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Die Existera einer Greenschen Funktion auf

Riemannschen Mannigfaltigkeiten

von Sébastian Keller, Basel

Ergebnisse

Auf jeder Riemannschen Mannigfaltigkeit (Abkûrzung: RMF) ist der Laplace-
operator A erklârt; Lôsungen der Laplacegleichung Au 0 heissen harmonische
Funktionen. Greensche Funktion der RMF M (zum Aufpunkt qeM) nennen wir
jede in M—{q) positive und harmonische Funktion gq, welche in q die Singularitât

hat; dabei bedeutet n die Dimension von M, s(p, q) die geodâtische Distanz auf M
(fiir n 2 ist s(p,q)2~n durch — logs(p9 q) zu ersetzen). Die Existenz bzw. Nicht-
existenz einer Greenschen Funktion ist eine vom Aufpunkt q unabhângige Eigen-
schaft der RMF M, welche unter isometrischen Abbildungen von M invariant bleibt.
Es stellt sich die Frage, welchen Einfluss das Verhalten von geometrischen Grôssen

wie der Riemannschen Schnittkrummung auf dièse Eigenschaft einer RMF hat. Dar-
auf bezieht sich das folgende Hauptergebnis dieser Arbeit:

SATZ A. Auf einer einfachzusammenhângenden vollstàndigen RMF M mit
Dimension n und Schnittkrummung K existiert eine Greensche Funktion

1) wenn K durch eine négative Zahl nach oben beschrânkt ist,

2) wenn K nirgends positiv und n ^ 3 ist.

Im Fall 2) kann man auf die Bedingung n^3 nicht verzichten, wie das Beispiel der

komplexen Ebene zeigt.
Eine Riemannsche Flâche besitzt genau dann eine Greensche Funktion, wenn

das harmonische Mass der Flâche nicht die Nullfunktion ist. Dièses Kriterium gilt
unverândert auf Riemannschen Mannigfaltigkeiten (Satz 3.2) und dient als Ausgangs-

punkt des Beweises von Satz A. Wenn das harmonische Mass einer RMF M die
Nullfunktion ist, so wird auch der Limes der Dirichletintegrale D(uk) der gegen das

harmonische Mass konvergierenden Folge uk gleich null (Satz 3.3). Demnach gilt es,

fiir die Intégrale D(uk) eine positive untere Schranke zu bestimmen. Wir verwenden

dazu die Idée von Szegô [9] zur Abschâtzung der Kapazitât eines Kondensatos im
euklidischen R3. Bei der Obertragung auf die RMF M stellt sich das Problem, fur
die im R3 gùltige isoperimetrische Ungleichung, die in der Szegôschen Abschâtzung
eine entscheidende Rolle spielt, und in welcher die spezielle Géométrie des R3 zum
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Ausdruck kommt, einen geeigneten Ersatz zu finden. Die Lôsung dièses Problems
liefert nebenbei

SATZ B. Aufeiner einfachzusammenhàngenden vollstândigen n-dimensionalen RMF
M, deren Schnittkrummung K durch eine négative Zahl —b2(b>0) nach oben be-

schrànkt ist, besteht zwischen dem Mass m (G) jedes regulâren Gebieîs G von M und
dem Mass m(dG) des Rondes von G die lineare Ungleichung m(dG)^:(n— \)'b*m(G).

Herrn Professor Heinz Huber, der die Anregung zu dieser Arbeit gegeben und mir
mit wichtigen Ratschlâgen geholfen hat, spreche ich an dieser Stelle meinen herz-
lichen Dank aus.

Bezeichnungen

Aile vorkommenden RMF gehôren der Klasse C00 an und sind, sofern nichts anderes

gesagt wird, unberandet und nicht notwendig zusammenhângend. ,,Differenzierbar"
heisst stets beliebig oft differenzierbar. Folgende Bezeichnungen werden in der

ganzen Arbeit verwendet:

Mp Tangentialraum der RMF M im Punkt peM
<!>+ Differentialabbildung einer differenzierbaren Abbildung <f>

< > Masstensor von M (Bilinearformschreibweise)
grad/ Gradient einer differenzierbaren Funktion/

H*!...XJ =Vdet<Xi,Zi>i,; i...fc f*rXx...XkeMp
(fur k=l ist \\X\\ die Norm des Skalarprodukts {X, Y} auf Mp).

1. Intégration

Bekanntlich lâsst sich auf jeder RMF M in natiirlicher Weise ein Intégral von Funk-
tionen erklâren, welches im Fall M=Rn mit dem Lebesgueintegral ûbereinstimmt

([2], p. 10). Zum einfacheren Verstândnis stellen wir hier drei im folgenden wichtige
Integralformeln zusammen.

1.1. Fur Diffeomorphismen cfriM^M' zwischen zwei RMF besteht die

Transformationsformel: h— \ {h o <j>) J (</))

<j>(A) A

(Aœ M messbar, h ûber <j)(A) integrierbar) ; dabei bedeutet J{<j>) die

r l^ • M TfJL\t \ H0^ ^XII
Jacobideterminanteyonç\ J {<p) (p)

Xn eine (beliebige) Basis von Mr
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1.2. Fur eine berandete RMF M und zwei auf M differenzierbare Funktionen u

und v gilt die

Greensche Formel: — I v ~ \ v Au + <gradt;5 gradu) ;
J an J
0Af M

hier bezeichnet djdn das innere Normalenfeld lângs dem Rand dM.

1.3. M sei jetzt eine RMF der Dimension n. Fur den Rest von Abschnitt 1 gelten
folgende Voraussetzungen:

O offene Teilmenge von M mit kompaktem Abschluss 0
I offenes Intervall in R

/ reellwertige Funktion auf O mit den Eigenschaften
(1) / stetig auf 09 f differenzierbar auf O

(2) / (dO) n / leer, f(O)nI nichtleer

(3) (grad/)0>)#0 V/>eO.
Wir setzen: X=gmdf, G={peO \f{p)el) und Ft={peO \f(p) t) fur tel.

Wegen (3) sind die Niveauflâchen Ft kompakte Hyperflâchen in M. Zu fedempeG gibt
es genau eine maximale Integralkurve cp des auf O differenzierbaren Vektorfeldes
||XII"2 Xmit cp(/ (/?)) p. Wegen (2) ist c, auf ganz/definiert, und es ist cp(t)eFt fur
te/. Wir wâhlen eine feste Flâche F= Fs (sel) und definieren die Abbildungen

<f>:FxI-+G durch <t>(p9t) cp(t)

<j>t\F-+Ft durch 0f(p) cp(O (re/).

(f) und $f erweisen sich als Dijffeomorphismen.

1.4. LEMMA. Furjede auf G(a, b) : {peO \ aS f {p)^b} (a, bel) stetige Funktion

h ist JFt h\ || X || eine stetige Funktion von t auf [a, b], und es gilt

j Hdé-
G(a, b)

Beweis. (F, y) sei eine Karte von F, dann ist (Vxl,z) mit z(p, t) (y(p), t)eULn

(pe V, tel) eine Karte der RMF FxL Verwendet man zur Berechnung der Jacobi-

determinante von <j> die Basis djdzu..., djdzn9 so ergibt sich

u)
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Nach der Transformationsformel ist daher

Ft F peF

Wegen G(a, 6) 0(Fx[>, &]) ist (/?o0) /(<£) stetig auf Fx|>, 6], daher wird das

Intégral (2) eine stetige Funktion von te[a, b~]. Nach der Transformationsformel und
dem Satz von Fubini ist ferner

b

h=
G(a,b) Fxta,b] a peF

daraus folgt mit (2) die angegebene Formel.

2. Harmonische Funktionen

Die Haupteigenschaften der harmonischen Funktionen im euklidischen R2 und R3

(Mittelwertsatz, Maximumprinzip, Harnacksche Sâtze) gelten auch fur die
harmonischen Funktionen auf einer RMF [4]. Wir geben zunâchst den etwas vereinfachten
und invariant formulierten Beweis des Mittelwertsatzes von Feller [4] wieder. Dann
leiten wir eine Abschâtzung der Richtungsableitungen Xu einer harmonischen
Funktion u durch die Funktionswerte von u her. Schliesslich zeigen wir, wie sich die

Harnacksche Ungleichung direkt aus dem Mittelwertsatz ergibt; damit lâsst sich eine

Schwierigkeit des ursprûnglichen Beweises in [4] (die Stetigkeit des Poissonkerns)
umgehen.

2.1. Entscheidend fur die Théorie der harmonischen Funktionen ist die Existenz

von Grundlôsungen der Laplacegleichung Au 0. In lokalen Koordinaten ist Au 0

eine elliptische Differentialgleichung; die Grundlôsungen solcher Gleichungen sind

von Miranda in [7] untersucht worden. Aus den Sâtzen 19.1, II und IV, pp. 49 in [7]
erhâlt man den folgenden

SATZ. M sei eine RMF der Dimension n, s(p, q) die geodâtische Distanz auf M.
Zu jedem Punkt von M gibt es eine offene Umgebung U mit kompaktem Abschluss U

und eine auf UxU stetige Funktion r(p, q) mit den Eigenschaften:
1) r^y^rfa q) fst differenzierbar in U-{q} VqeU
2) rq>0undAr%-n 0in U-{q}VqeU
3) lims(pq)^or(p, q)/s(p, q)=\ gleichmâssig in Ux U-d, wo d die Diagonale von

UxU, undr(q,q) 0.

4) 3C<0, sodass \r(p, a)-r(p9 q)\^C-s{q, a) V/>, q, aeU.
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5) Die Funktion L, L(p9 #)= ||(gradr9) (p)\\2, ist stetig in U x U - d;

lim L(p, ç) l

gleichmâssig in UxU—d, also L stetig fortsetzbar in UxU durch L(p,p)=l.
6) 3C>0, sodass $peV \L(p, a)-L(p, q)\SC-s(q9 a) Vq, aeU.

Fur n 2 hat man in 2) r^2"n durch \ogrq zu ersetzen. Um die daraus entstehenden

Fallunterscheidungen zu vermeiden, schreiben wir die Beweise in diesem Abschnitt
stets fur n ^ 3 auf ; die Modifikationen fur den Fall n 2 sind offensichtlich.

2.2. Die Umgebungen von Satz 2.1 nennen wir Grundumgebungen. Uq(b) bezeichnet
immer die metrische Umgebung {peM \s(p,q)<b}; Ûq(b)=Uq(b)~{q}. Aus 3) und
5) in Satz 2.1 folgt:

LEMMA. Zu jedem Kompaktum K in der Grundumgebung U gibt es eine Zahl
b>0 mit der Eigenschaft: Fur aile qeK gilt

1) ^^i und

2) Das Tripel 0=Ûq(2b), /=(0, b) undf=rq erfullt die in 1.3 genannten Voraus-

setzungen.

2.3. U sei eine Grundumgebung des Punktes qsM, bq>0 eine Zahl wie in Lemma
2.2 fur K={q}. Dann ist Vq(t):= {peUq(2b)\rq(p)<t} fur jedes te(0,bq) ein

regulâres Gebiet (dh. der Abschluss Vq(t) ist eine kompakte berandete Untermannig-
faltigkeit von M) mit der Hyperflâche Fqt {peUq(2b) \rq(p) t) als Rand.

MITTELWERTSATZ. Ist u harmonisch in einer Umgebung Vq(b) von q (£e(0, bq)),

so hat u die Mittelwerteigenschaft

J
Vq (b) Vq (b)

Beweis. Den Index q lassen wir weg und setzen v r 2 n - b2 n,Gt= V(b)- V(t fur
fe (0, b). Gt ist ein regulâres Gebiet mit Rand dGt=Fbu Ft, u und v sind harmonisch in
Gv Daher wird nach der Greenschen Formel

f dv du f dv
u v =0, - 0.

J on on j on
ôGt dGt
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Weilô/3/i JIT/1|A"|| aufFt,dldn=-XI\\X\\ aufFfc, Xr=\\X\\2xmd v OaufFd,folgtdar-
aus

(2-n)

F

(1)

Fb

(2)

Fb

Die beiden Intégrale auf der linken Seite von (1) bezeichnen wir mit Iu(t) und I0(t)9
das Intégral rechterhand in (2) mit /. Fur Iu{t) hat man die Ungleichung

(2- n)-/-mintt (p) ^ Iu(t) ^ (2 - n)-J-maxu (p). (3)
p e Ft peFt

Weil auf V(b) \du/dn\S Hgrad w|| ^C(Ceine positive Konstante) und nach Lemma 2.2

0<v<r2~n<.yj2'\\X\\'r2~n gilt, erhalten wir fur Iv(t) die Abschâtzung

\Iv(t)\£y/2'C-I-t. (4)

Fur t -> 0 konvergieren die Punkte von Ft gleichmâssig gegen q9 da nach Lemma 2.2

s(p, q)^2tfurpeFt. Deshalb folgt aus (3) und (4)

lim/a(0 (2 - nyi-u(q), \imlv(t) 0.
t-+o t^o

Mit (1) ergibt sich

\\X\\=ju-\\X\\. (5)

Fb Fb

(5) gilt fur jedes be(0, bq). Ersetzt man b durch t und integriert (5) uber re[e, b~]

(0<e<b), so erhâlt man mit Lemma 1.4 die Behauptung durch Grenzùbergang e->0.

2.4. SATZ. Zsr G eine offerte Teilmenge der RMF M und K ein Kompaktum in G,

dann gibt es eine Konstante C>0, sodass fur jede in G harmonische Funktion und aile

XeMa, aeK, die Abschâtzung \Xu\<,C- \\X\\ -supp6G|w(/?)| gilt.
Es genûgt, den Satz fur G=U9 U eine Grundumgebung, zu beweisen. Ist c die

Geodâtische mit c(0) a und dem Tangentialvektor c(0) XeMa, so wird fiir kleines

die Distanz s(c(t), a) t-\\X\\ und

Z«-d(0)«.limîî^f^
r-o s(c(t), a)

Daher genugt es zu zeigen : Es gibt Zahlen C > 0, s > 0, sodass

\u(q)-u(a)\SC-s(q,a)-suppeU\u(p)\ fur aile aeK, qeUa(e).
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Beweis. 2<5 sei die Distanz von Kzu M- U9 Kô= \JqeK Uq(ô), b>0 eine Zahl wie
in Lemma 2.2 fiir das Kompaktum Rà in U, C die Konstante aus Satz 2.1, 4) und
e min(ô, b/2C, <5). Fur qeKô setzen wir

JVj2 und h(q) ju\\Xq\\2, wo Vq

vg vq

(Xq und Vq{t) wie in 2.3). Wir wâhlen jetzt aeK, qeUa(e)czKô. Nach dem Mittel-
wertsatz ist

u(a\ «(a\-h{q) h(a)_h(q)(na)-f(q)) h{q) - h{a)
W ^ ^

/(«) /(a) f(i)-f(a) /(a) '

Es sei

/= J II|X€||2~||XJ2|, Iq= J ||Z€||2, Ifl= J ||XJ2.
F€nF« Fq-Fa Va-Vq

Dann gilt

/(«)l^/ + /€ + /a, (1)

h(a)\^a(I + Iq + Ia) mit a sup|w(p)|,

|W(^)-W(a)|^^(/4-J€ + /fl). (2)

Die drei Intégrale schâtzen wir einzeln ab. Nach Satz 2.1, 6) ist

IZCi-sfaa). (3)

Vq- Va cz Vq {-) - Vq ^- - C-*(«, a)). (4)

Begriindung: Wenn peVq- Va9 so ist s(/?, q)S2-r(p9q)<b nach Lemma 2.2; mit
s(q9a)<s^b folgt />e£/a(2b)- Ka, also muss r(/?, a)^b/2 sein, und mit Satz 2.1, 4)

ergibt sich r(/>, q)^r(p, a) — C's(q9 à)^bl2 — C9s(q9 a).
Wegen der Inklusion (4) hat man nach Lemma 1.4

6/2

iqs J (fpy)*, (5)

b/2-C-s(q,a) Fqt

Fqt die Niveauflâche rq t. Nach (2) im Beweis des Mittelwertsatzes ist

J""1- J ll^ll ^"1- J II*.Il fur j, *e(0, b).
Fqt Fqs
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Integriert man dièse Gleichung liber ,se(0, b/2), so erhâlt man wiederum mit Lemma
1.4

fur jedes te(0, bjl). Mit Satz 2.1, 5) folgt daraus, dass der Integrand in (5) gleichmâssig
in q und t beschrânkt ist, daher wird lq^C2's(q,a). Genau gleich zeigt man

s(q, a). Mit (3) zusammen ergibt sich

Daraus folgt zunâchst mit (1), dass die Funktion f(q) auf K stetig ist und daher auf
Ktin positives Minimum C4 annimmt. Mit (2) folgt \u(q) — u(a)\ <a(2C3IC4)-s(q, a),
also die Behauptung.

2.5. HARNACKSCHE UNGLEICHUNG. Zu jedem Punkt a der RMF M gibt es

eine Umgebung U von a und positive Konstanten C, C, s so, dass fur jede in U harmo-
nische nichtnegative Funktion u die Ungleichung C'u(a)^u(q)^Cf*w(a) VqeUa(e)
besteht.

Beweis. Wegen Satz 2.1, 5) lâsst sich eine Grundumgebung U von a so klein
wâhlen, dass ||*J2>0 auf Ûund die Funktion H(p, q)\= \\Xq{p)\\2-\\Xa{p)\\-2 auf
ÛxD stetig ist. Da H(p, a)=l, findet man eine abgeschlossene Umgebung K von a in
U, sodass iSH(p, q)ûi V(/>, q)eUxKoder

ii*J2 ^ \\Xq\\2 ûi\\Xa\\2 auf 0 MqeK. (1)

b>0 sei eine Zahl wie in Lemma 2.2 fur das Kompaktum Km JJ\ e>0 so klein, dass

Ua (s) in Kliegt und e < min (6/2, bjAC), C die Konstante aus Satz 2.1,4). Fur qeUa (e)

gilt dann

Begrûndung: Wenn/?eFa(&/4), so ist nach Lemma 2.2 s(p, a)^2-r(p, a)<bj29
mit s(q9 a)<e<b/2 folgt s(p9q)<b. Nach Satz 2.1, 4) ist r(p9 q)^r(p, a)+C-s
{q, à)<b/4+C-e<bl2, mithin peVq(b/2). Die andere Inklusion zeigt man gleich.

Wir multiplizieren jetzt die Ungleichung (1) mit der gegebenen Funktion u und

integrieren ùber Vq(b/2) bei festem qeUa(e). Da w^O in [/, ergibt sich mit den

Inklusionen (2)

*• J u\\Xa\\2^ J u\\Xq\\2Si' j u\\Xa\\2.

Va(b/4) Vq(b/2) (36/
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Wendet man auf jedes der drei Intégrale den Mittelwertsatz an, so folgt

wobei

Ci=l- J \\Xa\\\ C2=f- J ||XJ|2, f(q)= J \\Xq\\\
Va(b/4) Va(3b/4) Vq(b/2)

Die Funktion/ist, wie im Beweis von Satz 2.4 gezeigt wurde, auf K stetig und positiv
und nimmt daher auf K ein Maximum C3>0 und ein Minimum C4>0 an. Aus (3)
erhalten wir

Ci C,

Das gilt fur jedes qeUa(e), und die Konstanten Cx... C4, s sind von u unabhângig.
Damit ist die Ungleichung bewiesen.

2.6. Aus dem Mittelwertsatz folgt in bekannter Weise das Maximumprinzip: eine

im Gebiet G c= M harmonische nicht konstante Funktion u nimmt in G kein Maximum
an. Weil das Dirichlet problem fur regulâre Gebiete lôsbar ist ([7] p. 60, [6] p. 264),

gilt auch das Harmonizitâtskriterium: eine im Gebiet G a M stetige Funktion u ist in
G harmonisch genau dann, wenn u die Mittelwerteigenschaft aus 2.3 fiir jedes qeG
besitzt. Aus der Harnackschen Ungleichung ergibt sich damit wie im klassischen Fall
der Harnacksche Satz: Eine Folge monoton wachsender, im Gebiet G harmonischer

Funktionen, welche in einem Punkt qeG beschrânkt bleibt, konvergiert in G lokal
gleichmâssig gegen eine in G harmonische Grenzfunktion.

3. Greensche Funktion und harmonisches Mass

Wie in der Klassifikationstheorie der Riemannschen Flâchen hat man auf einer RMF
als Kriterium fur die Existenz einer Greenschen Funktion das Nichtverschwinden des

harmonischen Masses. Das Ziel des Abschnitts ist, eine hinreichende geometrische

Bedingung dafûr anzugeben.

3.1. Das harmonische Mass einer zusammenhângenden RMF M ist folgendermassen
erklârt: Es sei {Gk}k=i eine Ausschôpfung von M durch regulâre Gebiete (d.h.
GkaGk+1 und Ufc°=i Gk M), A eine zusammenhângende abgeschlossene Teilmenge

von Gu sodass Gt— A (und damit Gk — A) ein regulâres Gebiet, uk die Lôsung des

Dirichletproblems Au 0 in Gk — Ay w 0 auf dA, u= 1 auf dGk. Wegen des Maximum-
prinzips ist 0<wk<l und uk^.uk+i, daher konvergiert die Folge uk nach dem Satz

von Harnack gegen eine in M—A harmonische Grenzfunktion uA, dièse heisst har-
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monisches Mass von M (bezûglich A). uA ist unabhângig von der Wahl der Gebiets-

folge Gk.

3.2. Nach dem Vorbild der Riemannschen Flâchen nennen wir eine RMF M hyper-
bolisch, wenn es eine nicht konstante auf M négative subharmonische Funktion v gibt,
und parabolisch, falls es ein solches v nicht gibt; der Begriff der subharmonischen
Funktion ist dabei wôrtlich derselbe wie auf Riemannschen Flâchen ([1] p. 135).

SATZ. Folgende Aussagen sind âquivalent:
(a) M ist hyperbolisch

(b) das harmonische Mass uA ist nicht die Nullfunktion auf M—A
(c) es existiert eine Greensche Funktion gq von M.
Die Giiltigkeit der Aussagen (b) und (c) ist demnach eine von der Wahl von

AczMbzw. qeM unabhângige Eigenschaft der RMF M.
Der Beweis des entsprechenden Satzes fur Riemannsche Flâchen benûtzt aus-

schliesslich Eigenschaften der harmonischen Funktionen, welche auch auf einer RMF
gelten, und lâsst sich daher wôrtlich auf den Fall einer RMF M ûbertragen. Fur
(a)o(b) vergleiche man [1] p. 204; (c)=>(a) ist klar, da —gq auf M subharmonisch,
negativ und nicht konstant ist. Zum Beweis von (b)=>(c) verwendet man die Perron-
sche Méthode ([1] p. 139) mit der Klasse IJ der in M—{q) subharmonischen

Funktionen v mit kompaktem Support und limp^q(v(p) — s(p9 q)2~n)<oo: aus (b) folgt,
dass gq(p):= sup{v(p) \vell} nicht konstant gleich +oo und daher harmonisch in
M— {q} ist; gq ist die gesuchte Greensche Funktion.

3.3. Die Funktionen uk aus 3.1, deren Limes das harmonische Mass uA ist, sind auf

der berandeten RMF Gk — A differenzierbar ([6] p. 264). Daher existieren die Dirichlet-
integrale

J Ilgradt/ 2J

SATZ. Aus uA 0 in M-A folgt \imk^ooD(uk) 0.

Beweis. Nach der Greenschen Formel gilt

d(Gk-A) a(Gfc-Gi)

Wegen wfc 0 auf dA, uk= 1 auf dGk folgt daraus fur k^2:
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Wir wâhlen eine offene Menge G mit kompaktem Abschluss G<=.G2—A und ôGt a G. Da
dGx kompakt und \\djdn\\ 1, gibt es nach Satz 2.4 eine positive Konstante C, sodass

dn
auf dGt mit ak sup \uk (p)\.

peG

Somit wird D(uk)i£C-aLktm9 m das Mass der RMF dGv Die Folge uk konvergiert auf
M-A lokal gleichmâssig, also auf G gleichmâssig gegen uA=09 dh. es ist limfc^ooafc=0
und damit \imk^aoD(uk)=0.

3.4. Wir leiten jetzt eine Abschâtzung der Dirichletintegrale D(uk) nach unten her.
Der Index k wird festgehalten und im folgenden weggelassen. Vorgegeben ist also die
im regulâren Gebiet G—A harmonische Funktion u mit Randwerten 0 auf dA9 1 auf
dG. Wir setzen u auf G stetig fort durch die Définition w=0 auf A.

Es sei Ar=gradw, P die Menge der regulâren Werte fe(0, 1) von u: G—A -+ (0, 1).

Fur tePisX \\X\\ >0 auf Ft {peG \u(p) t}9 also auch auf einer offenen Menge O in
(j, die Ft enthâlt. Da t nicht zum Kompaktum u(G—O) gehôrt, gibt es ein offenes

Intervall /c(0, 1) mit tel und u(G-O)nI=Q. Das Tripel O9 /, f=u erfûllt die in
1.3 genannten Voraussetzungen. Wegen u'1 (7)cO ist /cP, daher ist P eine offene

Teilmenge in R. Fur fe[0, 1] setzen wir Gt {peG \ u(p)^t} (G0=A9 Gx G). Wenn
teP9 ist Gt eine berandete RMF mit Rand Ft.

3.5. Es sei a ein Punkt im Innern von A9 h eine auf M—{a} positive und stetige

Funktion, fur welche das Intégral

f/i2 Hm f h\ *e[0,l],
J «40 J
Gt

existiert. Nach Lemma 1.4 ist fi auf P stetig differenzierbar mit der Ableitung

Das Dirichletintegral von u berechnet sich aus der Greenschen Formel wie in 3.3 zu

f du f du f du

Ô(G-A) dG ôGt

Im letzten Intégral ist ô/ôn= || JTH"1 JTzu setzen, also wird
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Mit der Cauchy-Schwarzschen Ungleichung ergibt sich

Ft

Wir machen jetzt die Annahme, dass sich bei geeigneter Wahl von h eine stetige Funk-
tion ç:R+ -»R+ (0, oo)) finden lâsst mit den Eigenschaften

(a) l h^(p( i h2) fur aile regulâren Gebiete G von M mit aeG
dG

00

Damit folgt aus (1):

y

Integriert man dièse Ungleichung liber ein abgeschlossenes Intervall [a9 b"\czP und
macht die Substitution r fi(t), so erhâlt man

H(b)

DM- f dx -

J

Da P offen in R, ist i>=Uj°=i^/ ™t offenen disjunkten Intervallen Ij. Wir wâhlen

abgeschlossene Intervalle //*== [<*/*, 6/*] in // mit Ijk^Ijk+i un(^ Uk°=i Ijk=lp un^
setzen Pk= Uj=1 /,fc. Dann ist PkcPk+l und (J^=1 P|k=P.

Weil fi streng monoton wachsend auf [0,1] und stetig auf P, sind bei festem k die

Bilder fi(IJk) die disjunkten Intervalle [p(aJk)9 fi(bJk)]9 und ihre Vereinigung ûber

7=1 ...k liegt in [n(0)9 /i(l)]. Anwendung von (2) auf die Intervalle /# [%, 6ik]
und Summation ûbery=l ...k ergibt daher

M(0)

Auf der rechten Seite steht das Lebesguemass m{Pk) von Pk; dièses geht fur
k -?oo gegen m(P). Da (0, 1)-^ gleich dem Bild der kritischen Punkte von u in
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G — A, also nach dem Satz von Sard ([8] p. 66) eine Nullmenge ist, wird m(P)=l.
Ersetzt man auf der linken Seite noch /i(l) durch oo, so folgt

M(0)

Das gilt fur jede Funktion u der das harmonische Mass uA definierenden Folge uk.

Wir haben also mit (3) eine positive untere Schranke fur die Dirichletintegrale D (uk)

gefunden. Mit Satz 3.3 ergibt sich als Résultat:

SATZ. Wenn es Funktionen h und (p gibt, sodasfs die Bedingungen (a) und (b) erfiillt
sind, dann ist das harmonische Mass uA der RMF M nicht die Nullfunktion.

Das Hauptresultat Satz A werden wir jetzt erhalten, indem wir fur die dort ge-

nannten RMF die Bedingungen (a) und (b) (mit sehr einfachen Funktion h und cp)

nachweisen.

4. Abschâtzung der in Bedingung (a) auftretenden Intégrale

4.1. Im ganzen Abschnitt ist M eine einfachzusammenhângende vollstândige n-
dimensionale RMF mit einem Punkt aeM, in dem die Exponentialabbildung exp:
Ma -» M ein Diffeomorphismus ist. Durch Wahl einer linearen Isometrie y : R" -» Ma
hat man dann Riemannsche Normalkoordinaten zum Zentrum a: x (expoy)"1, und
dazu die differenzierbaren Funktionen

\l/2

i=i /
x(p)

Sn~x (Einheitssphâre im R"), <J (p)

dxn

q{pY
-1

Weil ||grad<?|| l auf M, sinddieSphâreni;f={/7eM | g(p)=t} (t>0) Hyperflâchen
in M. Die Inklusion von I in M wird mit jt bezeichnet, der Teilraum jt* {(It)p)
(pelt) mit Er Die geodâtischen Strahlen c(t) x~1(t-u)(ueSn~1, t>0) sind

Integralkurven des Vektorfeldes grad#, somit stehen die Tangentialvektoren c(t)
senkrecht auf Ec{ty

4.2. SATZ. £,t : ^ ojt :Zt-^Sn~1 ist ein Diffeomorphismus, unddie Jacobideterminante

von &l im Punkt weS""1 ist gegeben durch /(4"1) (u)=f(t-u)-tn~1.



Die Existenz einer Greenschen Funktion auf Riemannschen Mannigfaltigkeiten 247

Beweis. Bezeichnet i:Sn~1-+Rn die Inklusion, at:Rn-*Rn die Homothetie
so gilt

t. (1)

!;t:Xt-*Sn * ist bijektiv; da x* und jt* injektiv sind, wird nach (1) auch >**•
>(Sn~l)ç{p) injektiv (pelt). Somit ist Çt ein Diffeomorphismus.

Zur Berechnung von /(<!;,"*) (w) nehmen wir eine Basis Y1... Yn_i von (Sn~l)u.
1 1

Yv Daher wird

»-iIIr»

(die Indices deuten an, auf welche RMF sich die Norm bezieht). Wir definieren

I, d(l), wo a die Gerade a(t)=f«imR" bedeutet. Xn hat die Norm 1 und steht

senkrechtauf X1 ...XH_1ei^((S"~1)u). Einekurze Rechnungzeigt, dass (j)#Xn t-c(t),
c die Geodâtische c(r) x~1 (tu)- Daher wird H^XJ t, und <j>*XH steht senkrecht

auf faXi ...^X^eE^. Mit (2) folgt

\\x,...xn
(3)

Da die X1...Xn eine Basis von (Rn)u bilden, steht links gerade die Jacobideterminante

J(cj))(u) des Diffeomorphismus (j>:Rn->M. Berechnet man J(cj))(u) mit Hilfe der

Orthonormalbasis (Dt)u (/-te partielle Ableitung zur Stelle w, /= 1...«) so ergibt sich

wegen Gt^{D^)u — t'{D^)t u J((f)) (u) tn-f(t-u)9 und daher zusammen mit (3) die Be-

hauptung.

4.3. Im folgenden sei G ein regulâres Gebiet in M, das den ausgezeichneten Punkt
aeM enthâlt,y:d(j-* M die Inklusion und d/ôn das innere Normalenfeld des Randes

von G, Kdk Menge der Punkte peôG mit (d/dn, gradg) (p) 0. Fur festes t>0
bezeichnet nt:Kf->It die Projektion nt(p) x~1 (t-Ç(p)) (petif). nt ist differenzierbar;
auf Zt ist nt die Identitât.

SATZ. Die Jacobideterminante von ntoj;dG-+Xt hat in einem Punkt pedGnit
den Wert J(nt°j) (p) Kd/dn, grad@> {p)\.Somit istpedGnIt genau dann ein kritU
scher Punkt der Abbildung nt° j, wenn peK.

Beweis. Wegen q (/?) t ist p c (t c die Geodâtische c(t) x"1(t-w), u Ç(p)
eSn~K Die Vektoren Np gmdo(p) c(t) und N=(djdn) (p) haben die Norm 1, Np
steht senkrecht auf Ep und N senkrecht auf E=j*((dG)p). Die Abbildung 0=y>îtf
lâsst/? fest. Wegen ntojt id ist <t>*°jt*=jt*> ^so <^*=id auf £p. Da ntoc=p kon-
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stant, ist <t>*Np=jt#nt4tc(t)=0, mithin 0*=Oauf dem orthogonalen Komplement ELP.

Man hat also

<£* id auf Epi </>* 0 auf Ep. (1)

Zur Berechnung von J=J(nt°J) (p) wâhlen wir eine Basis Xx...Xn-.x in E'.X^j^Y^
Y1...Yn.i Basis von {dG)r Wegen^^.o^)^ Yk=^^Xk wird

||71...Fn_1||aG 11^... ^.Jl
Jetzt sind zwei Fâlle môglich: Entweder ist N= ±Np9 dann wird E—Ep und nach (1)
(j)#Xk Xk9 also /= 1 \(N, Npy\. Andernfalls sind N und Np linear unabhângig. Den
von N und Np aufgespannten Teilraum von Mp bezeichnen wir mit EQ. Man hat
dim£'0 2, dim(£njEt0) dim(£pnJEI0) l, Eo=EnEp. Wir wâhlen Vektoren

XeEnE0 und XpeEpnEo mit Norm 1, und eine ONB (Orthonormalbasis) X1...Xn_2
von E^ Da Xp, Np eine ONB von Eo bilden, wird X= <JT, Zp> Zp + <JT, iVp> ^. Mit
(1) folgt 0*Xk J§rfc (A: 1... n - 2) und <£*X= <Z, Xp} Xp. Verwendet man daher in (2)
die ONB Xt ...Zn_2, X von jE1, so erhâlt man unter Beachtung, dass Xx... Arw_2> ^p
eine ONB in £p, /= |<JT, Xp}\. Da aber Z, iV und Xp9 Np zwei ONB in Eo, ist die zum
Basiswechsel X9N-+Xp,Np gehôrige 2x2-Matrix orthogonal, also ihre Diagonal-
elemente <Z, Xp} und <iV, iVp> bis auf das Vorzeichen gleich. Damit wird J= \

wie behauptet.

4.4. Wegen aeG besitzt die Menge Iu {teR+ \ t-uex(G)} fur jedes weS"1"1 ein

positives Maximum r(w). Wir definieren eine Abbildung (friS"'1 ->dG durch 4>{u)

=A:"1(r(t/)-w)5 und setzen 0 {uGSn~1 \ 4>(u)edG-K}.

SATZ. 1) ^ojidG-^S^1 bildet dG-Klokal diffeomorph ab

2) 5""1-© ist eine Nullmenge, O ist offert in S"'1
3) $ bildet O diffeomorph ab, und 0"1 <!; auf>(O).

itewm. EinRandpunktpedGliegtindGnZt,t g(p)>0. D&Ç° j= (Ç° jt)°(nt°j),
folgt aus den Sâtzen 4.2 und 4.3, dass/? genau dann ein kritischer Punkt von Çojist,
wenn peK. K ist also die Menge der kritischen Punkte von Çoj9 nach dem Satz von
Sard ([8] p. 66) wird Ç(K) eine Nullmenge in S""1. Wegen w=£(<£(i/)) fur ueS^1
ist S11"1 — Oc £ (^), also ebenfalls eine Nullmenge. 3G—AT ist die Menge der regulâren
Punkte von Çoj9 wird also lokal diffeomorph abgebildet. Damit ist 1) und der erste

Teil von 2) gezeigt.
Es sei jetzt ueO fest gewâhlt, p=</> (u). Nach 1) gibt es eine Umgebung U von p in

dG—K9 sodass die Einschrânkung | von Çoj auf ï/ein Diffeomorphismus |: U-> Ç (U)
wird. m bezeichne das Maximum von q auf (/, cv die Geodâtische cv(t)=x~1 (tmv)9

veS"1""1. Wegen cu (r(u))=p und der Maximumeigenschaft von r(u) sind die Kompak-
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ta dG—U und cM[r(w), m] disjunkt und haben daher eine positive Distanz 2s. Die
Distanz zwischen dG—U und cM[r(w) —e, ni] ist dann mindestens noch e. Zu diesem

e gibt es eine Umgebung F von u in S"1"1, sodass die Distanz von cv(t) zu cu(i) fur
(v, r)eFx [/*(w) — e, m] kleiner als s wird. Fur deF ist dann der Durchschnitt der
Strahlen Cv cv[r(u)-s, oo)mit dG- U leer, d.h. QndG liegt in £/. Wegen Ç(CV)

{v} folgt daraus, dass Cvr\dG fur t;eFhôchstens aus dem Elément %~x(v) besteht.

Weil g(p) r(u), gibt es eine Umgebung U' in U von/?, sodass Q>r(u) — e in £/'.

V'=VnÇ(U') ist dann eine Umgebung in S"1""1 von u Ç(p). Wenn t;eF', so ist
^r |~1 (t;) in £/' und Q(q)>r(u) — e. Daher liegt jeder Punkt cv{t) mit t>g(q) in Cy,

kann also nicht Randpunkt von G sein (sonst wâre nach der vorigen Bemerkung iiber
CvndG cv(t) q und t Q(cv(t)) Q(q)). Der Strahl cv(g(q\oo) enthâlt demnach
keine Randpunkte von G, folglich auch keine Punkte von G. Dagegen liegt cv (q (q)) q
in dG. Deshalb muss die Zahl g(q) gleich dem Maximum r(v) von F sein, und

Ç-1(v) x~i(r(v)-v) (l)(v). Da ueF' beliebig war, wird 4> l~l auf F7.

Es folgt, dass die Umgebung V von u durch 0 diffeomorph in Ucz dG — Khmsm
abgebildet wird, und damit selbst in O liegt. Das gilt fur jedes ueO, also ist O offen,
und 4> bildet O lokal diffeomorph ab. Weil aber £o0 die Identitât auf S""1, ist
(fr'.O^KJ)(O) ein Diffeomorphismus und <j)~1 Ç auf <£(O).

4.5 SATZ. Setzt mon s 0 oder 1 im Fa// n^3, ^=0 im Fall n 2, 50 gelten die

Ungleichungen

/ '-* J
G-Ua(e)

ÔG S""1

Beweis. Unter Verwendung von Polarkoordinaten im Rrt erhâlt man

c r r / r \
Q-**= {Q0X-iy2s.f== (\f(fuyf-1-udt) (1)

J J J \J I
G x(G) Sn~l Iu

(Iu wie in 4.4. Das Intégral existiert, da in jedem Fall n-1-2^^0). Wegen F
c(0, r(uj\ wird das innere Intégral

r(«)

VueS""1. (2)

r(u) Q(<t>(u)) ist stetig auf O (Satz 4.4, 3)) und beschrânkt auf S""1, somit ist die

rechte Seite von (2) stetig auf O und beschrânkt auf S"'1, also wegen Satz 4.4, 2)
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integrierbar ûber S""1. Aus (1) und (2) ergibt sich jetzt sofort die erste Ungleichung.
Die Funktion g= \(d/dn, grad@>| ist stetig auf dG und O^g^ 1, daher folgt unter

Beniitzung von Satz 4.4. 3) :

jg-Q-a)°4>'J(<l>). (3)

dG <f> (O) O

Wir berechnen die Jacobideterminante /($) im Punkt ueO.p (j)(u) liegt in ôGnIt9
t Q(p) r(u). Weil (Çojt)o(ntoj) Z <l>-iiiuf <^O), wird (tt^o^"1 (£, {0.7,
ist umkehrbar nach Satz 4.2) auf O und daher J(ntoj) (/?)••/(<£) (u) J(Çt *) (u).
Mit Satz 4.2 und 4.3 folgt g(/?)-/(0) (w)=/(M/)-/w~1 oder g(<£(«))•/WO (w)

=/(r(w)-w)r(w)"~1. Setzt man das in (3) ein, so ergibt sich

dG O

Hier ist der Integrand auf ganz S"'1 definiert, also kann man wegen Satz 4.4, 2)
O durch S""1 ersetzen und erhâlt so die zweite Ungleichung.

5. Beweis der Sâtze A und B

5.1. M ist wieder eine «-dimensionale einfachzusammenhângende vollstândige RMF.
Fur die Riemannsche Schnittkrûmmung K von M soll jetzt eine obère Schranke
— b2 (6^0) existieren, d.h. K(P)^ —b2 fur jede Tangentialebene P (2-dimensionaler
Unterraum eines Tangentialraums Mp, peM). Nach dem Satz von Cartan-Hadamard
ist dann in jedem Punkt aeM exp :Ma-+M ein Diffeomorphismus.

Zu einem festen Punkt aeM hat man wie in 4.1 die lineare Isometrie y:Rn->Ma,
die Koordinaten x= (expoy)'1 und die Funktion/. Jx sei der lineare Isomorphismus
Jx:Ma-*(Ma)x, definiert durch Jx(Y)=(p(0% (p die Gerade (p(t) X+t-Y in Ma
(vgl. [5] p. 10). Fur ueW ist

\
exp* y* (DiX exp* Jy(u)Xt,

Xi/x-Hu)

wo Dt die /-te partielle Ableitung und Xt die Orthonormalbasis y((0..A ...0)) (1 an
z-ter Stelle) von Ma bedeutet. Daher wird

Hier kann man 1\ ,.,Xn durch eine beliebige Basis von Ma ersetzen.
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5.2. SATZ. Sei ueS""1 und reR+. Dann gilt
r

1) /(r-w)-r"-1 ^ (n - 1)-*- f /(t-u)-^1 dt falls n^29b>0
o

r

2) /(r-M)-r"-2^(n-2)-f/((-u)-fn-3d( falls n^3, b 0

0

Im Beweis wird die Idée von Bishop-Crittenden ([3] p. 253) zur Abschâtzung der

Funktion / benùtzt.
Beweis. Wir setzen X=y(u), c(t) expt-X, g^^f^-u)^""1 (f^O), und zeigen

zunâchst: es gibtn — 1 Jacobifelder Yl...Yn-l lângs der Geodâtischen cmit Fl(0) 0

und <7f, c> 0, sodass fur t^O

(V kovariante Ableitung lângs c). Begriindung: Verwendet man in (1) eine Basis mit
JTj, Z> 0 fur j=l ...n-1, so wird

nr1(0...r.(0ii

wo

Yi(t) t-exp*JtXXi fur i 1... n - 1, Frt(r) exp* JtXX.

Yt ist ein Jacobifeld lângs c mit Ff(0) 0 und 77,(0) ^ ([5] p. 132), wâhrend

Yn(t) c(t). <F,, 7n> ist eine lineare Funktion von t mit (7^, Yn} (0) 0 und Ableitung

<rJ, Fn>'(0) <Zf, Zn) 0, also konstant null. Mit || FJ| ||Z|| 1 ergibt sich

die Darstellung (2) von g.
Wir berechnen die Ableitung von logg in einem festen Punkt teR+. Durch eine

lineare Transformation lâsst sich erreichen, dass die Vektoren Y1(t)...Yn-1(t)
orthonormal sind. Dann wird nach (2)

i...^-ill2y (0 1 E <lî,!ï>'(0.

F= Yt ist ein Jacobifeld mit F(0) 0, daher ist

t

<vr, Y}(t) J uvrii2 - <R(y, c) t, r>
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(R Krûmmungstensor von M). Weil <i*(F, c) c, Y}=k\\ Y\\2, k(x) die Schnittkriim-
mung K bezuglich der durch F(t), c(t) aufgespannten Tangentialebene, folgt mit der
Voraussetzung K^ —b2

WâhltmanorthonormaleParallelfelderPl...Pnlângsc,sodassPn cund Y(t)=Pt(t)9
so gilt die Darstellung

y Z v^ livril2 + 62lirn2 ï9}2 + è2.^2,

wo die <p^ auf R differenzierbar sind und <px den Randbedingungen q>x (0) 0, cpx (/)= 1

genûgt. Mit der vorigen Ungleichung ergibt sich

(4)

Um den kleinstmôglichen Wert des Intégrais (4) zu ermitteln, betrachten wir die

positiv definite symmetrische Bilinearform

•vt

auf der Klasse F der differenzierbaren Funktionen cp mit <p(0)=0, <p(r) l. Nimmt
man fûr\j/eF speziell die Lôsung der Jacobigleichung \l/"—b2-\l/=0 und integriert den

ersten Term von I(q>9\l/) partiell, so erhâlt man I((p,\l/)=\l/'(t) VcpeF. Es folgt
I(<p9 (p)-\j/'(t)=I(q>-il/9 (p-\l/)^0 oder I(<p, q>)^\l/'{t) VcpeF. Der Wert des Intégrais

in (4) ist also mindestens ^'(/). Damit folgt aus (3) und (4)

(5)

Wenn b>0, ist

?<*>-§£¦ ?¦(•)»».

also nach (5)

(f-«)-fB"1 (Fall6>0). (6)
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Wenn & 0, ist ^(t) t//, ^r'(/)=!//, also nach (5)

oder

(/(fu)-f"-2)' £ (a - 2)-/(Mi)-l""3 (Fall 6 0). (7)

Integriert man die fur aile /eR+ gûltigen Ungleichungen (6) und (7) ùber ein Intervall
[e, r] (0<e<r), so erhâlt man im Limes e~»0 die Behauptung.

5.3. Es sei jetzt G ein regulâres Gebiet in M mit aeG. Setzt man in Satz 5.2 fur jedes
iteS"'1 r r(u)9 r(u) die Funktion in Satz 4.5, und integriert die Ungleichungen von
Satz 5.2 ûber ueSn~19 so folgt zusammen mit Satz 4.5:

|1>(« l).6.j.

n ri- ^ (n - 2)- -2 im Fall n ^ 3, b 0.
I ^ Q

1) I l^(/i-l)-ô-| 1 imFalln^2, b>0

2)

Da aeM beliebig war, ist damit zunâchst der Satz B bewiesen. Weiter sind die

Bedingungen (a) und (b) in 3.5 erfullt durch

1) A l und <p(t) (n-l)-b-t im Fall n ^ 2, b > 0,
2) A l/£ und (p(t) (n-2)-t im Fall « ^ 3, 6 0.

Zusammen mit den Sâtzen 3.5 und 3.2 ergibt sich hieraus der Satz A.
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