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Some Global Theorems on Non-Complete Surfaces

by SHING-TUNG YAU

§1. Introduction

The first theorem we want to prove in this paper is about the non-immersibility
in euclidean three-space of some non-compact surfaces with non-positive curvature.
If a surface is compact, the proof of non-immersibility is well-known and easy. It
depends on the fact that the euclidean norm attains its maximum on the surface.
For non-compact surface, this fact is no longer valid. In fact there are numerous
complete surfaces with non-positive curvature in euclidean space. Our theorem shows
that if the surface has no more than three ends and if it is complete and of finite
volume, it cannot be immersed in euclidean space R® with non-positive curvature.
The number three is best possible. Furthermore, completeness can be replaced by the
requirement that it be parabolic and non-flat.

In section two, we discuss the total curvature of an open surface. In general we
assume some finiteness condition at the ends of the surface. But we do not assume
completeness. If the surface is parabolic, we prove that the total curvature is not less
than 2ny where x is the Euler number of the surface. This may be compared with the
Cohn-Vossen inequality which states that for complete surfaces, the total curvature
is not greater than 2ny. We also discuss some other results under the above finiteness
condition.

In section three, we discuss strongly positively curved surfaces. Bonnet’s theorem
says that a complete strongly positively curved surface is compact. We replace com-
pleteness by the finiteness condition mentioned above and prove that the surface is
bounded. Obviously without any finiteness assumption, the assertion need not be
true. Finally, we give an upper bound for the diameter of a ball which contains a
compact hypersurface with positive curvature. The upper bound is given in terms of
the sectional curvature of the hypersurface. Unfortunately, we can only do this for
hypersurfaces of dimension not less than three. We note that a consequence of Theo-
rem 8 is that the only compact constantly curved hypersurface in euclidean space is
the sphere.

Results of sections one and three can be generalized to higher dimension and to
the case where the ambient manifold has constant curvature.
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§2. Immersions of Surfaces with Non-Positive Curvature

Throughout this paper, we shall assume that our surface is finitely connected, i.e.,
M is diffeomorphic to some compact surface M minus a finite number of points
{P1> P2s--s Pn}. The number n is called the number of ends of M.

It is well known that every riemannian metric defines a conformal structure on M.
Each p, has a neighborhood U; in M such that U\{p,} is conformally equal to an
annulus in the complex plane. Let the annulus be 0 <R, <|z|< R, < 0. It is known
[1] that M is parabolic iff R,=oco and that M is hyperbolic iff R, < for each p,.
Recall that a Riemann surface is called parabolic if there is no negative subharmonic
function on it. Throughout this paper when we say that a sequence of closed curves
converges to an end p;, we assume that these curves are not homotopic to zero in the
neighborhood U,\{p;}. Now let us first prove the following.

PROPOSITION 1. Let M be a parabolic riemannian surface with finite volume.
Then for each end p,, we can find a sequence of closed curves {a’;} which converges to
p; and whose lengths approach to zero.

Proof. Assumei=1. Let U;\{p,} be the neighborhood which is conformally equiv-
alent to the complex plane minus a disc. Let the radius of this disc be R,. We claim
that there is a sequence of circles with radii {r;} going to infinity and lengths ap-
proaching to zero.

Since U;\{p, } is conformally equivalent to the plane minus a disc, we may assume
the metric has the form

dx* = e* (dx* + dy?). 1)

In terms of polar coordinates, the circle with radius r has length

2n

I(r)= f e‘rdo. 2
0

If our assertion is false, we may assume

liminfl(r)>&e>0 3)

for some constant &. We claim that this is impossible. In fact, from (2) and (3), we
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would have

Jeudo%. @)

This gives the inequality

R 2= R 2n R
2 e\’ R
2njfe“rd0dr>jr<fe“d0) dr>fr(—) dr=azlog1T. (5)
r
R;y O Ry 0 Ry .

The left hand side of (5) is — up to a factor 27w — the area of the annulus between
the circles of radius R, and R. By hypothesis, this term is bounded by a constant
independent of R which contradicts (5).

COROLLARY. The conclusion of Proposition 1 still holds if we replace M by a
complete riemannian surface with finite volume.

Proof. 1t is easy to see [1] that complete surface with finite volume is parabolic.

The following theorem of R. Osserman [3] will be used.

THEOREM 1. Let M be a surface with non-positive curvature in euclidean three-
space. Let D be a compact domain in M. Then D lies in the convex hull of its boundary
in M, the convex hull being taken in the euclidean space.

Now let us prove

THEOREM 2. Let M be a non-positively curved surface in euclidean three-space,
with finite volume. Suppose it is parabolic and has no more than three ends. Then it must
lie on a plane.

Proof. Without loss of generality, we may assume that M has three ends. Using
the notations of §2, we write these three ends as {p,, p,, ps}.

By Proposition 1, for each p,, there is a sequence of closed curves {aﬂ-} which de-
crease to p; and whose length approach to zero. Let {qj} be arbitrary points on these
curves {¢%}. Then for each j, {g}} determine a plane. Let P, be the convex body which
is obtained by thickening this plane and which just contains the curves aﬂ-. Since the
lengths of these curves} o approach zero, the width of P; approaches zero.

Now let D; be the compact domain bounded by the curves ¢’ By Theorem 1, D;
is contained in P; for each j. We claim that P; approaches some fixed plane. In fact,
fix three non-collinear points in D, for some k. Then they are contained in P; for j
large enough, and the distance between these three points and the boundary of P;
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approaches zero. Hence P; converges to the plane determined by these three points.
It is then clear that the whole surface lies on this plane.
As in Proposition 1, we have the following

COROLLARY. Let M be a complete non-positively curved surface with finite vol-
ume. If M has no more than three ends, then M cannot be isometrically immersed in
euclidean three space.

R. Ogawa pointed out to us that the number three is the best possible, i.e., there
is a complete non-positively curved surface with finite volume and four ends in eu-
clidean three space. Such a surface can be constructed in the following way. Consider
the tetrahedron in euclidean three space. Delete one point from each of the four faces
and pull the faces to infinity at these points. Smoothing the surface along the edges,
we obtain the example required.

§3. The Curvature Restriction on an Open Surface

The purpose of this section is to discuss the total curvature of an open surface
under some conformal restriction. The total curvature is by definition the integral
M K dA where K is the Gauss curvature and d4 is the volume element of the surface.
We shall denote the Euler number of the surface by y.

THEOREM 3. Let M be a finitely connected parabolic surface. Suppose there is a
sequence of closed curves of uniformly bounded length converging to each end. Then

deA>2nx. @)
M

Proof. Let p; be the ends and U, be the neighborhoods such that U,\{p;} is con-
formally equivalent to the plane minus a disc with radius R,. For each i, let {d°} be
the sequence of closed curves of uniformly bounded length which converges to p;.
Without loss of generality, we may assume that each 03 is a simple, closed curve. In
view of the Gauss-Bonnet Theorem, we need only construct a sequence of closed
curves converging to each end such that the total geodesic curvature of this sequence
tends to a non-positive number.

Since we are only interested in the behavior at infinity, we may assume M is in
fact conformally equivalent to the plane. (One can extend the metric outside the an-
nulus.) Let us first prove a special case of our theorem. Namely, we first assume all
the g;’s are concentric circles in the plane. Suppose the metric on the plane is given
by

ds? = e*(dx? + dy?). (8)
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Then the total geodesic curvature of the circle with radius r is given by
2n

ou

J r—do+2n. )]
or

]

If we cannot find a sequence of closed curves going to infinity such that the total

geodesic curvature is tending to a non-positive number, we may assume there is a

positive number ¢>0 such that
2n

ou
Jr——d@+2n>2na (10)
or
0

for r large enough.
Suppose the o;’s are circles with radius ;. Then by hypothesis, there is a positive

constant M >0 such that
2n

f e'rjdi<M (11)
0

for all j.

Integrating (10), we obtain
2

1
2—Jud9>(e-—1)logr+c (12)
n

where C is a constant independent of r.

Now by the convexity of exponential function, we have
2n 2r

1 1
— | e“dO=exp{— | udf]. (13)
27 2n

V]
From (11), (12), and (13), we have

M
C . 7';— 1 <
2nr;

for each j. Such an inequality is impossible if 7; goes to infinity. Hence we have proved
the theorem for our special case.

To prove the general case, we have to use the Riemann mapping theorem. We
assume that o; is a simple, closed curve such that ¢; is inside o,,, for all i and that
0 lies in the region bounded by o, for all i. For each i, let f; be the biholomorphic

transformation mapping the region bounded by the curve g, onto the disk D (r;) with
radius r; such that £;(0)=0 and f;' (0)=1.

(14)

e
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Recall that Bloch’s theorem says that there exists a universal constant b such that
for any holomorphic function f defined on the disc of radius » and satisfying /'’ (0)=1,
the image of f contains a disk with radius rb. Applying Bloch’s theorem to the above
situation, we see that r; —»co. It is also easy to see r;,; >r;. (Otherwise we can define
fifi+1 which maps D(r;,,) into D(r;) with £;£.51(0)=0 and (f,f.51) (0)=1, a
contradiction to the Schwartz Lemma.)

For each r;, consider the family of functions f;~' |D(r;), j>i. It is well-known
(see [5]) that this is a normal family. Hence by a diagonal process, a subsequence of
{f;"'} converges locally uniformly to a holomorphic function f ~1. Similarly {f;}
converges locally uniformly to a holomorphic function which must be the inverse of
f "1 In particular, f "1 is biholomorphic and (f ~1)'#0 everywhere. An immediate
consequence is that {|(f;"!)'|} is uniformly bounded from below by a positive con-
stant on any disk D(r).

For each R>0, let S(R) be the circle of radius R. We assert that if {R;} —»co and
if i is a function of j, then { /;”! S(R;)} diverges to infinity. In fact, if this is not true,
we can find a sequence {z;} — o0 such that f;;;, (z,) converges to some point f ~1(z,).
This is impossible because f; ;, converges uniformly near f ~1(z,).

Now for each i, consider the induced metric (f;”!)*ds? on the disk D(r;). Let
it be

e* (dx* + dy?). (15)

The fact that |( f;”!)'| is uniformly bounded from below by a positive constant on
compact sets implies that {u;} is uniformly bounded from below on compact sets.
For each R>0, consider the number
2n

g(R) = inf U ‘%’deun]. (16)
0

rjZR

This is the infinnum of the total geodesic curvatures of the circle S(R) with respect
to the metric (f;”')*ds®. If we can find a sequence {R;} —oo such that g(R;) tends
to a non-positive number, then we can find a sequence {i(j)} such that the curves
fiy {S(R;)} diverge to infinity and the total geodesic curvatures of fi;; {S(R;)} tend
to a non-positive number. This will prove our theorem.

Hence, we may assume that there are numbers R>0, ¢>0 such that for all r>R,
g(r)=2ms,i.e.,

2n

Ou;
Jr—(;d@+2n>2ns 17)

0

for all j with r;>R.
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Let

2n

1
C,-=2—Ju,-(R, 0)df — (¢ —1)logR. (18)
n
0

Then as in the special case

M

exp (C;) ri™" < o —.
2nr;

(19)

Since C; is uniformly bounded from below, (19) is impossible when r; goes to
infinity.

COROLLARY. Let M be a parabolic surface with finite volume, then (7) holds.
Proof. This follows from Proposition 1 and the theorem.

COROLLARY. Let M be a complete surface with non-positive curvature. If M is
diffeomorphic to the plane or the plane minus a point, then M has infinite volume.

Proof. If M has finite volume, it is parabolic and the above corollary says (7) is
valid. Therefore M is conformally the plane minus a point and the curvature is iden-
tically zero. This manifold has infinite volume as will be seen in Theorem 4.

Remark. Theorem 3 was proved by Cohn-Vossen and Huber [2] under the as-
sumption that the metric is complete.

THEOREM 4. Let M be a parabolic surface with finite volume. Then there is a
sequence of closed curves o’ converging to each end p ; such that, if B; is the compact
domain bounded by the &1, we have

f K dA > 2ny. (20)
By

Proof. Asin Theorem 3, we may assume M is conformally equivalent to the plane.
Then by Proposition 1, there is a sequence of circles going to infinity with length
approaching zero.

We claim that we can find a sequence of circles going to infinity such that their
total geodesic curvature is negative. Otherwise (10) holds with e=0 and we deduce
as in theorem 3 the following

2ne® < M (21)

where M; is the length of the circle with radius r; and C is a fixed constant. When j
goes to infinity, we may assume M;— 0. This contradicts (21).
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COROLLARY. Let M be parabolic manifold with finite volume. Suppose that, ex-
cept for a compact set, the curvature of M is non-negative. Then

f K dA > 2ny. (22)
M

Proof. Because [y K dA>[y; K dA>2ny when i is large enough.
Now let us combine theorems of Huber [1] and [2] to prove the following.

THEOREM 5. Let M be a surface with [y K+ dA<oo where K* is the positive
part of the Gaussian curvature. If there is a sequence of closed curves of uniformly
bounded length converging to each end, then either

i) [y KdA=2my or ii) M has finite volume.

Proof. Without loss of generality, we may assume that M has one end and that
{o,} is the sequence of closed curves of uniformly bounded length going to this end.
If M is complete, i) follows by the theorem of Cohn-Vossen and Huber [2]. Otherwise
there is a curve I of finite length, going to infinity.

As in Theorem 3, we may assume that the ;s are simple, closed curves and that
g; is inside a;,, for all i. Let i be large enough so that

f Kt dA <2n (23)
B;

where B; is the complement of the region bounded by o;.

Let I', be a component of the curve I' joining the closed curves o; and o,. In [1],
Huber proved the following isoperimetric inequality. If N is a compact simply con-
nected surface with boundary, then

I!>2 (21: - f K* dA) A (24)
N

where L is the length of the boundary and A4 is the volume of the surface N. Using
(23), (24) and the fact that ;, 6, and I" have uniformly bounded length, one sees that
the area of B, is uniformly bounded and hence M has finite area. This completes the

proof of the theorem.
If one does not assume [, K+ dA <o, one has the following theorem, which is

a direct consequence of Huber’s inequality.

THEOREM 6. Let M be a simply connected surface with infinite volume. Suppose
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there is a sequence of closed curves of uniformly bounded length, going to infinity; then

f K* dA>2n. (25)
M

§4. Surfaces with Strongly Positive Curvature

It is well known that if a complete surface has curvature bounded from below by
a positive constant, then it is bounded. We shall replace completeness by some fi-
niteness condition at infinity.

THEOREM 7. Let M be a surface with strongly positive curvature. Suppose there
is a sequence of closed curves of uniformly bounded length going to each end. Then M
is bounded.

Proof. Let {q,,..., q,} be the ends of M. Let p be an arbitrary point in M. We
shall call the distance between p and g; the infinmum of the lengths of all the curves
from p to g;. If these distances are infinite, M is complete and hence compact, by
Bonnet’s theorem. Therefore, assume at least one of these distances is finite. We are
going to prove that the infinma of these distances are actually uniformly bounded
(independent of the point p). Using the hypothesis, it is then easy to conclude the
proof of the theorem.

To prove the assertion, let us assume g, is the end such that the distance between
p and ¢, is the infinmum of the distances between p and the g;. Let this distance be d.
Let {0} be a sequence of curves from p to g; with lengths approaching d. Let [0, d']
be an interval parametrizing the curves {o;} such that the length of the tangent of
each curve is not greater than one. For any integer n, one can see easily that when i
is large enough, all the curves {; | [0, d’'—(1/n)]} have length not greater than d—¢
for some positive ¢>0. Hence, by the choice of g, and d, all these curves lie in a
compact subset of M and they have a subsequence converging to a curve defined on
[0, d’—(1/n)]. Call this subsequence {¢;}. Repeating the same procedure as above,
one chooses a subsequence {a7 "'} of {¢}} converging to a curve defined on [0, d’—
(1/n+1)]. Continuing this process and picking the sequence {o}}, we find the limit
of this sequence of curves is a curve defined on [0, d’). Furthermore, it is easy to see
that this curve has length d. Therefore, this curve minimizes the distance from p to
¢, and a standard argument shows that it is actually a minimizing geodesic. A min-
imizing geodesic cannot have a critical point and the argument of Bonnet’s theorem
shows d<n/,/ K. This proves our assertion.

We note that the hypothesis in Theorem 7 is essential. For example, let R? be the
universal cover of the sphere minus two points. Then R? has a metric induced from
the sphere. Its curvature is a positive constant. It is not hard to see that such a surface



186 SHING-TUNG YAU

is not bounded. On the other hand, it is quite possible that any surface with constant
positive curvature in euclidean three-space is bounded.

Let us consider the last statement. Let M be a hypersurface in eudlidean space.
We shall call the smallest diameter of balls containing M the outer diameter of M
and the largest diameter of balls lying inside M the inner diameter of M.

THEOREM 8. Let M be a compact hypersurface in R"~1 with curvatures bounded
between two positive constants K, and K,. If n>3, then the outer diameter of M is not
greater than 2\/ K,/K, and the inner diameter of M is not less than 2\/ K, /K,.

Proof. We first note the following theorem of [4]. (R. Ogawa has another proof
of this fact.) If ¢ is a closed convex curve in the plane with curvature not less than k,
then the outer diameter of ¢ is not greater than 2/k.

To prove Theorem 8, we need the following generalization of the above statement.
Let M be a compact convex hypersurface of euclidean space. Let k£ be the infinmum
of all principal curvatures of M. Then the outer diameter of M is not greater than
2/k. In fact, let p be a point in M such that one of the principal curvatures at p attains
the value k. The tangent plane at p cuts the euclidean space into two halves, one of
which contains M completely. Let S be the sphere of radius 1/k contained in this half
space and tangent to the hyperplane at p. It suffices to prove M is contained inside S.

Let g be any point in M. Through p and g draw a two-dimensional plane which
is perpendicular to the tangent plane at p. This plane cuts the manifold M into a
curve. It is not hard to prove that the geodesic curvature of this curve in the two-
dimensional plane is not less than 1/k. By the theorem quoted above, this curve lies
entirely in S. This proves our assertion.

Now by the Gauss equation and the assumption, we have

K, <44; <K, (26)
for all principal curvatures 4;, 4; with different principal directions.

If n>3, it is easy to see from (26) that

K,

JKz

The first assertion of Theorem 8 then follows from (27) and the above general-
ization. The second assertion can be proved similarly.

Remark 1. We do not know whether Theorem 8 is true for n=2 or not. If it is
true, it would imply the famous theorem that the only compact constant curved sur-
face in euclidean three space is the sphere.

Remark 2. After this paper was submitted for publication, we learned that Po-
gorelov [6] had studied an analogous question for n=2. He calls a surface almost
spherical if the ratio 4,/4,, two of the principal curvatures, is close to 1. In this case,
he obtains a theorem like Theorem 8. Our methods of proof give this result also.

<k. 27)
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