber X, N und X, N, zwei ONB in E,, ist die zum
Basiswechsel X, N— X, N, gehorige 2 x 2-Matrix orthogonal, also ihre Diagonal-
elemente (X, X,) und (N, N,) bis auf das Vorzeichen gleich. Damit wird J=|{N, N,>|,
wie behauptet.

(2

4.4. Wegen aeG besitzt die Menge I“={teR" | 1-uex(G)} fiir jedes ueS"™* ein
positives Maximum r(u). Wir definieren eine Abbildung ¢:S" ! — G durch ¢ (u)
=x"1(r(u) u), und setzen O={ueS" | ¢ (u)edG-K}.

SATZ. 1) £0j:0G— S"~! bildet 0G — K lokal diffeomorph ab

2) S""'— 0 ist eine Nullmenge, O ist offen in S"!

3) ¢ bildet O diffeomorph ab, und ¢~ =¢ auf ¢ (0).

Beweis. Ein Randpunkt ped G liegtin 0GNXZ,, t=0(p)>0. Da & j= (&0 j,)o (7,0 j),
folgt aus den Sédtzen 4.2 und 4.3, dass p genau dann ein kritischer Punkt von £o j ist,
wenn pe K. K ist also die Menge der kritischen Punkte von £o j, nach dem Satz von
Sard ([8] p. 66) wird ¢ (K) eine Nullmenge in S"~!. Wegen u=¢(¢ (v)) fiir ueS"™!
ist S"~1 — 0 = ¢(K), also ebenfalls eine Nullmenge. 6G — K ist die Menge der reguléren
Punkte von &0 j, wird also lokal diffeomorph abgebildet. Damit ist 1) und der erste
Teil von 2) gezeigt.

Es sei jetzt ueO fest gewihlt, p=¢ (u). Nach 1) gibt es eine Umgebung U von p in
0G — K, sodass die Einschrankung & von ¢ j auf U ein Diffeomorphismus &: U— ¢(U)
wird. m bezeichne das Maximum von g auf G, c, die Geoditische c,(z)=x"" (¢'v),
veS" 1. Wegen ¢, (r (#))=p und der Maximumeigenschaft von r () sind die Kompak-
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ta 0G—U und c,[r(u), m] disjunkt und haben daher eine positive Distanz 2¢. Die
Distanz zwischen G — U und c,[ r(u)—¢, m] ist dann mindestens noch . Zu diesem
¢ gibt es eine Umgebung ¥ von u in $"~', sodass die Distanz von c,(¢) zu c,(¢) fiir
(v, 2)eVx[r(u)—e, m] kleiner als ¢ wird. Fiir ve V ist dann der Durchschnitt der
Strahlen C,=c,[r(#)—¢, c0) mit 0G— U leer, d.h. C,ndG liegt in U. Wegen ¢(C,)
= {v} folgt daraus, dass C, G fiir ve ¥ hochstens aus dem Element €~ (v) besteht.

Weil ¢ (p)=r(u), gibt es eine Umgebung U’ in U von p, sodass ¢>r(u)—ein U’.
V'=Vn&(U') ist dann eine Umgebung in S”! von u=¢(p). Wenn veV’, so ist
g=&"1(v)in U’ und ¢(q)>r(u)—e. Daher liegt jeder Punkt c,(t) mit >¢(q) in C,,
kann also nicht Randpunkt von G sein (sonst wédre nach der vorigen Bemerkung iiber
C,n0G ¢,(t)=q und t=¢(c,(t))=0(g)). Der Strahl c,(¢(g), ) enthilt demnach
keine Randpunkte von G, folglich auch keine Punkte von G. Dagegen liegt ¢, (¢ (7)) =¢
in 0G. Deshalb muss die Zahl ¢(g) gleich dem Maximum r(v) von I” sein, und
Et(v)=x"1(r(v) v)=¢(v). DaveV’ beliebig war, wird ¢=E"" auf V"

Es folgt, dass die Umgebung ¥V’ von u durch ¢ diffeomorph in U < dG — K hinein
abgebildet wird, und damit selbst in O liegt. Das gilt fiir jedes ue O, also ist O offen,
und ¢ bildet O lokal diffeomorph ab. Weil aber £0¢ die Identitdt auf $"~?, ist
¢:0— ¢(0) ein Diffeomorphismus und ¢~ =¢ auf ¢ (0).

4.5 SATZ. Setzt man s=0 oder 1 im Fall n23, s=0 im Fall n=2, so gelten die

Ungleichungen
r(u)

[t [ v [ (fromena),

G —Ua(e) sn-1

»

o2 f £ (r () r (a1

o
oG sn-1

Beweis. Unter Verwendung von Polarkoordinaten im R” erhilt man

fe"”% [ @oxyzr= [ ([rewem=ar) 0

G x(G)
(I* wie in 4.4. Das Integral existiert, da in jedem Fall n—1—2s=0). Wegen I*
< (0, r(«)] wird das innere Integral
r(u)

ff(t-u)-t"‘l‘zsdtgff(t-u)-t"“l‘zsdt VueS' ™', ()
I V]

r(u)=0(¢ (v)) ist stetig auf O (Satz 4.4, 3)) und beschrinkt auf $"*, somit ist die
rechte Seite von (2) stetig auf O und beschrinkt auf S”~!, also wegen Satz 4.4, 2)
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integrierbar iiber S" 1. Aus (1) und (2) ergibt sich jetzt sofort die erste Ungleichung.
Die Funktion g=1|{d/dn, gradg)| ist stetig auf G und 0<g<1, daher folgt unter
Beniitzung von Satz 4.4. 3):

Jerz [ ee= {00, 3)

oG ¢ (0)

Wir berechnen die Jacobideterminante J(¢) im Punkt u€O. p=¢ (u) liegtin 0GN X,,
t=g(p)=r(u). Weil (o j,)o(n,0j)=E=¢ L auf ¢ (0), wird (n,0 j)op =& 1 (&,=E0,
ist umkehrbar nach Satz 4.2) auf O und daher J(n,°j) (p)-J(¢) ()=J(& ") (u).
Mit Satz 4.2 und 4.3 folgt g(p)-J(¢) (u)=f (t-u)-t""' oder g(¢(u)) J(p) (u)
=f (r(u)-u)r(u)"~*. Setzt man das in (3) ein, so ergibt sich

fg_sgff(r(u)-u)-r(u)”"l*‘.

oG

Hier ist der Integrand auf ganz S"~! definiert, also kann man wegen Satz 4.4, 2)
O durch S"~! ersetzen und erhilt so die zweite Ungleichung.

5. Beweis der Sitze A und B

5.1. M ist wieder eine n-dimensionale einfachzusammenhéngende vollstindige RMF.
Fiir die Riemannsche Schnittkrimmung K von M soll jetzt eine obere Schranke
—b? (b2 0) existieren, d.h. K(P)< —b? fiir jede Tangentialebene P (2-dimensionaler
Unterraum eines Tangentialraums M ,, pe M). Nach dem Satz von Cartan-Hadamard
ist dann in jedem Punkt ae M exp: M, —» M ein Diffeomorphismus.

Zu einem festen Punkt ae M hat man wie in 4.1 die lineare Isometrie y:R" > M,
die Koordinaten x= (expoy) ™! und die Funktion f. Jy sei der lineare Isomorphismus
Jy:M,— (M,)y, definiert durch J5(Y)=¢(0), ¢ die Gerade ¢ (¢)=X+¢'Y in M,
(vgl. [5] p. 10). Fiir ueR" ist

0
(b’_) = CXPx Vx (Di)u = eXPy Sy Xi»
X; x~1(u)
wo D; die i-te partielle Ableitung und X; die Orthonormalbasis y((0...1...0)) (1 an
i-ter Stelle) von M, bedeutet. Daher wird

lexps JyuyX s - |

ueR"). 1
X1 ... X, ( ) W

f(u)=

Hier kann man X ... X, durch eine beliebige Basis von M, ersetzen.
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5.2. SATZ. Sei ueS" ! und reR*. Dann gilt

1) f(r-u)-r”_lg(n—1)-b-ff(t-u)-t”"1dt fallsnz=2,6>0

2) f(r'u)~r"'zg(n——-2)-ff(t°u)-t""3dt failsn;3,b=0

Im Beweis wird die Idee von Bishop-Crittenden ([3] p. 253) zur Abschitzung der
Funktion f beniitzt.

Beweis. Wir setzen X=y(u), c(t)=expt- X, g(¢t)=f (t-u)-t"~* (¢20), und zeigen
zundchst: es gibt n—1 Jacobifelder Y; ... ¥, _, lings der Geoditischen ¢ mit ¥;(0)=0
und <{Y;, ¢)>=0, sodass fiir 1=0

3 1Y;...Y,—4ll (t)
)= 97, V7,11 (0)

(V kovariante Ableitung langs c). Begriindung: Verwendet man in (1) eine Basis mit
X,=Xund {(X;, X)>=0fiiri=1...n—1, so wird

g(t) — ”Yl (t)Yn(t)“
X1 Xl
WO
K(t)-;t'exp*thXi fliI' i=1...n"" 1, Yn(t)=exp*thX.

Y, ist ein Jacobifeld lings ¢ mit ¥;(0)=0 und VY,(0)=X; ([5] p. 132), wihrend
Y,(t)=¢(1).<Y;, Y, ist eine lineare Funktion von ¢ mit (Y}, ¥, (0)=0 und Ablei-
tung <Y, Y,>’ (0)=<(X;, X,)=0, also konstant null. Mit ||Y,||=||X| =1 ergibt sich
die Darstellung (2) von g.

Wir berechnen die Ableitung von logg in einem festen Punkt teR™*. Durch eine
lineare Transformation ldsst sich erreichen, dass die Vektoren Y;(¢)...Y,_;(?)
orthonormal sind. Dann wird nach (2)

(2)

3g_'(%) =3(1Yy ... Y12 () =3 g Y, YD (1),
g (1) "t o
)= 5 T O,

Y=Y, ist ein Jacobifeld mit ¥ (0)=0, daher ist

VY, Y)(t)= f IVY |2 = (R(Y, ¢) &, YD
)]
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(R Kriimmungstensor von M ). Weil (R(Y, ¢) ¢, Y)=k||Y|?, k(z) die Schnittkriim-
mung K beziiglich der durch Y (7), ¢(t) aufgespannten Tangentialebene, folgt mit der
Voraussetzung K< —b?

VY, Yy (1) 2 f IVY |2 + 82 Y],
0

Waihlt man orthonormale Parallelfelder P; ... P, lings c, sodass P,=c¢und Y (¢)=2P, (¢),
so gilt die Darstellung

n—1

n—1
Y = _Zl @;P,  IVY|? + 0% |Y|* = -21 o} + b*-9F,
j= i=

wo die ¢; auf R differenzierbar sind und ¢, den Randbedingungen ¢, (0)=0, ¢, (t)=1
geniigt. Mit der vorigen Ungleichung ergibt sich

t

VY, Yy (1) 2 f ¢ + b of. 4)

0

Um den kleinstméglichen Wert des Integrals (4) zu ermitteln, betrachten wir die
positiv definite symmetrische Bilinearform

t

I(p,¥) = f Y + b oy
0
auf der Klasse F der differenzierbaren Funktionen ¢ mit ¢ (0)=0, ¢ (#)=1. Nimmt
man fiir Y e F speziell die Losung der Jacobigleichung y” —b? - =0 und integriert den
ersten Term von I(¢, {) partiell, so erhdlt man I(p, ¥)=y'(t) VoeF. Es folgt

I(p, )=V (t)=I(¢—V¥, o— ) =0 oder I(p, )=y’ (t) VoeF. Der Wert des Inte-
grals in (4) ist also mindestens ¥’ (). Damit folgt aus (3) und (4)

g(®z(r-1)y' (1)) ©)

Wenn b>0, ist

Sinbt
= ()= b,
VO =gom VW2
also nach (5)

(f(tu)~ Y 2(n—1)b-f(t-u)-r** (Fall 5> 0). (6)
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Wenn b=0, ist Y (t)=1/t, ¥’ (¢)=1/t, also nach (5)
gY _g® g0 g(1)
7 ( - 2) t2

t_,_______

t

oder
(f(t-u)-t"”z)’ = (n— 2)~f(t~u)-t"‘3 (Fall b=0). @)

Integriert man die fiir alle tzeR™ giiltigen Ungleichungen (6) und (7) iiber ein Intervall
[e, r] (0<e<r), so erhilt man im Limes ¢ — 0 die Behauptung.

5.3. Esseijetzt G ein reguldres Gebiet in M mit aeG. Setzt man in Satz 5.2 fiir jedes
ueS" ! r=r(u), r(u) die Funktion in Satz 4.5, und integriert die Ungleichungen von
Satz 5.2 iiber ueS" !, so folgt zusammen mit Satz 4.5:

1) lg(n—l)-b'Jl imFalln=>2,6>0

86 G

f 1 1

2) ég(n—z)-L? imFalln>3,b=0.

o
oG

Da ae M beliebig war, ist damit zunidchst der Satz B bewiesen. Weiter sind die
Bedingungen (a) und (b) in 3.5 erfiillt durch

1) h=1 und ¢(t)=(n—-1)bt imFalln=2,b>0,
2) h=1/p und ¢(t)=(n—-2)t imFalln=x23,b=0.

Zusammen mit den Sétzen 3.5 und 3.2 ergibt sich hieraus der Satz A.

LITERATUR

[1] AHLFORS, L. V. und Sario, L., Riemann Surfaces, (Princeton, 1960).

[2] BERGER, M., GAUDUCHON, P., und MAZzEeT, E. Le spectre d’une variété Riemannienne, Lecture
Notes in Mathematics 794 (1971).

[3] BisHop, R. L. und CRITTENDEN, R. J., Geometry of Manifolds, (Academic Press, New York, 1964).

[4] FeLLErR, W., Uber die Lisungen der linearen partiellen Differentialgleichungen zweiter Ordnung
vom elllptzschen Typus, Math. Ann. 102 (1930).

[5] GromoLL, D., KLINGENBERG, W., und MEYER, W., Riemannsche Geometrie im Grossen, Lecture
Notes in Mathematlcs 55 (1968).

[6] HORMANDER, L., Linear Partial Differential Operators, (Springer, 1963).

[7] MirANDA, C., Equazioni alle derivative parziali di tipo ellittico, Ergebnisse der Mathematik,
NF Heft 2 (1955).

[8] NARASIMHAN, R., Analysis on real and complex manifolds, (Masson, Paris, 1968).

[9] SzeGO, G., Uber einige Extremalaufgaben der Potentialtheorie, Math. Z. 31 (1930).

Eingegangen den 12. Mirz 1973.



	Die Existenz einer Greenschen Funktion auf Riemannschen Mannigfaltigkeiten

