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Some Global Theorems on Non-Complète Surfaces

by Shing-Tung Yau

§1. Introduction

The first theorem we want to prove in this paper is about the non-immersibility
in euclidean three-space of some non-compact surfaces with non-positive curvature.

If a surface is compact, the proof of non-immersibility is well-known and easy. It
dépends on the fact that the euclidean norm attains its maximum on the surface.

For non-compact surface, this fact is no longer valid. In fact there are numerous
complète surfaces with non-positive curvature in euclidean space. Our theorem shows

that if the surface has no more than three ends and if it is complète and of finite
volume, it cannot be immersed in euclidean space R3 with non-positive curvature.
The number three is best possible. Furthermore, completeness can be replaced by the

requirement that it be parabolic and non-flat.
In section two, we discuss the total curvature of an open surface. In gênerai we

assume some finiteness condition at the ends of the surface. But we do not assume

completeness. If the surface is parabolic, we prove that the total curvature is not less

than 2nx where x is the Euler number of the surface. This may be compared with the
Cohn-Yossen inequality which states that for complète surfaces, the total curvature
is not greater than 2nx- We also discuss some other results under the above finiteness
condition.

In section three, we discuss strongly positively curved surfaces. Bonnet's theorem

says that a complète strongly positively curved surface is compact. We replace
completeness by the finiteness condition mentioned above and prove that the surface is

bounded. Obviously without any finiteness assumption, the assertion need not be

true. Finally, we give an upper bound for the diameter of a bail which contains a

compact hypersurface with positive curvature. The upper bound is given in terms of
the sectional curvature of the hypersurface. Unfortunately, we can only do this for
hypersurfaces of dimension not less than three. We note that a conséquence of Theorem

8 is that the only compact constantly curved hypersurface in euclidean space is

the sphère.
Results of sections one and three can be generalized to higher dimension and to

the case where the ambient manifold has constant curvature.
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§2. Immersions of Surfaces with Non-Positive Curvature

Throughout this paper, we shall assume that our surface is finitely connected, Le.,

M is diffeomorphic to some compact surface AÏ minus a finite number of points
{Pi,P2,-~9Pn}' The number n is called the number of ends of M.

It is well known that every riemannian metric defines a conformai structure on M.
Each Pi has a neighborhood Ut in iCf such that U\{pi) is conformally equal to an
annulus in the complex plane. Let the annulus be 0<JR1<|z|<jR2<oo. It is known
[1] that M is parabolic iff R2 oo and that M is hyperbolic iff R2<oo for each pt.
Recall that a Riemann surface is called parabolic if there is no négative subharmonic
function on it. Throughout this paper when we say that a séquence of closed curves

converges to an end pi9 we assume that thèse curves are not homotopic to zéro in the

neighborhood Ui\{pi}. Now let us first prove the following.

PROPOSITION 1. Let M be a parabolic riemannian surface with finite volume.

Thenfor each endpit we canfind a séquence of closed curves {a)} which converges to

pt and whose lengths approach to zéro.

Proof Assume /= 1. Let ^i\{/?i} be the neighborhood which is conformally équivalent

to the complex plane minus a dise. Let the radius of this dise be Rv We claim
that there is a séquence of circles with radii {rj going to infinity and lengths ap-
proaching to zéro.

Since £/i\{/*i} is conformally équivalent to the plane minus a dise, we may assume

the metric has the form

: e (dx + dy (1)

In terms of polar coordinates, the circle with radius r has length

2n

l(r)= f eurd6. (2)

o

If our assertion is false, we may assume

liminfJ(r)^e>0 (3)
r-*oo

for some constant e. We claim that this is impossible. In fact, from (2) and (3), we



Some Global Theorems on Non-Complète Surfaces 179

would hâve

!'«>-;• (4)

This gives the inequality

t 2n R

r / r \2 r /?\2 n
(5)2« F F e2ur dOdr> | r \ e" dè\ dr> \r (-\ dr e2 log—.

Ri 0 Ri 0 Ri

The left hand side of (5) is - up to a factor 2n - the area of the annulus between
the circles of radius Rt and R. By hypothesis, this term is bounded by a constant
independent of R which contradicts (5).

COROLLARY. The conclusion of Proposition 1 still holds if we replace M by a
complète riemannian surface withfinite volume.

Proof It is easy to see [1] that complète surface with finite volume is parabolic.
The following theorem of R. Osserman [3] will be used.

THEOREM 1. Let M be a surface with non-positive curvature in euclidean three-

space. Let D be a compact domain in M. Then D lies in the convex hull ofits boundary
in M, the convex hull being taken in the euclidean space.

Now let us prove

THEOREM 2. Let M be a non-positively curved surface in euclidean three-space,

withfinite volume. Suppose it is parabolic and has no more thon three ends. Then it must
lie on a plane.

Proof. Without loss of generality, we may assume that M has three ends. Using
the notations of §2, we write thèse three ends as {PuP2^Pz}-

By Proposition 1, for each/?h there is a séquence of closed curves {a)} which de-

crease to pt and whose length approach to zéro. Let {q)} be arbitrary points on thèse

curves {a)}. Then for eachy', {q)} détermine a plane. Let Pj be the convex body which
is obtained by thickening this plane and which just contains the curves a\. Since the

lengths of thèse curves^ a approach zéro, the width of Pj approaches zéro.
Now let Dj be the compact domain bounded by the curves a). By Theorem 1, Di

is contained in Pj for eachy*. We claim that Pj approaches some fixed plane. In fact,
fix three non-collinear points in Dk for some k. Then they are contained in Pj for j
large enough, and the distance between thèse three points and the boundary of Pj
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approaches zéro. Hence Pi converges to the plane determined by thèse three points.
It is then clear that the whole surface lies on this plane.

As in Proposition 1, we hâve the following

COROLLARY. Let M be a complète non-positively curved surface withfinite
volume. If M has no more thon three ends, then M cannot be isometrically immersed in
euclidean three space.

R. Ogawa pointed out to us that the number three is the best possible, i.e., there
is a complète non-positively curved surface with finite volume and four ends in
euclidean three space. Such a surface can be constructed in the following way. Consider
the tetrahedron in euclidean three space. Delete one point from each of the four faces

and pull the faces to infinity at thèse points. Smoothing the surface along the edges,

we obtain the example required.

§3. The Curvature Restriction on an Open Surface

The purpose of this section is to discuss the total curvature of an open surface
under some conformai restriction. The total curvature is by définition the intégral
JM K dA where K is the Gauss curvature and dA is the volume élément of the surface.

We shall dénote the Euler number of the surface by %.

THEOREM 3. Let M be afinitely connected parabolie surface. Suppose there is a

séquence of closed curves of uniformly bounded length converging to each end. Then

J KdA^lnx. (7)

M

Proof Let/^ be the ends and Ut be the neighborhoods such that U^pi} is con-
formally équivalent to the plane minus a dise with radius Rt. For each i, let {a)} be

the séquence of .closed curves of uniformly bounded length which converges to pt.
Without loss of generality, we may assume that each a) is a simple, closed curve. In
view of the Gauss-Bonnet Theorem, we need only construct a séquence of closed

curves converging to each end such that the total géodésie curvature of this séquence
tends to a non-positive number.

Since we are only interested in the behavior at infinity, we may assume M is in
fact conformally équivalent to the plane. (One can extend the metric outside the an-
nulus.) Let us first prove a spécial case of our theorem. Namely, we first assume ail
the a/s are concentric circles in the plane. Suppose the metric on the plane is given
by

(8)
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Then the total géodésie curvature of the circle with radius r is given by

du
d6 2n. (9)

o

If we cannot find a séquence of closed curves going to infinity such that the total
géodésie curvature is tending to a non-positive number, we may assume there is a

positive number e>0 such that

— d6 + 2tt ^ 2ne (10)

for r large enough.
Suppose the a/s are circles with radius rj9 Then by hypothesis, there is a positive

constant M>0 such that

eurjd6<M (11)

o

for ail j.
Integrating (10), we obtain

Ijfid0>(fi-I)logr + C (12)

where C is a constant independent of r.
Now by the convexity of exponential function, we hâve

2n 2n

(13)

0 0

From (11), (12), and (13), we hâve

M

for eachy. Such an inequality is impossible if rj goes to infinity. Hence we hâve proved
the theorem for our spécial case.

To prove the gênerai case, we hâve to use the Riemann mapping theorem. We

assume that at is a simple, closed curve such that oi is inside crl+1 for ail i and that
0 lies in the région bounded by at for ail L For each /, let ft be the biholomorphic
transformation mapping the région bounded by the curve at onto the disk Z)(rf) with
radius rt such that/f(O)=O and//(0)=l.
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Recall that Bloch's theorem says that there exists a universal constant b such that
for any holomorphic function/defined on the dise of radius r and satisfying/'(0)= 1,

the image of/contains a disk with radius rb. Applying Bloch's theorem to the above

situation, we see that r,^oo. It is also easy to see ri+1 >ri. (Otherwise we can defint

fja\ which maps D(ri+i) into D(rt) with /f/,;J(0) 0 and (/./.;})'(0)=l, a
contradiction to the Schwartz Lemma.)

For each ri9 consider the family of functions ff* |Z>(rf), y>/. It is well-known
(see [5]) that this is a normal family. Hence by a diagonal process, a subsequence of
{ff1} converges locally uniformly to a holomorphic function/"1. Similarly {fj}
converges locally uniformly to a holomorphic function which must be the inverse of
f~\ In particular,/"1 is biholomorphic and (/~1)V0 everywhere. An immédiate

conséquence is that {!(./*" *)'!} is uniformly bounded from below by a positive
constant on any disk D(r).

For each R>0, let S(R) be the circle of radius R. We assert that if {jfy} ->oo and

if i is a function ofy, then {ff1 S{Rj)} diverges to infinity. In fact, if this is not true,
we can find a séquence {zj}-+oo such that/J^1 (z7) converges to some point/~1(z0).
This is impossible because/)0) converges uniformly near/"1(z0).

Now for each i, consider the induced metric (ff^ + ds2 on the disk D(rt). Let
itbe

e2ut(dx2 + dy2). (15)

The fact that \(ff 1)'| is uniformly bounded from below by a positive constant on
compact sets implies that {wj is uniformly bounded from below on compact sets.

For each R>09 consider the number

g(R) inf f f R ^ d9 + 2tt1. (16)
rj>R LJ or J

0

This is the infinnum of the total géodésie curvatures of the circle S(R) with respect

to the metric (fi~1)*ds2. If we can find a séquence {Rj} -*oo such that g(Rj) tends

to a non-positive number, then we can find a séquence {i(j)} such that the curves

fia) {S(Rj)} diverge to infinity and the total géodésie curvatures off^f {S(Rj)} tend

to a non-positive number. This will prove our theorem.

Hence, we may assume that there are numbers jR>0, e>0 such that for ail
g(r)>2ns, Le.,

2n

f
J
o

^d0 + 2n>2ns (17)
dr

for ail j with
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Let

O)d8-(e-l)logR. (18)

0

Then as in the spécial case

M
r1 (19)

Since Ct is uniformly bounded from below, (19) is impossible when rt goes to
infinity.

COROLLARY. Let M be a parabolic surface with finite volume, then (7) holds.

Proof. This follows from Proposition 1 and the theorem.

COROLLARY. Let M be a complète surface with non-positive curvature. IfM is

diffeomorphic to the plane or the plane minus a point, then M has infinité volume.

Proof If M has finite volume, it is parabolic and the above corollary says (7) is
valid. Therefore M is conformally the plane minus a point and the curvature is iden-

tically zéro. This manifold has infinité volume as will be seen in Theorem 4.

Remark. Theorem 3 was proved by Cohn-Vossen and Huber [2] under the as-

sumption that the metric is complète.

THEOREM 4. Let M be a parabolic surface with finite volume. Then there is a

séquence of closed curves o[ converging to each end pj such that, if Bt is the compact
domain bounded by the a{, we hâve

[K (20)

Proof As in Theorem 3, we may assume Mis conformally équivalent to the plane.
Then by Proposition 1, there is a séquence of circles going to infinity with length
approaching zéro.

We claim that we can find a séquence of circles going to infinity such that their
total géodésie curvature is négative. Otherwise (10) holds with e=0 and we deduce

as in theorem 3 the following

2nec ^ Mj (21)

where Mj is the length of the circle with radius rj and C is a fixed constant. When j
goes to infinity, we may assume Mj->0. This contradicts (21).
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COROLLARY. Let M be parabolie manifold with finite volume. Suppose that, ex-
ceptfor a compact set, the curvature of M is non-negative. Then

/
M

KdA>2nx. (22)

Proof. Because JM KdA^\Bi KdA>2nx when i is large enough.
Now let us combine theorems of Huber [1] and [2] to prove the following.

THEOREM 5. Let M be a surface with JM K+ dA <co where K+ is the positive
part of the Gaussian curvature. If there is a séquence of closed curves of uniformly
bounded length converging to each end, then either

i) jM KdA 2nx or ii) M has finite volume.

Proof Without loss of generality, we may assume that M has one end and that

{aj is the séquence of closed curves of uniformly bounded length going to this end.

If M is complète, i) follows by the theorem of Cohn-Vossen and Huber [2]. Otherwise
there is a curve F of finite length, going to infinity.

As in Theorem 3, we may assume that the a/s are simple, closed curves and that

a{ is inside exf+1 for ail i. Let i be large enough so that

K+ dA < 2n (23)

Bt

where Bt is the complément of the région bounded by at.
Let Fn be a component of the curve F joining the closed curves <rt and on. In [1],

Huber proved the following isoperimetric inequality. If N is a compact simply con-
nected surface with boundary, then

L2 > 2 Un - [ K+ dA\ A (24)

N

where L is the length of the boundary and A is the volume of the surface N. Using
(23), (24) and the fact that <rf, <rn and F hâve uniformly bounded length, one sees that
the area of Bt is uniformly bounded and hence M has finite area. This complètes the

proof of the theorem.

If one does not assume JM K+ dA< oo, one has the following theorem, which is

a direct conséquence of Huber's inequality.

THEOREM 6. Let M be a simply connected surface with infinité volume. Suppose
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there is a séquence of closed curves ofuniformly bounded length, going to infinity; then

dA^2n. (25)

M

§4. Surfaces with Strongly Positive Curvature

It is well known that if a complète surface has curvature bounded from below by
a positive constant, then it is bounded. We shall replace completeness by some fi-
niteness condition at infinity.

THEOREM 7. Let M be a surface with strongly positive curvature. Suppose there
is a séquence of closed curves of uniformly bounded length going to each end. Then M
is bounded.

Proof Let {#i,..., qn) be the ends of M. Let p be an arbitrary point in M. We
shall call the distance between p and qt the infinmum of the lengths of ail the curves
from p to q{. If thèse distances are infinité, M is complète and hence compact, by
Bonnet's theorem. Therefore, assume at least one of thèse distances is finite. We are
going to prove that the infinma of thèse distances are actually uniformly bounded
(independent of the point p). Using the hypothesis, it is then easy to conclude the

proof of the theorem.
To prove the assertion, let us assume qx is the end such that the distance between

p and qx is the infinmum of the distances between p and the qt. Let this distance be d.

Let {ai} be a séquence of curves from p to qx with lengths approaching d. Let [0, d'~\

be an interval parametrizing the curves {<rj such that the length of the tangent of
each curve is not greater than one. For any integer n, one can see easily that when i
is large enough, ail the curves {<7f | [0, d' — (l/«)]} hâve length not greater than d—s

for some positive e>0. Hence, by the choice of qx and d, ail thèse curves lie in a

compact subset of M and they hâve a subsequence converging to a curve defined on
[0, d' — {\\ri)\. Call this subsequence {cr"}. Repeating the same procédure as above,

one chooses a subsequence {c"+1} of [a]} converging to a curve defined on [0, d' —

(l/«+l)]. Continuing this process and picking the séquence {o-j}, we find the limit
of this séquence of curves is a curve defined on [0, df). Furthermore, it is easy to see

that this curve has length d. Therefore, this curve minimizes the distance from p to

qt and a standard argument shows that it is actually a minimizing géodésie. A min-
imizing géodésie cannot hâve a critical point and the argument of Bonnet's theorem
shows d^n/y/K. This proves our assertion.

We note that the hypothesis in Theorem 7 is essential. For example, let R2 be the

universal cover of the sphère minus two points. Then R2 has a metric induced from
the sphère. Its curvature is a positive constant. It is not hard to see that such a surface
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is not bounded. On the other hand, it is quite possible that any surface with constant
positive curvature in euclidean three-space is bounded.

Let us consider the last statement. Let M be a hypersurface in eudlidean space.
We shall call the smallest diameter of balls containing M the outer diameter of M
and the largest diameter of balls lying inside M the inner diameter of M.

THEOREM 8. Let M be a compact hypersurface in R"'1 with curvatures bounded

between two positive constants Kx and K2. Ifn^3, then the outer diameter ofM is not

greater thon 2y/K2/K1 and the inner diameter of M is not less thon 2^/k1/K2.
Proof We first note the following theorem of [4]. (R. Ogawa has another proof

of this fact.) If g is a closed convex curve in the plane with curvature not less than k,
then the outer diameter of a is not greater than 2/k.

To prove Theorem 8, we need the following generalization of the above statement.

Let M be a compact convex hypersurface of euclidean space. Let k be the infinmum
of ail principal curvatures of M. Then the outer diameter of M is not greater than

2/k. In fact, let/? be a point in M such that one of the principal curvatures at/? attains
the value k. The tangent plane at p cuts the euclidean space into two halves, one of
which contains M completely. Let S be the sphère of radius l/k contained in this half
space and tangent to the hyperplane at p. It suffices to prove M is contained inside S.

Let q be any point in M. Through p and q draw a two-dimensional plane which
is perpendicular to the tangent plane at p. This plane cuts the manifold M into a

curve. It is not hard to prove that the géodésie curvature of this curve in the two-
dimensional plane is not less than l/k. By the theorem quoted above, this curve lies

entirely in S. This proves our assertion.

Now by the Gauss équation and the assumption, we hâve

Kx ^ XfXj < K2 (26)

for ail principal curvatures Ai9 Àj with différent principal directions.

If w^3, it is easy to see from (26) that

-$L<k. (27)

The first assertion of Theorem 8 then follows from (27) and the above generalization.

The second assertion can be proved similarly.
Remark 1. We do not know whether Theorem 8 is true for n—2 or not. If it is

true, it would imply the famous theorem that the only compact constant curved
surface in euclidean three space is the sphère.

Remark 2. After this paper was submitted for publication, we learned that Po-

gorelov [6] had studied an analogous question for «=2. He calls a surface almost

spherical if the ratio XX\X2* two of the principal curvatures, is close to 1. In this case,

he obtains a theorem like Theorem 8. Our methods of proof give this resuit also.
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