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Integrability in Codimension 1

by JoHN N. MATHER 1)
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Introduction

In this paper, we prove the main result announced in [4]. More precisely, we show
that for certain groupoids I of homeomorphisms of R, there is a discrete group G,
and a mapping

BG — QBrI

which induces isomorphism in integer homology.

Haefliger has shown [2, 3] that the cohomology of BI' measures the obstruction
to finding a foliation on an open manifold with a given normal bundle. Our proof
that H,(BG)=H,(Q2BI') arose out of an attempt to calculate the homology of this
space. Unfortunately, in most cases H;(BG) is completely unknown. Nonetheless our
main result does have applications. In dimensions 2 and 3, it is possible to homotope
all Haefliger structures to certain special Haefliger structures. For example, on S?
every [-structure is homotopic to one with two nodes and an arc, transverse to the
I'-structure, connecting the nodes. In §3, we show how this follows from our main
results. In fact, it was this result, which we originally proved by an entirely different
method, which suggested the main result of this paper.

1) This research was partially supported by a grant from NSF-GP-31359X-1 and a Sloan
Foundation Fellowship.
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In our announcement [4], we stated that there are two spectral sequences con-
necting the homology of BG and the homology of BI', which resemble the Serre spectral
sequence and the Eilenberg-Moore spectral sequence connecting the homology of a
space and its loop space. This suggested that there should be a mapping BG—QBI'
inducing isomorphism in homology. Quillen showed me how to construct such a
mapping and how to use a classical spectral sequence comparison theorem to prove
isomorphism in homology. I am indebted to him for this.

Quillen has told me that he has found another method of proving the main result
of this paper, which may be simpler. His proof has not been published yet, however.

Moreover, Thurston has found a marvelous generalization of our main result to
higher codimensions. His result has not been published either.

Now we outline the proof that there is a mapping BG—QBI" which induces iso-
morphism in homology. In §5, we construct (following Quillen) a space BBG which
is a delooping of BG in the sense that there is a mapping BG—QBBG which is an
isomorphism in homology. In §6, we construct a I'-structure on BBG, using technical
results concerning cocycles defined over closed covers, which are proved in §1. From
the universal property of BI this gives rise to a mapping BBG— BI', and most of the
paper is devoted to constructing a homotopy inverse of this mapping.

If w is a I'-foliation on a space X, we construct in §10 a subcomplex S(w) of the
product of singular complexes S(X) xS(R), consisting of simplices on which the
I'-structure w has certain properties. Then the geometric realization |S(w)| 4 is a good
model for X, in the sense that the projection |S(w)|,— X is a homotopy equivalence.
On the other hand, to every semi-simplicial set ¥ without degeneracies, we associate
a bi-semi-simplicial set 4Y in §4, and |4Y | has the same homotopy type as | Y| ,. There
is a natural mapping |4S(w)| ,— BBG which pulls-back the I'-structure on BBG to the
pull-back of w on |AS(w)|, (§11). Thus, for any foliated space X, we have found a
model for X and a mapping of the model into BBG. More generally, this applies
to any space with a I'-structure on it by Haefliger’s normal bundle construction [3].
In particular we get a mapping BI'—BBG. In §12, we show that this mapping is a
homotopy inverse of the mapping BBG— BI" already constructed.

Part of this proof was given in a preprint [5]. This is absorbed into §§8, 9, and 10.

§1. Generalities on Haefliger structures.

Let # be a pseudogroup of homeomorphisms of a topological space Z. Thus, by
definition, # consists of triples (U, h, V'), where U and V are open subsets of Z, h is a
homeomorphism of U onto V, and . satisfies the following conditions.

a) If (U, h, V)ef and U’ is an open subset of U, ¥'=h(U’), and i’ =h|U’, then
(U, K, V)eX.

b) If U and V are open subsets of Z, h: U~V is a homeomorphism, and {U,} is
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acover of Uby open subsets such that (U, k | U,, h(U,))e# foreachua, then (U, h, V)
ef.

o) If (U, h, V)eS, then (V, h™!, U)es.

d) (2, id, Z)es.

e) If (U, h, V) and (V, k', W) are members of £, then so is (U, h'h, W).

To a pseudogroup 4, we can associate a topological groupoid I'. As a set I
consists of germs of elements of #. Given yeI', we let s(y) denote the source of y and
t(y) the target. We provide I" with the sheaf topology. If (U, h, V' )e# the set of germs
{h,:xe U} is an open subset of I', and the collection of all such sets is a basis for the
sheaf topology of I'.

The product y’y of two elements of I is their composition. This is defined if and
only if s(y")=¢(y). We will identify any ze Z with the germ at z of id. Thus, Z is the
set of units of I'.

The four structure mappings, i.e. multiplication I x ,I' - TI', inverse I —» I, and the
source and target mappings I’ —Z are continuous, so I' is a topological groupoid.

If {4,}:c; is a family of subsets of a topological space X, a 1-cocycle over {A4;}
with values in I' is a rule which assigns to each i, jel a continuous mapping y;;:
A;nA;—T such that if i, j, kel and xe 4;,n4;n 4,, then

Pii (%) V6 (%) = vk (x). (1.1)

(In particular, the left side is defined.) We let y;=y;;. It follows from (1.1) that for
each xe X, we have y;(x) is a unit, so y; is a continuous mapping into Z.

Let {4,;};.; be a second family of subsets of X, and let y’ be a 1-cocycle over
{A;};c; with values in I'. We will say y and y’ are compatible if there is a 1-cocycle
y” over {A4;}i.;o; Whose restriction to {4;}; is y and whose restriction to {4},
isy’.

By definition a Haefliger I'-structure on X is an equivalence class of 1-cocycles
with values in I" defined over open covers, where compatibility is the equivalence
relation. If w is a Haefliger I'-structure on X and y is a 1-cocycle over an open cover
with values in I we will say 7y defines w provided yew.

If f:Y—>X is a continuous mapping and w is a I'-structure on X defined by a
1-cocycle {y;;}; over an open cover {U;};, then we let f* w be the I'-structure on ¥
defined by the 1-cocycle (y;; f) over { f "'U},.

If YcX and f is the inclusion mapping, then we say f *w is the restriction of w
to Y and write l Y= f*w. Two I'-structures on X x I are said to be homotopic if
there is a I'-structure on X x I whose restrictions to X x0 and X' x1 are the given
I'-structures. This is an equivalence relation. The ‘““pull-back’ f * respects this rela-
tion.

Let y be a 1-cocycle with values in I" over an arbitrary family of subsets of X, and
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let @ be a Haefliger I'-structure on X. We will say y defines w if for any 1-cocycle y’
with values in I' over any open cover we have that y’ew if and only if y’ is compatible
with y.

Note that compatibility is not an equivalence relation. However compatibility of
cocycles defined over open covers is an equivalence relation. Moreover, if y is a cocycle
defined over an arbitrary family of subsets, " and y” are cocycles defined over open
covers, then we have the following situation. If y is compatible with y’ and y’ is com-
patible with y”, then y is compatible with y”. However, if y is compatible with both y’
and 7", then y’ and y” need not be compatible.

LEMMA 1.1. If X is a CW complex, then a 1-cocycle over the closed cells of X
defines a I'-structure.

Proof. Let y be a cocycle over the closed cells of X. We must show, first, that if
9" and y” are cocycles defined over open covers of X, and each is compatible with 7,
then they are compatible with each other, and, second, that there is a cocycle over an
open cover which is compatible with y.

For the first assertion, we consider y’ defined over {U;}; and y” defined over {U;},.
To define a cocycle y” over {U;},,, whose restrictions to the given covers are y’ and
7", it is enough to define y;; for i€/ and jeJ. Let xe U;nU;. Using the compatibility of

y" and y” with y, we see what y;j(x) must be. For if y* denotes an extension of yuUy’
and y® an extension of yuy”, we let

71 (%) =9i” () 767 (x)

where e is a closed cell which contains x. This is independent of e. Since the topology

on a CW complex is the weak topology, it follows that y;} is continuous. It is easily

seen that y” is a cocycle.
For the second assertion, we consider the following sublemma.

SUBLEMMA. Let K be a closed subset of X and let y' be a cocycle over £ U {K},
where & is the collection of closed cells of X, such that the restriction of vy’ to & is y.
Then there is a neighborhood N of K in X and an extension y" of y' to §U{K}U{N},
such that yxn(x)eZ for xeK.

Assuming the sublemma, it is now easy to complete the proof of the second
assertion. We apply the sublemma, where K is a closed cell e. The lemma shows that y
can be extended to a cocycle y° over £U{N,}, where N, is an open neighborhood of e
in X. The argument used to prove the first assertion then shows that there is a unique
cocycle y' over §U{N,},. s whose restriction & U {N,} is °, for each e €&. Then the
restriction of y' to {N,}. . ¢ is a cocycle over an open cover of X, and it is compatible
with y. Q.E.D.
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Proof of the Sublemma. We first consider the case when X is a closed cell. Since y’
is a cocycle, the following diagram commutes.

VKX

K—>T
n o
x5z

Since ¢ is a local homeomorphism, there is a neighborhood N of Kin X and a mapping
ynx Which extends yxy such that the following diagram commutes.

,Y”NX

N—>T
n o,
x5z

Define y7;.=vyp if L, L'efU{K}, yuo(x)=yxx(x)(v1x(x))™" if Le€U{K} and
xeNNL, yiy=(yy.)”", and yy=t(yxx). Then y” is a cocycle over £U{K}U{N}
having the required property.

Now the sublemma follows easily from the special case we have just considered,
by an inductive argument.

Let X, denote the k-skeleton of X. We will prove the following assertion by the
induction on k.

INDUCTIVE ASSERTION. There exists a neighborhood N, of KnX, in X, and
a cocycle y* over §U{K}U{N,} which extends y' such that yyy (x)eZ for xeK.
Moreover, if k=1 we can choose N, 50 Ni_12N,nX,_; and y53!  (x)=7iy (x) for
all Le6u{K} and all xe LnN,_,.

Proof. If k=0, the inductive assertion is trivial. Suppose k> 1, and that N,_; and
7*~1 have been constructed. If e is a k-cell in X, we can apply the special case of the
sublemma we have just proved, where e plays the role of X, (KUN,_;)ne that of K,
and y*~1! that of y. There results a 1-cocycle y° defined over a family of subsets of e,
namely the cells of e, N,_;ne, and a neighborhood N, of (KUN,_,)ne in e. Let
Ny=J. N,, where the union is taken over all k-cells of X. Then the collection of
cocycles we construct on k-cells yields a cocycle y* over &U{N,_,;}U{N,}U{K} by
the rule that y§y (x) =75 ne, none(*) if x€e. The restriction of this to #U{K}U{N,} is
the required cocycle. This proves the inductive assertion. Q.E.D.

Now let N=|JN,. For any xeN choose a k such that xeN,. If Le€u{K}, let
Yin(x)=7in.(x). This defines the required cocycle y”, and proves the sublemma.

Q.E.D.
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§2. Statement of the main Result

Throughout the rest of this paper, # will denote a pseudogroup of homeomor-
phisms of the real numbers, which satisfies the following conditions.

a) Each member of .# preserves orientation.

B) If 7 is a translation of R, then (R, 7, R)e.f.

y) Leta,b,c,d,a’,b’, ¢’, d’ be real numbers such thata<b<c<dand a’' <b'<c'<
<d'.Let ((a, b), f, (a’,b")) and ((c, d), g, (¢, d’)) be members of #. Then there exists A
such that ((a, d), h, (a', d')) is a member of .# and &>0 such that & | (a, a+¢)=

| (a, a+e), k| (d, d—e)=g | (d, d—¢).

Throughout the rest of this paper, we will let I' denote the topological groupoid
associated to 4.

The pseudogroup of orientation preserving C” diffeomorphisms of open subsets
of R satisfies the conditions a, B, and y. On the other hand, the pseudogroup of
orientation preserving analytic diffeomorphisms of open subsets of R does not
satisfy 7.

A homeomorphism 4: U—V of one open subset of R onto another will be said to
be a SF-homeomorphism if (U, h, V)ef. If h:Z—Z is a self-mapping, the support
supph of 4 is defined to be the closure of {zeZ:h(z) #z}.

We let G denote the group of compactly supported #-homeomorphisms of R onto
itself. We let BG denote the classifying space of G, where the latter is regarded as a
discrete group.

Now we construct a I'-structure on the suspension S (BG) of BG. Let BG denote
the universal covering of space BG. Let I denote the unit interval [0, 1]. Consider
real numbers a, b, such that O<a<b<]1.

It follows easily from conditions (B) and (y) on £ that there exists a .#-homeo-
morphism 4:(a, b) - R. For, let { be a subset of (a, b), order-isomorphic to the set Z
of integers. From (B) and the definition of pseudogroup, it follows that there is a
J-homeomorphism h, of an open neighborhood of { in (a, b) onto an open neighbor-
hood of Z in R which carries { order isomorphically onto Z. From (y) it follows that
for two successive members s, ¢ of {, thereis a #-homeomorphisms A, of a neighborhood
of the closed interval [s, ¢ ] onto a neighborhood of [4(s), #(¢)] whose germ at s and
t equals the germ of hy. Let h:(a, b) - R be the mapping defined by letting 4 | [s, 7]
=h, for any two successive members of y. From the assumption that 4, maps { in an
order preserving way onto Z, and the assumption that each 4, is a homeomorphism,
it follows that A is a homeomorphism of (a, b) onto R. From our constructions, it
follows that each point in (a, b) has a neighborhood such that the restriction of 4 to
that neighborhood is a #-homeomorphism. Hence by the definition of pseudogroup,
h is a S-homeomorphism. o

We construct an action of G on BG x I by letting G act on each factor separately,



Integrability in Codimension 1 201

as follows. We let G act on BG as the group of covering transformations. We let G act
on / by the formula

g't="h""gh(t), te(a,b)
= otherwise.

We let @ be the I' structure on BG x I defined by the projection on the second
factor:

BGxI—->IcR.

Clearly this I' structure is G invariant.
We let ~ denote the equivalence relation on BG x I defined by (x,, 25 )~ (x4, #, ) if

to=t;=0, to=t; =1,
or there exists
geG such that g-(xq, ty) = (%, t1)
There is a canonical homotopy equivalence
SBG ~ BG x I/~

Furthermore, there is a unique I structure w, on BG x I/ ~ such that n*w, =&, where
n denotes the projection

7:BG x I - BG x I|~.
By Haefliger’s theorem w, defines a homotopy class of mappings

BG x I/~ — BI.

Composing with the canonical homotopy equivalence above, we get a homotopy
class é, of mappings of SBG into BI'. We let

v,:BG — QBT

denote the adjoint of d,. The main result of this paper is the following:
THEOREM. The induced mappings
‘yh#:Hi(BG, Z)"')Hi(QBF, Z), i?O

are isomorphisms.
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We do not know whether the homotopy class of y, depends on A. However, a
certain amount in this direction can be said. We recall that if 4 is an automorphism
of G, then A4 induces a mapping BA: BG — BG, and BA is homotopic to the identity
(where base points are allowed to move) if and only if 4 is an inner automorphism.

Let a’, b’ be a second pair of real numbers such that 0<a’ <b’'<1.Let b':(a’, ') >
— R be a #-homeomorphism. We wish to compare y, and y,.. It is easily seen that
there is a #-homeomorphism g of 7 onto itself which is the identity in a neighborhood
of the endpoints and maps (a, b) onto (a’, b'). Let

f=Hgh™':R > R.

Clearly f is a #-homeomorphism of R. We let 4 denote the automorphism of G de-
fined by

Ak)=f"'kf, keG.
LEMMA 2.1. The following diagram is homotopy commutative:

BA
BG — BG

'Yh\ / Yh’
QBI

Proof. It will be convenient to write %, for the equivalence relation ~ on BG x 1
defined above and g, for the action of G on BG x I also defined above. Note that #,
and g, depend on the choice of A.

Let x, be the base point of BNG, so that BA(x, ) =x,. Consider the unique lifting
BA:BG - BG of BA such that BA (eo) =€y, Where e, is the base point of BG. Let

F:BG x I - BA('} x I
be the homeomorphism defined by
F(x, ) = (BA(x), g (1)).
It is easily verified that
en(k)oF (x,1) = Fogy (47" (k) (x, 1) (2.1)

forall keG, and (x, t) €BG xI. For, it is enough to verify the validity of this equation
separately on each factor. On the factor BG, this equation comes down to

k-BA(x) = BA(A™* (k) x)
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which follows immediately from the group theoretic formula .
LkA = ALA—i k)

where L, means multiplication on the left by k. On the factor I, the left side of the
equation is

h~'khg™'(t) if teg(a, b)
and ¢ otherwise, and the right side is
g Wt AT k) R (1) if te(a, b)
and ¢ otherwise. But (¢, b')=g(a, b) and
g AT ) K ()= g7 KPR ()
— g—lhr—lh/gk—lkhg-1hr—1hr(t)
=h"'khg™1 (1)
which verifies (2.1).

From (2.1) it follows that £, -equivalent points go to Z%,-equivalent points. Thus
F induces F in the diagram below.

F
BA X I|®R, —— > BA x I/ &,

j| fl

S(BA)~ !

S(BG) ———— S(BG)

Clearly this diagram is homotopy commutative and' F*w, = w,.. It follows immediately
that the diagram below is homotopy commutative.

SBA
SBG — SBG
W\ S
BIr

The lemma follows immediately. Q.E.D.

COROLLARY 2.2. The induced homomorphism vy,. in homology is independent
of h.

Proof. 1t is enough to show that B4 induces the identity in integer homology, in
view of Lemma 2.1. To see this, we observe, first, that for any compact subset of R
there exists f’ €G such that the restrictions of f' and fto that compact subset are the
same. It follows that for any finite subset J of G there exists f‘'eG such that 4 |J
=I(f') | J, where I(f’) is the inner automorphism of G determined by f . It follows
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that for any finite subcomplex K of BG there exists f’eG such that BA |K
=BI(f") | K. Since I(f"') is an inner automorphism, BI(f") is homotopic to the
identity. Hence BA | K is homotopic to the inclusion for any finite subcomplex K of
BG. The corollary follows immediately. Q.E.D.

§3. Some Corollaries

In this section, we point out some consequences of the main result. Several of
these we already pointed out in [4].

COROLLARY 3.1. =n,(BI')=0.

Proof. Since BG is connected, we have H,(QBI')=H,(BG)=Z. Hence QBI is
connected. Q.E.D.

Recall that we assumed that # consists of only orientation preserving homeo-
morphisms (condition o in §1). If instead, we assume .# satisfies (B) and (y), but not
(a), then together with I', we can consider the subgroupoid I'y of I' consisting o
orientation preserving members of I'. It is easily seen that I'y satisfies (a), (B), and
(v), and that BI, is a 2-fold covering space of BI'. In this case n,(BI’ )=1Z,, since
n, (BI')=0 by the above corollary. In the interesting special cases (the pseudogroups
of C" diffeomorphisms) this was already proved by Haefliger.

COROLLARY 3.2. BI' is n-connected if and only if the reduced integer homology
of G vanishes in dimensions <n—1.

In particular BI is contractible if and only if G is acyclic. In [6], we proved that
G is acyclic in the case # is the pseudogroup of all orientation preserving homeo-
morphisms of open subsets of R onto open subsets of R. Hence:

COROLLARY 3.3. Bl is contractible in the case f is the pseudogroup of all
orientation preserving homeomorphisms of open subsets of R onto open subsets of R.

Remark. Thurston [13], using results of Godbillon and Vey [1] has shown that
if I is the groupoid of germs of orientation preserving C" diffeomorphisms, and r >2,
then there is a surjective homomorphism

H;(Br) - R.

Thus, the analogue of Corollary 3.3 is not true in this case.

COROLLARY 3.4. n,(BI')~G/[G, G].

Proof. Since n,(BI')=0, m,(BI' )~ H,(BrI'). From the Serre spectral sequence
(or the Eilenberg-Moore spectral sequence), it follows that H,(BI')~H,(G)=~
~G/[G, G]. QE.D.
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COROLLARY 3.5. There exists an exact sequence

2(H,(G) ® H, (G)) ® Ext(H, (G), H, (G))
— H3(G) » Hy(BI') » H,(G) ® H, (G)
— H,(G) > H3(BI') -» 0.

Proof. By the Eilenberg-Moore spectral sequence relating the homology of QBI'
and the homology of G, and the main theorem of this paper.

Corollary 3.4 may be applied to give a collection of representatives of homotopy
classes (in Haefliger’s sense) of I'-structures on S2. Consider the composition

6 X% 6/[G, G] — =, (BT).

The explicit construction in §1 of the mapping J,: SBG — BI" yields an explicit con-
struction of the mapping G — n,(BI').

Given geG, we construct w, on S as follows. On R x 7 consider the I' structure
@ defined by the projection on the second factor. Let the group Z act on R x I as the
product action of the following two actions: the action of Z on R given by n-t =t +n
and the action of Z on I given by

n-t=h7'g"n(t) if te(a,b)
== otherwise,

where the interval (a, )< (0, 1) and the #/ homeomorphism 4: (a, b)) > R are as in § 1.
Let ~ denote the equivalence relation on R x[I defined by (xo, o)~ (x;, #;) if

t0=t1=0, t0=t1=1,
or there exists
neZ suchthat n-(xg,ty) = (x4 t1).

The quotient space R x I/~ is homeomorphic to S2. It is easily seen that there is a
unique I'-structure w, on S? such that n*w,=@®, where n:R xI —S? denotes the
projection.

Let 1,:Z — G be the homomorphism defined by 1,(1)=g. Consider the induced
mappings

Bi,:BZ =S' —» BG
SB1,:S* = S(S') -» S(BG).
It is easily seen that

(SB1,)* o, = @

g -
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It follows that w, represents the image of g under the homomorphism G — n,(BI’),
described above.

From the fact that the homomorphism G/[G, G] - n,(BI') is an isomorphism,
two results follow. First, every I'-structure on S?2 is homotopic (in the sense of Haef-
liger) to w, for some geG. Second, w, is homotopic to a trivial I'-structure if and
only if g is a product of commutators. |

A geometric description of w, may be given as follows. There are two nodes of
w, (the points 7 (R x0) and 7 (R x 1)) and an arc J on S? connecting the two nodes
and transversal to w,. If we consider any teJ, and follow the leaf of w, which contains
t around until we come back to J, we get a new point g(¢) on J, and the resulting
mapping g:J —J has compact support in the interior of J and is conjugate to g.

It is possible to give a direct geometric proof that every I'-structure on S? is
homotopic to one having this form.

In a similar way, for any ce H;(BI'), we may give a geometric construction of a
I'-structure on S which represents ¢. For, by Corollary 2.5, the homomorphism

H, (G) — H; (BI)

is onto, so we may find ¢’e H,(G) which maps onto ¢. Such an element is represented
by a homomorphism a:7,( M )— G, where M is a compact oriented surface, i.e. ¢’ is
the image of the fundamental class of M under the homomorphism H,(M )— H,(BG)
induced by the homotopy class of mappings M — BG which corresponds to a.

In the same way as we constructed a I'-structure on SBG we can construct a
I'-structure on SM, corresponding to «. Here we think of SM as two cones over M
identified along their base, so SM has two vertices. There is a degree 1 mapping of
S3 onto SM such that the inverse image of each vertex is a bouquet of circles. Further-
more this mapping maps the complement of the two bouquets onto the complement
of the vertices. If we pull back the I'-structure on SM to S > by means of this mapping,
we get a I'-structure which has two bouquets of nodes, and otherwise is non-singular.
This I'-structure represents the given element of H;(BI').

The next application concerns .#-homeomorphisms of the circle. Let S'=R/Z
denote the circle and let n:R— S! denote the natural projection. Let U and V be
open intervals in S* and f:U — V be a homeomorphism. Choose open intervals U
and ¥ in R such that = maps ¥ homeomorphically onto U and maps ¥ homeomor-
phically onto V. Let f:U— Vlift f (so that nf = fn). Then we say f is a #-homeo-
morphism if f is. Since # contains all triples (R, 7, R), where 7 is a translation, it fol-
lows that if one lifting f of f is a .#-homeomorphism, then so is every lifting.

The collection of #-homeomorphisms of open intervals onto open intervals ex-
tends uniquely to a pseudogroup # (S') of homeomorphisms of open subsets of the
circle onto open subsets of the circle. If (U, f, V)ef(S!), we say f:U—-Vis a
J#-homeomorphism.
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The collection of #-homeomorphisms of the circle onto itself forms a group,
which we denote by G(S*).

Let U be an open interval in S*. It is easily seen that there is a #-homeomorphism
h:R— U. If geG, we let hygeG(S') denote the homeomorphism defined by

heg(t) = hgh™' (1), teU
=t otherwise.

Then h,:G— G(S') and it induces a mapping h,: H;(G) - H,(G(S")).

COROLLARY 3.6. The mapping
hy:H,(G) » H, (G(S"))

is an isomorphism.

Proof. Surjectivity. Each element of G(S') can be written as a product of #-
homeomorphisms of S' with support in an interval. Any such #-homeomorphism is
conjugate in G(S') to a #-homeomorphism which has support in U. But such a
#-homeomorphism is in the image of h,:G — G(S').

Injectivity. Let & denote the I' structure on the cylinder 7 x S* defined by the
projection on the second factor. For any geG (S'), identify the ends of the cylinder
by means of g, and let w, be the I' structure on the quotient space which pulls back to
@. Since the quotient space is a torus 72, the obstruction to homotopy-triviality of
w, is an element of H,(T?, n,(Bl'))~H(G). Thus for each geG(S'), we get
B(g)e Hy(T?, n,(BI))=H(G). 1t is easily seen that p:G(S')— H,(G) is a homo-
morphism. Consider the induced homomorphism

B:H,(G(S") = G(S")/[G(S"), G(5")] — H,(G).
It is easily seen that the composition
H,(6) = H,(G(5") > H, (G)

is the identity. It follows immediately that A, is injective. .
Now let G" denote the group of C" diffeomrophisms of R with compact support
and let G'(S') denote the group of orientation preserving diffeomorphisms of S’.

COROLLARY 3.7. H,(G*)=0.

COROLLARY 3.8. If 4<r <o, then the mapping H,(G")— H,(G"~*) induced
by the inclusion mapping is 0.

Proofs. By Corollary 3.6, it is enough to prove these results for G"(S') in place of
G". For this case, these follow from results of Moser [9].
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§4. A quick Review of semi-simplicial Methods

In this section we give a quick review of semi-semplical methods in algebraic
topology and some new results. These will be needed in the sequel. For more details,
the reader is referred to [7], [11], and [12]. Our notation generally follows [11].

Let n denote the ordered set {0,..., n}. Let CSS denote the category whose objects
are 0, 1, 2, --- and whose morphisms are weakly order preserving mappings. Let 4
denote the subcategory of CSS having the same objects, but whose morphisms are
strictly order preserving mappings. If &/ and # are categories, let &/ x # denote the
category whose objects are given by

Ob (o x B) = Ob(«) x Ob(X)
and whose morphisms are given by
Morph («/ x #) = Morph (%) x Morph (%#).

Let /2= x o, etc.

If &7 is a category, then an .27-set will mean a contravariant functor from &7 to the
category of sets. Similarly, an &7-group (space) will mean a contravariant functor from
& to the category of groups and homomorphisms (topological spaces and continuous
mappings). The main cases we consider in the sequel are & = CSS, 4, CSS?, 42, so
we have the notions of CSS-set, 4-set, CSS-space, etc.

A morphism of &/-sets is a natural transformation of functors. Similarly for /-
groups and &7-spaces. Thus, the 2/-sets form a category. There are several functors
relating 4-sets, CSS-sets, etc., which will be important in the sequel. For example,
since 4= CSS, we may define a forgetful functor F from the category of CSS-sets to
the category of 4-sets. Thus, if X is a CSS-set, FX is the composition

X
4 = CSS - {Sets}.

Similarly the diagonal embedding CSS — CSS? induces the diagonal functor § from
CSSZ2-sets (spaces, or groups) to CSS-sets (spaces, or groups). Also, the transpose
T:CSS?* > CSS?, defined by T'(n, p)= (p, n), T(f, g)= (g, f) induces the transpose
functor t from CSS2-sets (spaces, or groups) to CSS2-sets (spaces, or groups).

Since the CSS-sets form a category, we have a notion of CSS-(CSS-sets). There is
a natural equivalence E from the category of CSS2-sets to the category of CSS-CSS-
sets defined by

E(X) (m) (p) = X (n, p)
E(X)(f)(e)=X(/.2),

where f and g are morphisms in the category CSS.
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There is another functor 4 from the category of 4-sets to the category of CSS?2-
sets which we will need to consider later. Let X be a 4-set. For non-negative integers
n and p, we let AX (n, p) be the set of triples (u, @, F), where ue X (m) for some m,
@:n-m is a weakly order preserving mapping, and F=(F,,:-, F,) is a weakly in-
creasing sequence of subsets of m such that ¢(n)cF, and F, lies in the interval
[¢#(0), ¢(n)]. We let AX (n,p) be the set of equivalence classes of members of
AX (n, p), where two members (u, ¢, F) and («', @', F') of AX (n, p) are said to be
equivalent if there exist morphisms j, j’ in 4 such that j*u=j"*u', F,c(image j)n
N (image j'), j~lo=j""1¢, and j 'F,= j'~1F, for i=0,..., p. Note that under
the hypothesis that F, cimage j, we have (j*u, j~'¢, j~'F)isequivalent to (, ¢, F).

If f:n">nand g:p’ — p are morphisms in the category CSS, then

(f,8)*:AX (n,p) > AX (', ')

is defined by

(f.8)* (u, 0, F)=(u, 0f, G),
where G=(G,,..., G,) and

G,=F,;n [‘Pf(o)s gof(n’)] .

It is easily verified that this defines a CSS?-set. If #:X — Y is a morphism of 4-
sets, then @, :AX — AY, defined by

¢*(u,¢9F)=(d§u, (psF)

is a morphism of CSS2-sets. Hence A is a covariant functor from the category of
A-sets to the category of CSS?-sets.

Next, we recall the definition of the geometric realization functors. We will think
of {0, ..., n} as the vertices of the affine n-simplex 4", so any mapping f :n— p has a
unique affine extension 4" — 4?. We will usually denote the affine extension of f by the
same symbol.

Let X be a CSS-space. The geometric realization |X| of X is formed from the
disjoint union

J X () x 4"

by identifying (u, f (¢)) and (f *(u), t) if ue X (n), t€4?, and f :p— n. The geometric
realization | X|, of a A-space is defined similarly. A CSS-set or 4-set may be regarded
as a CSS-space or 4-space, where each X (n) is provided with the discrete topology. If
X is a CSS-set, then |X| is a CW complex with one cell for each non-degenerate sim-
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plex of X, i.e., each member of X (n) which cannot be represented in the form f *u,
where f is a surjective CSS-morphism other than the identity. If X is a 4-set, then
| X, is a CW-complex with one cell for each simplex of X.

Similarly, one can define the geometric realization |X| of a CSS?-space and the
geometric realization |X|, of a A%-space. For instance if X is a CSS2-space, |X| is
formed from

UX(n,p)x 4" x 47
n, p

by identifying (u, f(s), g(¢)) with ((f, g)* (), s, t) if ue X (n, p), se4", te4”, and
f:n"—>nand g:p’ > p are CSS-morphisms. One may generalize this construction to
CSS"-spaces, A"-spaces, etc.

Let X be a CSS-space and FX the 4-space obtained by applying the forgetful
functor. Then |X| and |FX|, are constructed by means of identifications from the
same space, only there are more identifications in the construction of | X|. It follows
that there is a projection |[FX|,— |X|. Likewise if X is a CSS?-space and FX is the
A*-space obtained by applying the forgetful functor, then there is a projection
|FX|4— | X].

PROPOSITION 4.1. If X is a CSS-set or CSS*-set then the projection |FX |, — | X|
is a homotopy equivalence.

Proof. This follows by a standard argument from Whitehead’s theorem.

Let X be a CSS2-space and 6X the CSS-space obtained by applying the diagonal
functor. Since (6X) ()=X (n, n) we have an inclusion

JdX(m)x 4" |J X (n, p) x 4" x 4
n n,p

defined by identifying (u, ¢ )edX (n) x 4" with (u, ¢, t)e X (n, n) x 4" x A". This respects
identifications and defines a mapping [6X| — |X| which we call the canonical mapping.
The following result generalizes the main result of [8] and is proved in the same way,
as was observed in [12].

PROPOSITION 4.2. If X is a CSS?-set then the canonical mapping |6X|— |X| is
a homeomorphism.

If Fis a functor from a category & to a category %, then there is an induced
functor CSS (F) from the category of CSS-objects with values in &/ to the category
of CSS-objects with values in #. In particular the geometric realization functor |?|
from the category of CSS-spaces to the category of spaces induces a functor CSS|?|
from the category of CSS-(CSS-spaces) to the category of CSS-spaces. The functor
from CSS 2-spaces to CSS-spaces obtained by composing with the natural equivalence



Integrability in Codimension 1 211

E :CSS?*-spaces —» CSS-(CSS-spaces), defined above, will be denoted |?|”. In other
words, |?|” is the composition

{CSS>-spaces) 5 {CSS-CSS-spaces} =1, {CSS-spaces} .

If X is a CSS2-space, | X|” will be called the geometric realization in the second factor.
Similarly, the geometric realization functor in the first factor is defined by composing
on the left with the transpose functor ¢:{CSS?2-spaces} — {CSS2-spaces}. If X is a
CSS?-set, its geometric realization in the first factor is denoted | X|'".

If X is a topological space, we will denote its singular complex by S (X).
This is a CSS-set, and there is an evaluation mapping |S(X)| — X which is a homotopy
equivalence if X is a CW-complex. If X is a pointed space (i.e., comes equipped with
a base point x,), then we let Sy(X) denote the subcomplex of S (X') whose n-simplices
consist of mappings of 4" into X which map all vertices of 4" to x,. We will also need
to consider a CSS-space 2, X defined as follows. The underlying CSS-set of QX is
SoX. The topology on 2,X (n) is the compact open-topology on mappings 4" — X.

Clearly the identity is a mapping Sy(X)— Q,X of CSS-spaces. Then we have
natural mappings

1SoX| = [2,X] > X,

where i denotes the inclusion mapping and ev the evaluation mapping.

If X is a connected CW complex, each of these mappings is a homotopy equiv-
alence. For, evoi is a homotopy equivalence by an elementary argument based on
Whitehead’s Lemma, and the fact that ev is a homotopy equivalence is proved in [10].

Let X be a A-set. We define a mapping :

U AX (n,p) x 4" x 47 - | J X (n) x 4",
n, p n

as follows. If (u, ¢, F)e AX (n, p) and (s, t)e4" x 47, we let the image of ((u, ¢, F),
s, t) be (u, p(s)), where @:4"— A™ denotes the affine extension of ¢. This mapping
respects identifications and defines a continuous mapping

[AX| = [ X]|,,

which we will call the canonical mapping.

PROPOSITION 4.3. The canonical mapping, |AX|— |X|,, is a homotopy equiva-
lence.

Proof. Let A"(p) denote the set of strictly order preserving mappings of p into n.
The geometric realization of A” is, of course, the n-simplex 4". Let E"=|AA"|. We
first show that E” is contractible. (For n=1, 2, 3 it can be seen that E” is homeo-
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morphic to 4", and it seems likely that this is true in general, though we have been
unable to show this.)

First, E" is connected. For, the vertices of E” correspond to the vertices of A",
and if p, g are two vertices of 4" connected by a 1-simplex u, then the corresponding
vertices of E" are connected by the (1, 0)-simplex (u, ¢, F), where ¢ is the identity
mapping of 1 and F=(F,)=(1).

Second, 7;(E")=0. The l-cells in E™ are non-degenerate (1, 0)-simplices. (All
(0, 1)-simplices are degenerate.) Every non-degenerate (1, 0)-simplex of E" is the
equivalence class of a (u, ¢, F), where u is the identity mapping of m, ¢:1—-n is
strictly order preserving and F = (F,) where F is a subset of [¢(0), ¢(n)] which con-
tains ¢(0) and ¢(#n). But this (1, 0)-simplex is homotopic modulo its endpoints to
(4, ¢, G) where G=(G,) and G,=[¢(0), ¢ (n)], since these two (1, 0)-simplices are
the sides of the (1, 1) simplex (u, ¢, H), where H =(F,, G,), and the top and bottom
of this (1, 1)-simplex are degenerate.

To see that n, (E)=0 it is enough to show that a loop composed of 1-cells in E is
trivial. By what we have just shown, it is enough to consider (1, 0)-simplices (u, ¢, G)
where G=[¢(0), ¢ (n)] and u is the identity map of n. But the collection of all (k, 0)-
simplices (u, ¥, G), where u is as before, ¥ is a strictly order preserving mapping
k—-n and G=[y(0), ¥ (k)] form an n-simplex in E". Since we have already shown
that any loop in E" is homotopic to one in this set, it follows that z, (E")=0.

Third, H,(E")=0, if i >1. In the case X =A", the canonical mapping is a mapping
E"— A". We filter E" by the inverse images of the skeleta of 4". We filter the cellular
chain complex of E"-accordingly. The resulting spectral sequence has E;, =0 if
g>0 and the complex (E, o, ) is the simplicial chain complex of 4" It follows
immediately that H,(E")=0, i >1.

Let OE"=|A(0A")|. In the same way as |X|, is built up by attaching copies of 4"
along 04", the space |4X]| is built up by attaching copies of E" along 0E". From the
fact that E™ is contractible it then follows, first, that 0E" has the homotopy type of
S"~1 (by induction on n), and, second, that the mapping |AX| - |X|, is a homotopy
equivalence. Q.E.D.

§5. The Delooping of BG

We recall that BG can be taken as the geometric realization of the CSS-set NG
whose n-simplices are n-tuples (g;,..., g&,) of elements of G and whose face and
degeneracy operators are given by

00 (81 > &) = (825 -5 8n)
0;(8158n) = (81> s 81415+ 8n), 0<i<nm
an(gl; seey gn) = (gl’ 8y gn-—l)’
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and

”i(gls eees gn) = (gls coes 8i-156 8is +- s gn)’

where e is the identity element of G.
Now we give Quillen’s construction of a delooping of BG. For any real numbers
a<b, let

G,,» = {geG:suppg = (a, b)}.
Clearly G, , is a subgroup of G.

LEMMA 5.1. The inclusion mapping BG, < BG induces isomorphism in integer
homology.

This is proved in the same way as the Lemma in [6].

We consider a category whose objects are real numbers, and whose morphisms
from a to b are the elements of BG, ,. We give the set of objects the discrete topology,
and topologize the morphisms as the disjoint union (J,<, BG, ;. For a<b<c, we
have a mapping

BGa,b X BGb,c_’BGa,c (1)

which comes from the morphism of CSS-sets defined on n-cells by

(815 ++v> 8) (815 0> 8) = (81815 -5 8n0) -

Note that the fact that this is a morphism of CSS-sets depends on the fact that every
element of G, , commutes with évery element of G, .. We take the mapping (1) as the
composition law. This defines a topological category. We take B(BG) to be the geo-
metric realization of the nerve of this category in the sense of Segal [12].

We will denote the nerve by N(BG). We recall its definition. It is the CSS-space
whose n-cells are composable n-tuples (x, ..., x,) of morphisms, i.e., n-tuples such
that x,x, ... x, is defined. Its O-cells are the objects of the category, and the topology
on the set of n-cells is that induced from the topology on the category. Then B(BG)=
=|N(BG)|. This is Quillen’s construction of a delooping of BG.

Another way of describing the set of n-cells of N(BG) is as the disjoint union

BGa(O)a(l) Xoeee X BGa(n—l)a(n) .
a(0)<---<a(n)

Each BG,, is the realization of a CSS-set NG, ;, and therefore the set of n-cells of
N(BG) is the realization of the disjoint union

NGy0ya1) X ++* X NGa(n—l)a(n)'

a(0)<.--<a(n)
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The boundaries and degeneracies in N(BG) arise from CSS-mappings, so B(BG) can
also be represented as the geometric realization of a CSS2-set, which we will denote
N(NG). Thus, a (p, g)-cell of N(NG) is a 2p+1 tuple (a,..., a,, ¢, ..., ¢,) Where
ao < --- <a, are real numbers, and each c; is a g-cell in BG,;_ 1),

Let A(R) denote the functor from CSS to (sets) of weakly order preserving map-
pings of objects of CSS into R. Clearly [4(R)| is contractible. Clearly 4(R) is iso-
morphic to the CSS-set of (p, 0)-cells of N(NG). Hence |4(R)|<|N(NG)|. On the
other hand, all (0, 1)-cells of N(NG) are degenerate, so the 1-skeleton |[N(NG)|, <
< 4(R). Hence

7, (B(BG)) = 0.

Now we define another space B’(BG), which is also the realization of a CSS?*-set
N'(NG). If c=(gy,..-, &) is a g-cell in NG, we let the interval I (c) be the smallest
interval which contains suppg; U---Usuppg,. Clearly I (c) is a closed bounded
interval in R. If 7, and 7, are two closed bounded intervals in R, we say I, <1, if
sel, and tel, imply s<t. We let the set of (p, g)-cells of N'(NG) be the set of p-
tuples (cy,..., ¢,), Where each ¢; is a g-cellin NG, and I (¢;) < --- <[ (c,). We define the
“back’’ face and degeneracy operators pointwise

07 (1, ..er €5) = (Oicy, ..., OiC))
i (€150 €p) = (MiC1, -5 MiCp) -
We define the “front” face and degeneracy operators by
0o (€15 vvvs €5) = (€25 4005 €p)
62(01,..., Cp)=(cl,..., C,-C,-.,.l,..., Cp) 0<i<p
a;, (Cl, ceey Cp) = (Cl, ‘“’.cp"l)

n; (Cl, ceey Cp) == (C].’ eoes Cpy eq, Ci+1, vaey Cp),

where if ¢;=(gy,..., &) and ¢;;=(g},-.., &;) then cic;y1=(g:8%,.--, &,8;), and e,=
=(e,..., €).
We have a CSS2-mapping N(NG)— N’(NG), defined on (p, g)-cells by

(@5 o5 Bps €15 00ns €)= (€150, €5)
We claim that the induced mapping on geometric realizations
B(BG) - B' (BG)

is a homotopy equivalence. We have already shown that B(BG) is simply connected.
Moreover all (1, 0) and (0, 1)-cells of B'(BG) are degenerate, so it is also simply
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connected. On the other hand, it is easily seen that a fiber of B(BG) above a point of
B’(BG) is acyclic, so that the induced mapping in homology is an isomorphism. Then
the above mapping is a homotopy equivalence, by Whitehead’s theorem.

We may also regard B'(BG) as the geometric realization of a CSS-space N'(BG)
by realizing N'(NG) in the second factor. The 1-cells of this space form a space natur-
ally homeomorphic to BG, and the natural mapping BG x 4' — B'(BG) induces an
embedding of the reduced suspension S(BG) in B'(BG).

We will show (following Quillen) that the adjoint mapping BG — QB’'(BG) in-
duces isomorphisms in integer homology. This is the sense in which B’(BG) (and
therefore also B(BG)) is a delooping of BG.

Quillen’s proof is based on Segal’s construction Q,, defined in §4. There is a
CSS-mapping

N'(BG) - Q,(B(BG))

defined by sending an n-cell of N'(BG) into the corresponding mapping of 4" into
B(BG). This induces a mapping on spaces

B'(BG) — |24(B(BG))|,

and from the results of §4 it follows that this mapping is a homotopy equivalence.

On the other hand, using the spectral sequence associated to the filtration of a
CSS-space by its skeleta, we get a homomorphism of spectral sequences, each of
which converges to a graded group, associated to the homology of B'(BG). Moreover
the E! terms in these spectral sequences can be computed from the homology of BG
and the homology of QB’'BG, respectively, using Kiinneth’s formula. Thus, for the
spectral sequence associated to the filtration of B'(BG) we have

E,.~ ® H,(BG),
p

and for the filtration of |Q,BBG| we have
E,.~ ® H,(9QB'BG),
p
where we take a field of coefficients. Then a standard spectral sequence comparison
argument shows
H,(BG)- H,(2B'BG)

is an isomorphism, if the coefficient ring is a field. But, then this is still an isomorphism
when the coefficient ring is the integers, by the universal coefficient formula.
We will show in subsequent sections that BBG has the homotopy type of BI.
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Here we show that this assertion implies the main result in our announcement [4].
For, B'BG has the same homotopy type as BBG. If we give BG* the product CW-
complex structure, coming from the CSS-structure of BG, the space of k-cells of
N’(BG) is a subcomplex. The resulting CW-complex structure on the space of k-cells
induces a CW-complex structure on B'BG. Then the chain complex G of [4] is
isomorphic to the chain complex associated to this CW-complex structure on B’BG.
Theorem 1 of [4] then follows from the assertion that BBG~ BI.

§6. Construction of a I'-Structure on BBG

It is enough to define a 1-cocycle y,, over the cover of BBG by its closed cells,
by §1. First, we define y,=7v,, for a (p, g)-cell a=(ay,..., a,, ¢y, ..., ¢;). Let ¢;=
= (hu, ceey hqi) where hjiEBGa(i—l),a(i)' Hence

p
Hi = H h”.
j=1

This notation is unambiguous, because 4;; and h;, commute for j #k, since they have
disjoint support. Let f : 47— R be the unique affine extension of the set map p— R

given by f(0)=ay,..., f(p)=a,.
For 0<#<1,let H; be the homeomorphism of R given by H; (u)=tH;(u)+ (1 —t)u.
Let x=(xg,..., X,)€4? and y=(y,, ..., y,)e4% Let

Y0 (%, ) = H{V - H{® f(x)
where

YVa-1 1
t(@)=y,t(g—1)= s t(1) = .
! 1-y, 1—y,— =2

Now we define y,, when 7 is a face of . When 7 is a front face d;0, we let y,.(x, y) be
the germ at y,(x, y) of the identity mapping. When 7 is a back face d;g, we let y,, be
the germ of id at y,(x, y), provided i > 1. When t=0dg0, we let y,.(x, y) be the germ of
H, at y.(x, y). It is easy to see that this defines a 1-cocycle over the closed cells of
BBG, and hence a I'-structure on BBG, by §1.

§7. Subdivision of 4-Sets

DEFINITION. If X is a 4-set, a subdivision of X will mean a pair (X", s), where
X' is a second 4-set and s is a homeomorphism of |X’|, onto | X|, with the property
that if ¢ is an open cell in | X| 4, then s~ 'o is a union of open cells in |X’| ;.

Consequences of the Definition. We note some consequences of this Definition.
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First, if o is a closed cell of | X’| , then there is a least closed cell = of | X|, which con-
tains s (a). For, it follows from the Definition that if p and g are two interior points of
o, then the unique open cell =° of |X|, which contains s(p) is the same as the unique
open cell which contains s(g), and clearly its closure 7 is the least closed cell which
contains s(0).

Second, if f:Y— X is a 4-mapping of A-sets, then there exists a unique (up to
canonical isomorphism) triple (Y, §, f') such that (Y, §) is a subdivision of Y,
f':Y'—> X' is a 4-mapping, and the following diagram commutes:

IYIIA — Y|4
I r
1 X4 — [X]4

We will write (Y, §)= f*(X’, s), and call (Y’, §) the subdivision of Y induced via f
from (X', s). We will call f' the canonical mapping of |Y'| 4 into [X’| ,.

Now we prove the existence of (Y, §, f’). We let Y, denote the set of pairs (o, )
where e X, 1€Y,, m>p, and fr is the least cell of X whose geometric realization
contains s(¢). We note that if (g, 7)€ Y, then there is a unique mapping n=n, . of the
standard p-simplex 4? into |t|, such that the following diagram commutes.

5 [,
Y,

S
lols— | /7],

Here the left vertical arrow denotes the natural mapping of 4?7 onto the geometric
realization of the p-simplex o. It is clear how to define 5 on the interior of 42, since s
maps the interior |63 of |o|, into | fr| and f maps |7|3 homeomorphically onto
| fr|S. We must show 7 extends continuously to the boundary of 4?. Let xed4?, let
% be its image in |o|, and let y=s(%). Then f ~!y is a finite set of points y,,..., y;.
We may choose a neighborhood U of y such that f ~1U is a disjoint union of sets
Ui,..., U, where U, is a neighborhood of y;. Let V be a neighborhood of x in the in-
verse image of s~ U under 47 - |o| 4, and suppose the intersection ¥° of ¥V with the
interior of 4? is connected. Then n(¥°) is in some one of the U;’s. Let (x) be the
corresponding y;. It is easily verified that , so defined, is continuous.

Now for 0<i<p, we can define the boundary operator 9,:Y,—»Y,_ ;. Let
0,(a, 1)=(0,0, 7;), where 7, is the least cell of |Y|, which contains #, (0;47). It is
easily verified that the collection of sets {¥,} and the boundary operators 9, defines a
A-set Y'. Welet f':Y'— X' be given by f (0, 7)=o0. Finally, it is easily seen that there
is a unique mapping § such that for any (o, 7)€Y, the composition

A > o, 1|, > | Y,
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is n,, ., where the first arrow denotes the natural mapping associated to the p-cell
(o, 7).

The uniqueness of (Y’, §, f') is easily seen.

Special subdivisions. Let A" denote the n-simplex with the standard triangulation.
This may be regarded as a A-set, and its boundary 04” as a sub 4-set. If (X, s) is a
subdivision of 04", we define the conical extension (CX, Cs) of (X, s), by letting CX be
the cone on X, and letting Cs:|CX|,=C|X|,— 4" be the homeomorphism which
sends the line segment vx joining the vertex v of the cone C|X|, to a point x in
| X| , affinely to the line segment bs(x), where b is the barycenter of 4". Clearly this is
a subdivision of 4".

If X is a 4-set, a collection U of cells of X will be said to be an open subcomplex if
whenever g, 1€ X, ge U, and o is a generalized face of 7, we have te U.

If we are given a triple (X, U, {h}), where X is a 4-set, U is an open subcomplex of
X and {A} is a collection of homeomorphisms, one 4, for each ue U, where if u is an
n-cell then A, is a face preserving homeomorphism of 4", we may define a subdivision
(X', 8)=(Xy, sy, @) of X as follows. We define inductively a subdivision (X, s,) of
the n-skeleton X,. We let X=X, s, =id. Supposing (X,_, s,_;) has been defined,
we see easily that there is a unique (up to unique isomorphism) subdivision (X,, s,)
of X, such that

a) if u is an n-cell of X, not in U, and f : 4"—|X]| , is the associated mapping, then
f*(X,, s,) is the trivial subdivision (4,, id) of 4,, and

b) if ue U is an n-cell, and f : 4"—|X|, is the associated mapping, then f# (X,, s,)
is the conical extension of (fh, | 04")* (X,_1, s,—1)-

Finally, the subdivision of X is the limit of the subdivisions of the skeletons we
have defined in this way.

In the special case when U= X and each 4, is the identity, the subdivision we have
just defined is barycentric subdivision. More generally, if each 4, is the identity, itis a
generalization of barycentric subdivision, where each cell of U is affinely subdivided,
but the cells of X— U are left unchanged. In the general situation, each cell of X— U
is left unchanged, but the cells of U are subdivided.

When U= X, we will drop U from the above notation. When each 4, is the identity,
we will drop {h}.

Product of a A-set with I. If K is a A-set, then it is possible to define another A4-set
which we denote by K#I, such that |KxI|, is homeomorphic to |K|,x 1. We let
(K#I),, consist of all pairs («, g) where ue K, for some n and g:m—n x1 is a strictly
order preserving mapping (with respect to the product order on nx1) and the
composition

g (31
m-nx1l-n

is onto, where n, denotes the projection on the first factor. If f : p—»m is a strictly
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order preserving mapping, we let F:q—n be the unique strictly order preserving map-
ping whose image is the image of the composition

S g Ty

p-m-onx1-n
We let f *(u, g)=((F*u,(F xid,)”'gf)). This defines the 4-set Kxl.

Let A, :|K+I| ,—|K| , be defined as follows. If (#, g) is as above, #; maps the m-cell
in |KxI|, corresponding to (i, g) to the n-cell in |K|, corresponding to u by linear
extension of the mapping n,g. Let h,:|KxI|,—1I be defined so it takes the m-cell in
|K*I| 4 corresponding to (u, g) to I by linear extension of the mapping n,g. Then it is
easily seen that

(hy, h2)3|K*I|A — |K|4x I

is a homeomorphism. We call this the canonical homeomorphism of |K*I|, onto
|K|, % 1.

Lifting mappings. Now let K be a 4-set and X a topological space. It is easily seen
that the A-mappings of K into the singular complex S(X) correspond bijectively to
the continuous mappings of |K|, into X. Given a continuous mapping f :|K|,— X,
we let f:|K| ,—|S(X)| 4 denote the geometric realization of the 4-mapping K— S(X)
which corresponds to f. We call f the canonical lifting of f. This is a lifting in the sense
that f is the composition

7
K4 = lS(X)lA - X.

Lifting homotopies. Note that if f,:|K|,—X, 0<t<]1, is a homotopy, then
f::1K|4—~1S(X)|, is not a homotopy, because it is discontinuous as a mapping of
|K| 4% 1T to |S(X)|4. For this reason, we introduce another homotopy, which we call
the canonical lifting of the homotopy. N

If F:|K|,xI-X is a homotopy, we let F:|K]|, xI—S(X) denote FHH ™! where
H:|K+I| ,—~|K|, x1 is the canonical homeomorphism. We call £ the canonical lifting
of F. Note that if Fis the constant homotopy F is not generally the constant homotopy.

A homotopy associated to a special subdivision. There is one more explicit homo-
topy that we will need. Let (K, U, {h}) be a triple, where K'is a 4-set, U is an open sub-
complex of K, and {A} is a family of homeomorphisms, one for each ueU, where if u
is an n-cell of U, then A, is a face preserving homeomorphism of 4". Let (K’, s)=
(Kys Sy, ) be the associated subdivision. We have two mappings |K|,—|S (K| 4)l 43

one is the canonical lifting id of the identity mapping of |K|,; the other is the com-
1

position §s~ '
IK|g— [K'|4 = IS (IKlg)l4-

We will construct a homotopy between these two mappings.
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We construct a complex M= (K+I); and a homeomorphism
S=Sy,p: I(K*I)ply = |K|sx I

as follows. For each 4-subset L of K, we will construct a 4-set M; and a homeo-
morphism

Sp:IMply = |Ll4x I,

and let M= My, S=Sg. If L is the complement of U, we let M, =L=*I and S; be the
canonical homeomorphism.

In the general situation, we define M; and S, inductively. Supposing u is a top
dimensional cell of L and L' = L —u, we may also suppose M. and S;.are defined and
that L'< M. and Sp.(IL'|4)=|L'| ;0. Let n=dim u and let J= (4" x0)u(04" x I).
It can be shown that there is a unique (up to canonical isomorphism) triple (J', S, ),
where J' is a 4-set, S'=|J'| ,~J is a subdivision of J,and ':J'— M, . is a A-mapping
such that the following diagram commutes.

”
Ul —J
r In

My v Liy - (IL]; x I) v (ILl4 % 0),

where 1 denotes the composition

” uxid
JeA"x I—>|L|,xI.

Let S":|J"|—4" xI be the unique subdivision of 4" xI such that there is a
A-isomorphism H of the cone CJ’ onto J” with the following property. Let v denote
the vertex of C|J’| ,and x an arbitrary point of the base |J’| 4 of this cone. Then the line
segment vx is mapped affinely by (h, xid)>S"-H onto the line segment b’y in 4" x I,
where b'=b x 1, b=the barycenter of 4" and y=(h, xid)-S’(x).

It is easily seen that there is a unique subdivision S, :|M|,—|L|, x I which
pulls back to (M., S;.) on L'xIand to (J”, S") on 4" x I.

Thus, we get a subdivision (M, S) of |K|, x I. The restriction of this subdivision
to | K|, %0 is the identity subdivision of the latter, and its restriction to |K| % is

(K> Su,my)-
Let n,:|K|, xI—|K]|, denote the projection on the first factor. The composition

s-1 s
|K|g x I —> |(K*I)U| — IS(IKIA)IA

is a homotopy connecting id and 35~ 1. We will call this the homotopy associated with
the data (X, U, {h}).
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§8 Quasi-linear Mappings

We recall that a mapping f from a simplicial complex K to R is said to be linear if
its restriction to each simplex of K is affine, in the usual sense. We will say a mapping
f : K—>R s quasi-linear if there is a homeomorphism 4 of K onto itself which preserves
each simplex of K and satisfies the condition: fA is linear.

LEMMA 8.1. In order for f: K—R to be quasi-linear, it is necessary and sufficient
that its restriction to each simplex of K be quasi-linear.

Proof. Necessity is obvious. To prove sufficiency, we let K, denote the /-skeleton
of K. We will construct a homeomorphism 4; of K, onto itself, preserving all sim-
plices, such that foh, is linear, by induction on /. We let hy=id: K,— K,. Supposing
h,_, has been constructed, we construct 4;. It suffices to construct #, ] ¢ such that
foh, | o is linear and k, | do=h,_, | da, for each l-simplex separately. By hypothesis
fohy_4 | Oo is linear and there exists a face preserving homeomorphism 4, of ¢ such
that foh, is linear. Then both foh, | 0o and foh,_, | Jo are linear and they have the
same values on the vertices of ¢. Hence these two mappings are the same. Let H be
the mapping of sin to itself obtained by coning A ‘h,_, | do with respect to a vertex v in
the interior of ¢. Then H extends h; 'h;_, | 0 and it is a homeomorphism. Further-
more foh,oH=foh,, since this is true on do. Let h, | 0=h,H. Clearly k, | ¢ extends
h,_, | 00, and foh, | 6=foh,oH=foh, is linear. Q.E.D.

We will use the above lemma only in the case K is of the form de, but it is just as
easy to prave it in general.

LEMMA 8.2. Suppose o is a simplex and f:0— R is quasi-linear. Let k' :R—R be a
homeomorphism. Then h'f is quasi-linear.

Proof. We suppose k' is orientation preserving, which we may do, since the general
result reduces immediately to this case. Let #:0—0 be a face preserving homeomor-
phism such that fA is linear.

We prove the lemma by induction on n=dime. For a 0-simplex, the lemma is
obvious. Assume the result has been proved for an (n—1)-simplex. Then A'fh is
quasi-linear on each face of ¢, so by Lemma 8.1, there exists a face-preserving homeo-
morphism 4, : 06— 0o such that h'fhh; :0c—R is linear. Let [a, b]=f (o), 7, =f ~(a),
7,=f ~1(b), and let p; and p, be points in the interiors of the simplices 7, and 7,
respectively. Now let (h,:7;—71;)=the cone construction on A, | or;fori=1, 2. Itis
easily seen that there exists a face preserving homeomorphism #;:00—3dc which
preserves the level surfaces of the linear map h'fhh, and extends h; 'h,:17,—-1; for
i=1,2. Let h,=hh;:00—-00. This extends h,:7;,—7; and has the same properties as
hy: it is a face preserving homeomorphism of do such that #'fhh,: 00— R is linear.

We extend A, to a homeomorphism /i, of o onto itself, as follows. Let g denote the
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linear mapping of ¢ into R which extends A'fhh,. Let [ denote the line segment of &
joining p, and p,. Since fh and g are linear, (f4)~'(¢)nl is a single point y(¢), for
each te[a, b], and g~ '(¢) is a single point u(¢) for each re[h'(a), h'(b)]. Clearly, h,
maps dong~ () homeomorphically onto don(fh)~*(h')~*(¢). Let h, | g~'(¢) be the
mapping of g~(z) onto (fh)~'(#’)~!(¢z) obtained by applying the cone construction
to h, | dong~!(¢) with vertices u(¢) (in the source) and y4'~(¢) (in the target). We
may apply the cone construction here because g~ !(¢) and (fh)~'(h')~'(¢) are convex
sets, with u(¢) and yh’~'(¢) in their interiors.

It is easily verified that /1, is a homeomorphism of ¢ onto itself. Since /1, extends
h,, it preserves faces. Then g=~Hh'fhh, is linear, so A'f is quasi-linear. Q.E.D.

§9. Z (w)

If o is a simplex, a I' structure on ¢ will said to be quasi-linear if it is defined by a
single (local) projection f:6—R, and f is a quasi-linear mapping.

Let X be a topological space and let S(X) denote the singular complex of X
(regarded as a CSS-set). For any I' structure w on X, let X (w)<=S(X) be the CSS-set
whose set of n-cells consists of all n-simplices u:4"—X such that #*w is quasi-
linear.

Let U be an open set in X. We say U is a product neighborhood for w if there is a
function f: U—R which defines w in U, such that f (U) is an open interval (a, b) and
f:U-(a, b) is a trivial fibration. We will say w is locally trivial at xe X if x is contained
in a product neighborhood for w. We will say w is a foliation of X if it is locally
trivial at every point in X.

PROPOSITION 9.1. If X is normal and w is a foliation of X, then the inclusion
mapping |Z(w)|—|S(X)| is a homotopy equivalence.

Proof. We will show the equivalent statement that |2 (w)| ,—|S (X)| ,is a homotopy
equivalence. For this, it is enough to show the following. If K is a finite 4-subset of
S(X) and L=X(w)nK, then there is a homotopy

he: (1Kl 4, ILLs) = (IS (X1 12 (@)14)

such that A, is the identity and A, maps |K|, into |2 ()| ,-

Let (K, L) be as above. For each n-cell u in L, let A, be a face preserving homeo-
morphism of 4" and f,: 4"—R a mapping which defines #*w such that f 4, is linear.
Since u*w is quasi-linear, we may find such f, and 4,. If u is a cell of K and not a cell
of L, let h,=id.

Now consider the subdivision (K’, s5,) of K. Clearly L’ is a 4-subset of K’ and
(L', sy) is a subdivision of L. Using Lemma 8.2, we see easily that for each n-cell u
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of L', ¥w is quasi-linear, where @, is the composition

u s{n}
4" — Ly — [Lis = IS(X)l,— X,
and the last two arrows are the natural mappings. Note that this result would not be
true if we used ordinary barycentric subdivision rather than this twisted form of
barycentric subdivision.
Consider the composition

, St}
IK'| 4 — |K|s— IS (X)ls— X,

and its canonical lifting

"
1K'l 4= 1S (X)l.4

(cf. §7). The latter is the realization of a 4-mapping y: K'—S(X), and by what we
have just shown y(L')= X (w). Moreover the composition

5™ Hn}

’ 4 lll
(I1Klys IL]g) == (IK'[4 IL]4) = (IS (X)) 4 [Z(@)]4)
is homotopic to the inclusion

(1Kl 45 IL14) = (IS (X))l 12 (@)l 4) 5

by the homotopy constructed at the end of §7.

We have observed that if u is an n-cell of L', then ¢ (u)*w is quasi-linear. Thus we
may choose a projection f,:4" - R for  (u)*w and a face preserving homeomor-
phism A, of A" such that f A, is linear. In fact, it can be shown that f, and 4, can
be chosen so that if g: 4" — R is the function which takes the value 0 on the front
(n—1)-face and the value 1 on the last vertex, then gh,=g. Suppose h, has been
so chosen for each cell ue L’ and that h,=id if u is a cell of K’, not in L’. This family
of homeomorphisms defines a subdivision (K", sy) of K'. Continuing in this way we
get a sequence of subdivisions, where (K™, sy,n-1,) is a subdivision of K™V,

Let y,: (K™, L™)— (S (X), Z(w)) denote the 4-mapping corresponding to the
composition

i s{n’} . s{n}
IK®|y— - — |K'|,— K|, — |S(X)Is— X .

The composition
s~ 1{n"}

(1K1 4 |L|A) "s‘—i,:}_’ (IK'| 4, IL’lA) _— (IK"IA, IL”IA) ’ln—’ (lS (X)|As iz(w)h)

is homotopic to the inclusion mapping.
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Moreover, it is easily seen that if % is a covering of X by open sets, then we may
choose n so large that for any ue K™, the image of y,(u) lies in a member of %.

Let C be a compact subset of X. Let &7 be the set of all pairs (%, ¥") where
U={U,..., U} and ¥ ={V},..., V,} are collections of subsets of X, each indexed by
the same finite set, each U, is open, there is a projection f;:U;— R for w which is a
trivial fibration, each V, is closed, V;= U, and CcintV; u---vintV,. If (%, ¥") and
(', ¥v"") are two members of =/, we say the second is subordinate to the first if for
each Uje', if U; meets some V;e¥" then U} lies in the corresponding U,e%.

The hypotheses that X is normal and w is a foliation imply that 7 is non-empty,
and that for any member of &7, there is another member which is subordinate to it.

Let d=dim K, and let C denote the image of the canonical mapping |K|,— X.
Let (%, 7)), (%', ¥"),..., (D, D) denote a sequence of members of &7 each of
which is subordinate to the preceding one. By the argument we gave above, we can
choose / so large that for each cell u of K, image (y,(#): 4" — X) lies in a member of
V@,

To complete the proof, we will construct for each cell u of K® a mapping
Y'(u): 4" - X such that Y'(u)=y,(u) if ue L, such that y': K - S (X) is a 4-map-
ping whose image lies in Z(w), such that the mappings

v, ¥ |Kml4 - X

are homotopic rel. |[L%P|,. By the construction in §7 for lifting homotopies this yields
a homotopy between the two mappings of pairs

‘p” \/71: (IK(I)IA’ |L(l)|zl) - (lS (X)lda IZ (w)ld)

The existence of this homotopy implies Theorem 9.1.

In order to construct ¥’ and the homotopy, we choose for each n-cell u of KV a
member ¥, of ¥" @~ which contains image y,(u). We let U, denote the corresponding
member of #“™",

If u is a O-cell, we take y'(u)=y,(«) and connect y’(u) and ,(u) by the constant
homotopy. We suppose inductively that we have chosen y’(#) and the homotopy, for
any (n—1)-cell », and that the images of y’(u) and the homotopy lies in U,. We show
under this assumption that we may extend the construction to n-cells u# with the
same properties for the extend the construction. Let u be such an n-cell and let v be
any boundary (n—1)-cell. Since y,(v)= ¥, n U, and (#*~"*1, ¥4~"*1) is subordinate
to (", ¥*"), U,cU,. It follows that the constructions we have already given
yield a homotopy ¥/(u), | 24", 0<t<1 and this homotopy stays in U,. Furthermore
by Lemma 6.1, y'(u) ] 04" is quasi-linear, so by the fact that there is a local pro-
jection f : U, — R for w which is a trivial fibration, it follows that we can extend the
homotopy of all to 4" with y’(x) quasi-linear. Q.E.D.
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§10. S (o)

Let X be a topological space and w a I'-structure on X. We let S (w)c=S (X) x
xS (R)=S (X xR) be the CSS-set whose set of n-cells consists of all pairs (u, v),
where u: 4" - X is in Z(w), v: 4" > R defines u*w in a neighbourhood of the 1-skeleton
of 4", and v is weakly order preserving on the vertices of A4".

PROPOSITION 10.1. If X is normal and w is a foliation, then the projection
IS (@)l = |S (X)| is @ homotopy equivalence.

Proof. Since |S (X)xS (R)|=|S (X)| x|S (R)| and |S (R)| is contractible, an
equivalent assertion is that the inclusion mapping |S (@)|—|S(X)xS(R)| is a
homotopy equivalence. This, in turn, is equivalent to the assertion that the inclusion
mapping |S (w)|,—|S (X) xS (R)|, is a homotopy equivalence. To show this, it is
enough to show that if K is a finite 4-subset of S (X)) x S (R) and L=S (o) K, then
there is a homotopy

hi: (K14 IL1g) = (IS (X) % S(R)14, IS (@)1)

such that A, is the inclusion mapping and A, (|K|,)<|S ()],
Let 7;:S(X)xS(R)—> S (X) and =#,:5 (X) xS (R)— S (R) denote the projec-
tions on the first and second factors, respectively. The following lemma will be helpful.

LEMMA 10.2. Suppose f;:(K,L)— (S (X)xS (R), S (w)), i=0,1 are A-map-
pings, folL= fi|L, and n, fo=m, f;. Then there is a homotopy

he: (1K IL14) = (IS (X) x S(R)l4 IS (@)l4)

such that h;= f,,i=0, 1.
Proof. Let r:S (R)— R be the natural mapping. Let 4] be a homotopy rel. |L|,
connecting the mappings

rn:zfi:lKIA—HR.

Let H,:K*I - S (R) be the corresponding 4-mapping. Let H,:K#*I — S (X) corre-
spond to the constant homotopy |K|,— X which is 7, f, at each stage. It is easily seen

that the composition

(Hi, Hz)
K|y x I—|K=*I|, IS (X) x S(R)I,

provides the required homotopy.
Now we return to the construction of the homotopy (1).
By the proof of Proposition 9.1., we may assume without loss of generality that
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for each n-cell u of K, there is an open set U, in X and a locally trivial fibration f, of
U, over an open interval which defines w in U,. Furthermore, we may assume =,
u(4")c U, and if u is a face of v, then U,c U,. For, in general, there is a relative
homotopy A, (as in (1)) such that A, is the inclusion, and A, is a 4-mapping from a
subdivision of K having the properties listed above.

Let U=K— L. We construct a A-mapping h;:K;— S (o) as follows. If ueL, we
let h;(u)=u. Otherwise, we assume that u is an n-cell of U and that 4, has been con-
structed on all the cells of K which lie in du. Furthermore if v is a face of #, and v’ is
a cell of Ky which lies in v, we assume h,(v") (4")cU,< U,. Then h,(|0u|)=U,. We
construct 7, A, on u so that f,n,h,(b)> f,n,h (x) for any xe|0u| and the restriction of
fumyhy to the line segment xb is quasi-lineer. Then it is easy to construct m,A, on the
cells of Ky in u such that the image of 4, lies in S(w). The construction of §7 and
Lemma 10.2 show that ||, and the inclusion mapping are homotopic rel. L.

Q.E.D.

§11. A Mapping |4S (w)|,—~BBG

Let X be a topological space and w a I'-structure on X. Let S (w) by the 4-set de-
fined in §10, and let 4 be the functor from 4-sets to CSS2-sets defined in §4. In this
section, we will define a mapping

R:]AS (w)|,— BBG.

This mapping has the following property. Let Q be the I'-structure on BBG con-
structed in §6. Let 7= denote the composition of the natural mappings:

|AS ()i, — |S(w)], — X.
Then
n*w = R*Q. (D

The rest of this section is devoted to the construction of R.

Given a subset S of m, we let /(S) denote the path in 4™ obtained by joining
successive points of S by edges in 4™.

Let n; (i=1, 2) denote the projections of X xR on its first and second factors,
respectively.

If ueS (w),, and S and S’ are two subsets of m with the same least and same
greatest elements, then we define H, 5 ¢ as follows. Let g be a function 4™ — R which
defines (m,u)*w. We have two mappings

4
I(S)—R

T2U
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and from the fact that g and n,u define the same I'-structure in a neighborhood of the
1-skeleton, it follows that there is a unique I'-homeomorphism Fg of a neighborhood
U of g(/ (S)) in R onto a neighborhood V of n,u(! (S)) in R such that the following
diagram commutes

.U
1(5)<¢Fs

We may define a I'-homeomorphism Fj. in the same way, replacing S by S’. Note that
g(1(S))=g(I1(S")) and n,u(l (S))=mn,u(l(S")), since S and S’ have the same end-
points. Hence we may assume that Fg has the same range and domain as Fgz. Now
we define

H, s s(t)=FsFs' (1) if tenu(I(S))
=t otherwise .

Note that the result is independent of g and is an element of G. Furthermore, H, g s
is the identity in a neighborhood of #,u(S N S’) and outside of n,u(/ (S)). Clearly if
S, S’, and S” are subsets of m with the same greatest and least points, then

H, s s =H, s sH,ss.

Consider (u, ¢, S)eAS (w),,,- Then ueS (w), for some m, and S=(S,, ..., S,).
Let Hi=H, 5i-1su for i=1, ..., q. Let g;=mup(i) for i=1, ..., p. Then H; is the
identity in a neighborhood of {a, ..., a,} and outside [a,, a,]. Hence

P
Hy=T1hy

where supph ;;€(a; -4, a;). Hence (ay, ..., a,, ¢y, ..., ¢,) is a (p, g)-cell of NNG, where

CJ=(h11, seey hqj)'
In other words, to each (p, g)-cell (4, @, S) in AS (w) we have associated a (p, q)-
cell, which we will denote r (&, @, S), in BBG. It is easily verified that

r:AS (w) — NNG

is a bisimplicial mapping.
Now we show that there exists a continuous mapping

R:|AS (»)|, — BBG

such that R(ju, 0, S|,)<=r (4, 9, S) and R*Q=1"w.
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For each (p, q) simplex ¢ of AS (w), we will construct a mapping R,: 47 x 41—
— 4?7 x A%. This will be done so as to respect identifications, i.e., so that there is a
mapping R:|4S (w)| ;, = BBG such that the diagram below commutes, for any simplex
o of AS (w):

6 x 47 x 47— r(0) x AP x A7

! !
|AS(w)l, —&>  BBG

Here o is a (p, q)-simplex, and the vertical arrows are the canonical mappings.

The compatibility conditoin is equivalent to the following condition.

a) If a:p’ xq— p x q is a morphism in the category 42 then the following diagram
commutes:

’ ’ Ra*a ’ ’
A7 x 4T —— 47 x A*

le le

AP x AT —25 AP x 4*

The condition that R*Q=n"*w is equivalent to:
b) Let n, denote the composition

A7 x 4% =0 x (4° x 49) — |AS (w)|, — X x R.

Let 9,(,):4° X 47— R be as in the definition of Q in §6. Then (m,7,)*w is defined by
'Yr(a)Ra'

In addition, we will construct the R, so that the following two conditions are
satisfied.

c) The following diagram commutes:

A"xA"——R:—»A"xA"
AN /
Noge S

where the slanted arrows are the projection on the second factor.
d) If g is a (1, 0)-simplex (u, ¢, S), where S =(S,), then the following diagram
commutes:

?

Al____jfi____,Al

! l

Hy, T, s (0
[ao’ al] "':':'if—)’ [ao’ al] ’

where each vertical arrow is the unique affine mapping which takes the ordered pair
(0, 1) to (ag, a;), T=(¢(0), ¢ (1)), and a,=m,up(0), a;=mn,uep(1).
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We construct R, satisfying these conditions by induction. For a (0, 0)-simplex R,
is the unique mapping 4° — 4°. To construct R, for a (p, q)-simplex o, we assume
inductively that R, has been constructed for all (p’, ¢) simplices t for which p’'< p,
q'<gq, and p’ < p or ¢’ <gq, and that these R, satisfy the conditions (a)-(d), whenever
these make sense.

If o is a (1, 0) simplex, and 7,u¢ (0)#m,up (1), then R, is uniquely determined by
(d). Then (a) and (b) follow from (d), and (c) is vacuous in this case.

If o is a (1, 0)-simplex and 7,u¢ (0)=mn,up (1), then we may choose R, to be any
orientation preserving homeomorphism. Then (a)-(d) are easily verified.

Now let ¢ be a (1, 1)-simplex, (v, ¢, S), and suppose

mou (ag) <+ < mu (ax) ¢))

where a, <--- <a, are the integers in the interval [¢ (0), ¢ (1)]. Then there is a unique
homeomorphism R, such that (a), (b), and (c) are satisfied. For, there is a unique
homeomorphism

R,:0(4" x A1) — 8 (4" x 4%)

such that (a) is satisfied. Moreover (m;n,)*w is the horizontal foliation defined by
n,7n,. (Here we think of the first factor as “vertical’’, and the second factor as “‘hori-
zontal’’, reversing the usual way of representing the two factors.) The foliation defined
by 7,4 is transverse to the vertical lines. Hence to extend R, to the interior of 4 x 4*
satisfying (b) and (c), it is enough to verify that the following diagram commutes.
gt e
lRa'od l')’r ()

0x A1 2, R

But this is an easy consequence of the definitions.

In the case when ¢ is a (1, 1)-simplex, but (1) does not hold, the proof is similar,
except that R, is no longer unique.

In the case when o is a (2, 0)-simplex, the proof is similar to that which was just
given.

In the case when o is a (p, 0) simplex with p >3, we must show that if », and w,
are two quasi-linear linear foliations on 4”? and R,:04” — 04" is a face preserving
mapping such that R}w,=w,, then R, extends to a mapping 4”7 — A” such that
RYw,=0w,.

In the remaining cases, the assertion reduces to verifying a similar statement,
which is again easily shown.
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§12. End of the Proof

In this section, we finish the proof of the Main Theorem. We have shown (§5)
that there is a mapping BG — Q(BBG) which induces isomorphism in integer homolo-
gy, In §6, we have constructed a I'-structure Q on BBG. This gives rise to a mapping

U:BBG — BI'.

It is easily seen that the composition

QU
BG — Q(BBG) — BT’

induces the mapping in integer homology which appears in the staternent of the Main
Theorem. Hence it is enough to prove the following result.

THEOREM 12.1. U is a homotopy equivalence.

Proof. Let ' be the universal I'-structure on BI'. By replacing BI' with the graph
of Q', we may suppose Q' is a foliation. Moreover BI' is a CW-complex and hence
normal. Hence Proposition 10.1 implies

IS ()4 — Bl

is a homotopy equivalence. By Proposition 4.3,
|[AS (Q)I4— IS (2)\4

is a homotopy equivalence. Hence the composition
n:|AS(2')|4— Bl

of these two mappings is a homotopy equivalence. In §11, we have constructed a
mapping

R:]AS (2|, — BBG

such that R*Q=n*Q’, where Q is the I'-structure on BBG constructed in §6. Since
U*Q' ~Q, it follows that UR~mn and U has a right inverse in the homotopy category.
The rest of this section is a proof that U has a left inverse in the homotopy category.
The space BBG is the realization of a CSS?-set NNG (§5). We let & denote the
diagonal functor (§4). Since |NNG|=BBG, we may regard NNG as a subset of the
singular complex S(BBG). In fact, INNG < Z (Q).
For, let ¢ be a non-degenerate p-cell in dNNG. There is a unique non-degenerate
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cell T in NNG such that g, considered as a (p, p)-cell of NNG, is a degeneracy of 1. If
7 is a (k, /) cell, there are uniquely determined weakly order preserving surjective
mappings f:p—k and g:p— 1 such that o=(f, g)*t. We extend to f:4? - 4* and
g: 47 — A'. The I'-structure Q pulls back to a I'-structure Q, on 4* x 4' via the mapping
of 4* x A' into BBG which corresponds to t. This pulls back via ( f, g) to a I'-structure
Q, on 4%, which we must show is defined by a quasi-linear function on 4?. By defini-
tion (§6), Q. is defined by the function y,. Hence @, is defined by y.° (f, g). Now let
4"~ = A" be the simplex spanned by 1 —1. Then 4* x 4! is the join of 4¥ x 4'~ ! and
A¥ x 1. If xed*xA'"! and yed* xI, then it follows easily from the definition of 7,
that the restriction of y, to the line segment joining x and y is either constant, or is a
homeomorphism onto a closed interval in R. Let g= g~ *(1—=1) and r = p—q—1. Let
A? <= A® be the simplex spanned by q and let 4"< A% be the simplex spanned by the
remaining vertices. Again 47 is the join of 47 and 4". It is easily seen that if xe 4 and
yed" then v (x)<y.(»), and there is € >0 such that if y,(y)<y.(x)+ € then the re-
striction of y, to the line segment joining x and y is linear. By induction we may assume
7. | 47 is quasi-linear. It follows from construction that y, | 4" is linear. From these
facts it is easy to see that y, l A? is quasi-linear.

This completes the proof that SNNG =X (Q).

Now we construct a real valued function v defined on a neighborhood of the
1-skeleton of |[SNNG| and defining Q there. If o is a non-degenerate 1-cell of 6NNG,
we let T be the unique non-degenerate cell in NNG of which o is a degeneracy (in NNG)
Then we let v=y, on |o|. This defines v on the 1-skeleton, and there is a unique ex-
tension of v to a neighborhood of the 1-skeleton which defines Q.

Finally, we extend v arbitrarily to all of BBG. Then v induces a mapping of CSS-
sets SNNG — S(R), where the latter is the singular complex of R. Since INNGc
= S(BBG), the graph of this mapping is a sub-CSS-set of S(BBG) x S(R). We will
identify SNNG with the graph of this mapping. Then, by our construction, SNNG <
<S (Q).

Now we apply the forgetful functor and regard SNNG and S(Q) as 4-sets. Then
we may apply 4 tc each of these, so the above inclusion gives rise to an inclusion
ASNNG < AS(Q).

By replacing BI' with a homotopy equivalent space if necessary, we may suppose
that U*Q’'=Q and that Q' is a foliation of BI'. Then we have a commutative diagram.

3 U

|ASNNG|, — |4S ()], — |4S ()],
(1) ) = (Q)

BBG —s Bl

Here 1 is the geometric realization of the inclusion defined above. The functors
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w— S (w)and X - AX and |?| , compose to give a functor; U, comes from U by this
functor. 7(2) and n(Q)" are the mappings coming from the natural transformation.

Now 7 (') and =n(2)-: are homotopy equivalences. Consider R:|AS (2')|,—
— BBG. We will show RU,: induces an isomorphism in integer homology. Since
BBG (and hence, also | 40 NNG| ) is simply connected, this implies RU,1 is a homotopy
equivalence. Thus U, has a left inverse. Since 7 (Q') and = ()1 are homotopy equiva-
lences, it then follows that U has a left inverse.

It remains only to show that RU,1 induces an isomorphism in integer homology.

The proof that RU,: induces isomorphism in integer homology is based on an
explicit calculation as follows.

Let C, denote the chain complex of the 42-set AONNG (so we do not divide by
degeneracies). Let C, denote the chain complex of the 4%-set NNG (so again we do
not divide by degeneracies), and let C} denote the normalized chain complex of the
CSS2-set NNG (so here we divide by degeneracies). From the definition of R, it
follows that RU,: induces a chain mapping ¢:C,— C5. We must show ¢ induces
isomorphism in homology.

Let C,; denote the chain complex of the 4-set  NNG. The shuffle homomorphism
0:C, — C, induces an isomorphism in homology inverse to that given by the canonical
mapping |0 NNG|,— | NNG|,. Moreover, if we consider the decomposition of | A0 NNG]|
into the sets E” given in the proof of Proposition 4.3, this gives a “cell’’ structure on
| A6 NNG| isomorphic to the standard cell structure on |0 NNG|,. The cell structure on
|A6NNG|, coming from its structure as a CSS2-set, is a subdivision of this cell
structure. Hence we get a subdivision mapping ¥:C, — C3, where C) denotes the
normalized chain complex of the CSS2-set AONNG.

It is easy to verify that ¢ factors

proj.

- ~N_@ N
Co— CY -2 Y.

Thus it suffices to show that g induces isomorphisms in integer homology, or, equiva-
lently that
é TO: Cz - Clzv

induces isomorphisms in integer homology.

Now let BBG denote the complex defined in [4]. At the end of §5, we showed
BPBG is the chains on B’'BG obtained by giving BG* the product structure as a CW-
complex instead of the product structures as a CSS-set. Thus C} and BBG have the
same homology and there is an Alexander homomorphism

C; — BBG

which induces the canonical isomorphism in homology.
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We filter fSG as in [4], §2. We filter C, by letting F,C, be generated by all
(', q) cells with p’< p. Then we have two chain homomorphisms of filtered com-
plexes, arising from the compositions

praj.\ A

C, > C3 > BBG

ve .y A

C, > C; > BBG .

A direct, albeit lengthy, calculation shows that the induced mappings on the associated
graded objects are the same. Hence the two induced mappings on spectral sequences
are the same on the E' terms and therefore likewise on the E” r > 1. However the in-
duced mapping on E? arising from the first composite above is an isomorphism by
general nonsense. Hence, so is the induced mapping on E?2 arising from the second
composite. Hence

Ap¥0:C, — BBG

induces isomorphisms in homology. Since 4 induces isomorphisms in homology, it
follows that g¥0 does also. Q.E.D.
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